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improves the performance of detection within
asymmetrical data
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Abstract

Background: Normalization of gene expression data has been studied for many years and various strategies have
been formulated to deal with various types of data. Most normalization algorithms rely on the assumption that the
number of up-regulated genes and the number of down-regulated genes are roughly the same. However, the
well-known Golden Spike experiment presents a unique situation in which differentially regulated genes are biased
toward one direction, thereby challenging the conclusions of previous bench mark studies.

Results: This study proposes two novel approaches, KDL and KDQ, based on kernel density estimation to improve
upon the basic idea of invariant set selection. The key concept is to provide various importance scores to data
points on the MA plot according to their proximity to the cluster of the null genes under the assumption that null
genes are more densely distributed than those that are differentially regulated. The comparison is demonstrated in
the Golden Spike experiment as well as with simulation data using the ROC curves and compression rates. KDL
and KDQ in combination with GCRMA provided the best performance among all approaches.

Conclusions: This study determined that methods based on invariant sets are better able to resolve the problem
of asymmetry. Normalization, either before or after expression summary for probesets, improves performance to a
similar degree.

1. Background
The normalization of data is a crucial step in the analy-
sis of microarray data. The main purpose is the removal
of systematic variations, while preserving biological var-
iations of interest. Most of the algorithms that have
been proposed and utilized over the years are based on
reasonable assumptions that are generally true for real
data and large scale studies.
Quantile normalization [1] and loess normalization [2]

are among the most popular approaches, and included
as built-in, standard procedures in most software
packages. Motivated by the idea of a Q-Q plot, quantile
normalization makes the distribution of probe intensities
identical for each array. The assumption of equal distri-
bution is so strong that it is often criticized for causing
violations in a number of applications. Nevertheless,

quantile normalization remains one of the most widely
used methods, due to its computational efficiency and
low degree of variation across samples. Loess normaliza-
tion generalizes the M vs. A method presented by
Dudoit et al., by performing local regression for each
pair of arrays [3]. M and A represent the difference and
average of the log transformed intensities in each pair of
arrays, respectively. Although the M vs. A method was
originally proposed for two-color arrays, it has also been
applied to single color arrays, with considerable success.
However, the performance of loess normalization relies
heavily on the assumption that the gene effect is sym-
metrical with respect to increases or decreases in
expression levels.
The aforementioned assumptions could be seriously

biased under certain conditions. One well accepted con-
dition is that a moderately sized group of genes is
enhanced or suppressed in the same direction, invalidat-
ing the common assumption of equal up- and down-
regulation [4,5], as occurs in cross-species hybridization
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[6,7]. When arrays are applied to strains that are incon-
sistent with the strain used to design the array, the
probe intensities are all relatively lower than the stan-
dard strain at polymorphic sites. Regardless of whether
this is due to true differences in expression or hybridiza-
tion strength, genome-wide expression distribution will
be biased if there are a moderate number of poly-
morphic sites. SNPscanner [8] considers this issue in the
normalization step; however, it simply selects probes
that do not deviate a great deal from the median, the
criterion for 1.5 standard deviation. The other situation
requiring attention is small arrays tailored to specific
applications [9]. This violates the common assumption
that most genes are not differentially expressed across
samples. Typically, all of the genes in small scale arrays
are crucial to specific purposes; hence, they are likely to
change at different scales and might change in the same
direction.
Another group of normalization methods is based on

invariant sets, which are selected as probes that are not
differentially expressed across conditions. An invariant
set is used to form the standard curve for intensity
based normalization [5,10]. Invariant sets are less sensi-
tive to the problem of non-symmetrical distribution of
gene effects. An invariant set can be defined biologically
as housekeeping genes or computationally as genes with
roughly the same ranking across arrays [5,10]. The for-
mer strategy selects genes that are known to be
expressed at a constant level in various tissues and con-
ditions. Unfortunately, extensive knowledge is required
to define the genes in this category and well-established
genes are seldom adequate to cover the entire expres-
sion range of the array. A number of studies have
reported failures using this strategy [11-14], because
there is no guarantee that a well known housekeeping
gene will maintain its expression pattern under the con-
ditions encountered in novel research.
The computational derivation of invariant sets can be

traced back to the work of Li and Wong [10]. This
approach relies on the ranking of genes within each
array. If a gene is ranked equally in each of the arrays, it
is a perfect candidate for an invariant set. However,
when a significant proportion of the genes are differen-
tially expressed and when the effects are biased in the
same direction, there could be a global shift in ranking
[5]. Hence, there remains an implicit assumption of
symmetry. Pelz et al. [5] approached this issue through
an iterative process, by recursively removing the gene
with the highest variation in ranking, and re-ranking the
genes in each array, following each removal. This
approach is claimed to be less sensitive to asymmetry in
gene effects.
Ni et al. moved away from rank-based methods, ident-

fying an invariant set using a two-step kernel method

that is not sensitive to asymmetry [15]. However, the
success of the iterative two-step approach depends heav-
ily on the choice of initial seed, because the invariant
sets are derived sequentially throughout the range of
expression. Moreover, their algorithm requires several
individual steps and heuristic settings.
In general, normalization methods based on invariant

sets are performed in three-steps: selection, curve fitting,
and scoring. Usually selection is based on heuristic cri-
teria determining the cutoff for inclusion or exclusion of
probes in an invariant set. This step is essential if this
method is to outperform regular global normalization
methods. In the second step, normalization curves are
fit, such that the intensity-based patterns can be
described using only the probes included in the selected
invariant set. In the third scoring step, the fitting results
from the second step are extended to the probes not
included in the selected invariant set. The range of
probe intensity in the selected invariant set does not
necessarily cover the entire range of intensities among
all of the probes. Scoring the data lying outside the
range of the invariant set is a statistical issue.
This study proposes a Kernel Density weighted Loess

(KDL) method, adopting a concept similar to the detec-
tion of invariant sets through the estimation of density.
KDL methods are carefully configured for single color
arrays, particularly on the Affymetrix platform. However,
there are no specific settings for the format of arrays;
therefore, it is well suited to fitting the data of two-color
arrays. Although Ni et al. estimated density based only
on M signals, our approach employs two-dimensional
kernel density estimation for both the M and A, simul-
taneously. This eliminates the need to bin the data or
introduce an iterative procedure. Our proposed
approach was first implemented as the soft criterion
described in Section 5.2 to improve general loess nor-
malization. The estimation of density provides different
weights for each data point in the subsequent loess nor-
malization. The estimation of density can also be used
to select invariant genes, as described in Section 5.3,
thereby integrating the idea of invariant sets with quan-
tile normalization.
Normalization should generate data that reflects true

variations in gene expression, to ensure that the subse-
quent step of detecting differentially expressed genes
functions correctly and returns a good estimate of fold
change. In Section 2.2, we compare the detection power
of popular normalization methods such as loess, quan-
tile, and invariant set based methods, including dChip,
GRSN, and the proposed kernel density weighted loess
(KDL) and kernel density based quantile (KDQ) normal-
ization methods. Performance was assessed using ROC
curves applied to the Golden Spike experiment and
simulation data. The compression rate between the
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expected fold change and the observed fold change is
investigated in Section 2.3. The proposed methods pro-
vide the largest area under the ROC curves and the low-
est compression rate.

2. Results
2.1 Asymmetric gene effects and empty set issues
The Golden Spike experiment [4] consists of six arrays
separated into spike (S) and constant (C) groups with
three replicates each. A total of 3866 RNA transcripts of
known concentration were present in the solution.
Among these transcripts, 2,535 were assigned equal con-
centration in S and C conditions, while the concentra-
tion of the other 1,331 were increased in S relative to C.
Consequently, 10,144 probe sets in the array were
expected to be “empty” with no signals. The MA plot
between the average intensity levels for both conditions
is shown in Figure 1.
The MA plot in Figure 1 illustrates at least two issues

that have been widely discussed with regard to Golden
Spike data. The first issue concerns empty genes, which
have been observed to behave differently from spiked-in
genes with one-fold change [16]. Most of the empty
genes have higher M values than spiked-in genes with
one-fold change. This is the major reason for the non-
uniform distribution of null genes [17-19]. Prevailing
empty genes have never been observed in real applica-
tions, because it is not known a priori whether a gene

has shut down completely. However, the existence of
“empty genes” might be the result of either non-func-
tioning genes or bad probes. As far as we know, there is
no specific methodology for automatically removing
empty probes. A number of studies have suggested
removing known empty sets when comparing methodol-
ogies using Golden Spike data [15,20], and we followed
this strategy to ensure a fair comparison. All compari-
sons of the full dataset are presented in the additional
documents.
The heterogeneity between the two groups of null genes

appears to be well resolved in Figure 2, in which the MA
plot for one of the arrays in the S group is displayed.
Obviously, the M values are above the zero horizontal line,
and this is an intrinsic characteristic of the design. The
kernel density contour is also plotted and all of the null
genes fall into the high density region. The KDL curve
captures the center of the null genes smoothly; therefore,
the adjustment is expected to be more reasonable than the
global adjustment using regular loess.
The second issue in Figure 1 deals with increased sig-

nals for spiked-in genes in the S group. This violates the
assumptions of most traditional normalization methods,
often leading to failure when using those methods
[15-17,21]. As shown in Figure 3 and Additional file 1,
when the data are normalized with loess or quantile
normalization, the null genes cannot be adjusted to the
horizontal line at zero. The difference between S and C
for most of the genes is underestimated, particularly at
the high end. Previous studies have shown that general
normalization methods are capable of correcting for
noise, but they do not work well for global asymmetric
patterns, as in this experiment. No systematic assess-
ment is available to determine how frequently

Figure 1 MA plot for S and C samples Each probe set is first
summarized with the median intensity. The three constant
samples are averaged as the C signals while the three spike-in
samples are averaged as the S signals. The MA plot is then plotted
with the difference between S and C versus the average of S and C.
The color scheme is associated with the nominal fold change.
Genes of the same fold change are fitted with a smoothing spline
curve.

Figure 2 MA plot between the reference and the third
replicate of S group The blue spots are the empty genes and
the red ones are the 1× genes. The green genes have higher
concentration in S group than in C group. The black curve is fitted
with KDL while the orange curve is fitted with regular loess.
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asymmetry occurs in practice or the extent to which it is
present. Nevertheless, a number of applications are
intrinsically endowed with such a characteristic and
should be handled carefully. These applications include
cross-species hybridization and expression arrays for
small sets of specific targets.

Figure 4 and Additional file 2 present a comparison of
results from the methods based on invariant sets,
including probe-level normalization with dChip, KDL,
KDQ, and post-summary normalization with GRSN.
The Model Based Expression Index (MBEI) derived
from dChip is log2 transformed to parallel the other

Figure 3 MA plots for probe-level normalization using data without the empty genes. (a) Data are normalized with quantile normalization
and summarized with the median of each probe set. (b) Data are normalized with loess normalization and summarized with the median of each
probe set. (c) Data are first background-corrected with GCRMA and normalized with quantile normalization. The expression summary is then
computed using median polish. (d) Data are first background-corrected with GCRMA and normalized with loess normalization. The expression
summary is then computed using median polish. The red points are the 1× genes and the green ones are spiked with higher concentration in
the S group than in the C group.
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methods. Most of these methods, with the exception of
dChip, get 1× genes well aligned with the zero horizon-
tal line when removing empty genes. The large effect of
S relative to C and the asymmetry towards positive dif-
ferences appears to alter the global ranking of genes
across all of the arrays, resulting in bias in dChip. Large
variations at low intensity values make dChip a less

favorable choice for the detection of differentially
expressed genes in this scenario (Figure 4(d) and Addi-
tional file 2, Figure S2(d)). GCRMA is well known for
its compression of noise at low intensity levels, employ-
ing quantile normalization at the probe level. When this
normalization is replaced by KDL normalization, the 1×
genes lie nearly on the zero line (Figure 4(a) and

Figure 4 MA plots for invariant set based normalization methods using data without the empty genes. (a) Data are background-
corrected with GCRMA and normalized at the probe level with KDL. Median polish is used to summarize the probe set expression level. (b) The
same as (a) while replacing the normalization with KDQ. (c) Data are background-corrected with GCRMA and normalized at the probe level with
quantile. Median polish is used to summarize the probe set expression level. The data are then normalized again at the post summary level with
GRSN. (d) Li and Wong’s dChip method implemented in R.
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Additional file 2, Figure S2(a)). KDQ performs in a man-
ner similar to KDL except for some mild waves at the
high end (Figure 4(b) and Additional file 2, Figure S2
(b)). In contrast to the above three approaches, GRSN is
implemented after the probe set summarization step
with RMA, making it a second normalization. In our
analysis, we replaced RMA with GCRMA due to its abil-
ity to improve the results of GRSN. GRSN improves the
original GCRMA, as seen in Figure 4(c), although it
does not resolve the heterogeneity between 1× genes
and empty genes well. (Additional file 2, Figure S2(c)).
According to the above observations, the proposed

KDL method captures the correct “invariant set”
throughout the range of all intensity levels, outperform-
ing the other methods. The major difference is the result
of the bipartite pattern of null genes, comprising both 1×
spike-in genes and empty genes. These two groups
appear entirely different, making it impossible to merge
them as one with any normalization methods, except for
KDL and KDQ. Because the empty genes are highly arti-
ficial, they are unlikely to form a large set in real world
data; however, the robustness of KDL and KDQ with
respect to special groups of genes can greatly reduce the
concern of slightly enhanced influential data points.

2.2 ROC curves
Because the expected fold changes for spiked-in tran-
scripts are known, the tradeoff between false positive
and false negative detection can be compared using
ROC curves. This study compares some of the most
popular combinations of preprocessing, probe set sum-
marization, and detection methods to understand the
advantages of adopting approaches based on invariant
sets. GCRMA is used for background correction in most
of the normalization methods except for dChip; there-
fore, we selected median polish for our summarization
step. The normalization step can be applied prior to
probe set summarization using KDL, KDQ, or global
quantile normalization, which is the default of GCRMA.
The Li-Wong model works with the invariant set in
dChip as a whole. Because one of the methods we com-
pare is GRSN, and it is implemented after probe set
summarization, we also applied the proposed KDL after
probe set summarization. The final step is to make
inference on differentially expressed genes. We demon-
strated this using both fold change and a t-test.
Normalization prior to expression summary
As shown in Figure 5 and Additional file 3, the ROC
curve with either KDL or KDQ outperformed the origi-
nal GCRMA, which adopted quantile normalization.
The area under the ROC curve for dChip is smaller
than the original GCRMA with t-test; however, this is
the opposite for fold change. One issue related to Figure
5 concerns KDL and KDQ in the t-test panel. According

to GCRMA version 2.16.0, probe intensities at very low
levels are set to minimum values specific to each array
in the background correction step, and the data become
truncated below this value (Additional file 4). More than
40% of the data are truncated in the full data set of the
Golden Spike experiment, and approximately 10% of the
data if empty probes are not considered. If a probe
remains at the low end across all six arrays, it will be
assigned the same normalized intensity for all six arrays
using loess normalization with smoothing parameters
set at 0.2. Truncated probes are found mostly in empty
sets; therefore, they have less influence on the data with-
out empty genes. Such probe sets do not provide any
variation for statistical testing because the summarized
intensity for the six arrays is identical. This issue is
inherited by KDL, which is based on loess, and this is
also the case for quantile normalization. Hence, we set
the p-values for such probe sets to 1 when drawing the
ROC curves for the t-test.
Normalization after expression summary
When the Golden Spike experiment was first published
[4], post summary normalization was recommended, for
its ability to improve overall results. We investigated
this option by performing a second normalization with
both KDL and GRSN after GCRMA or dChip. The
ROC curves with GCRMA are plotted in Figure 5 and
Additional file 3. GRSN and KDL both improved
GCRMA by a significant margin. We compared the
ROC curves with respect to dChip in Additional file 5.
Because dChip, GRSN, and KDL are all based on the
idea of invariant sets, the second normalization does not
improve dChip considerably.
The results in Figure 5 suggest that post-summary

normalization with an invariant-set-based method such
as KDL or GRSN applied after regular GCRMA does
improve analysis. However, once an asymmetric pattern
has been captured by the normalization method at the
probe level, and adjusted in the right direction, there is
no compelling need for a second normalization after the
expression summary.

2.3 Expected fold change versus observed fold change
ROC curves are used to compare the performance of
different normalization methods in terms of both sensi-
tivity and specificity from the perspective of ranking.
Accurate estimation of true expression level is also
desirable. Figure 6 compares designed fold change ver-
sus observed fold change following normalization.
Regression lines are fitted for probe sets with designed
fold change greater than one. Empty genes are excluded
because too many influential points from the empty
genes may bias the regression. We were primarily inter-
ested in the compression rate between the expected fold
change and observed fold change, reflected by the slope
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of the regression line. The larger the slope is, the less
the compression is. The dChip approach provides the
highest compression rate among those compared. KDL
normalization improved on GCRMA, with the slope of
the regression line increasing from 0.42 to 0.52.

2.4 Simulation
We have demonstrated that KDL and KDQ are both
able to improve the bias caused by asymmetry between
the number of up- and down-regulated genes. However,
it is important to determine at what cost this gain in
performance is achieved, under conditions other than
those specific to this scenario. Hence, we conducted a
simulation study to discover whether the proposed
methods could achieve the same level of performance
with symmetrical expression change. We also evaluated
the effects of altering parameters through simulation.
The simulation was based on the study by Gadbury et

al.[22], in which microarray data was simulated from
reference samples of a real data set. The idea was to
borrow the real effect sizes from the full experiment
with the base line constructed on null data. We followed
this idea using a set of data downloaded from the GEO
database http://www.ncbi.nlm.nih.gov/geo/ accession
number GSE5788 [23], for the simulation. This experi-
ment comprised six cases and eight controls run on the
Affymetrix HG-U133A platform. The simulation steps
were as follows.

1. Effect size distribution: We first summarized the
14 arrays with RMA [24] and then calculated the t-
statistics for each of the 22283 probe sets. The dis-
tribution was centered on zero and demonstrated a
high degree of symmetry.
2. We randomly separated the eight control samples
into two groups of four samples each, assigning one
group to be a simulated control group and the other
the simulated treatment group.
3. We randomly selected a proportion of probe sets as
simulated significant genes. We used 10%, 5%, and 1%
of the total number of genes to generate results.
4. We randomly selected another set with the same
number of probe sets and recorded the t-statistics
derived in Step 1, as the simulated effect sizes.
5. For each probe set selected in Step 3, we calcu-
lated the standard deviation Si of the ith probe at
the log scale across the simulated control samples.
We then added the number Sixdi to the log of the
ith probe of the simulated treatment samples, where
di was the ith simulated effect size selected in Step
4. We took this as the exponent of 2 to set the
expression level back to the original scale.

All of the methods were then compared with ROC
curves using the probe level data simulated above. The
results are presented in Additional files 6, 7 and 8.
There was essentially no difference between the meth-
ods with the well-behaved data. The best performance
was achieved using post summary normalization strate-
gies with GRSN and KDL.

Figure 5 ROC curves without the empty sets. For the probe level
data, quantile normalization is substituted with either KDL or KDQ in
the workflow of GCRMA. They are shown as red and black curves,
respectively. Original GCRMA is in light blue. The upper panel uses
fold change and the lower panel uses T-test as the criterion to
select differentially expressed genes. The two post summary
normalizations are GRSN and double KDL, which adopts KDL
normalization at both probe level and post summary level. They are
shown as pink and green curves, respectively.
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Taking the absolute value of the effect sizes selected in
Step 4 generates data with asymmetrical effects similar
to those in the Golden Spike experiment. We compared
all of the methods based on invariant sets with the ROC
curves in Figure 7 using the asymmetrical simulation

data. The proportion of significant genes was 10%, and
the results related to different proportions can be found
in Additional files 9 and 10. The previously mentioned
properties still hold, in which the proposed KDL and
KDQ improved GCRMA, regardless of whether they

Figure 6 Expected fold change versus the observed fold change for GCRMA, dChip, GCRMA with second normalization by KDL and
GCRMA with second normalization by GRSN.

Hsieh et al. BMC Bioinformatics 2011, 12:222
http://www.biomedcentral.com/1471-2105/12/222

Page 8 of 13



were applied before or after the probe set summary. The
greater the asymmetric bias is, the larger the improve-
ment that KDQ and KDL can achieve.
To better understand the influence of the tuning para-

meters on either method, we compared the results with
the same simulation data using a variety of settings. The
data was simulated with either 1% or 10% significant
genes, and all treatment effects were positive. We first

assessed the power of the kernel density used in the
weighting scheme of KDL. Additional files 11 and 12
present the ROC curves with different multiplicity set-
tings in KDL when integrated with GCRMA. Very little
difference was observed for multiplicity ranging from
one to five. The impact of the settings increased with
the proportion of significant genes, and greater multipli-
city was preferred under these conditions. For post sum-
mary normalization with KDL, multiplicity has nearly no
influence on detection ability. Additional files 13 and 14
present the ROC curves for KDL as a post summary
normalization with GCRMA. The second parameter we
assessed was the proportion of invariant sets in KDQ.
We tried various proportions from 40% to 90%. Addi-
tional files 15 and16 show that, with a higher degree of
asymmetry in the data, we should select a conservative
proportion of invariant sets to ensure that deregulated
genes are not included in the invariant set.

3. Discussion
The design of the Golden Spike experiment provided a
good opportunity to review existing normalization meth-
ods and determine how they handle asymmetric changes
in expression levels. Although it is an extreme design,
the information provided is exceptional, compared to
other spike-in studies.
This study demonstrated the superiority of methods

based on invariant sets, compared to global normaliza-
tion methods for data with an asymmetric expression
structure. The two proposed normalization strategies
based on kernel density, KDL and KDQ, improve the
popular normalization methods, loess and quantile nor-
malization, at either the probe-level or post-summary
level. Both strategies can be integrated with any proce-
dures containing an independent normalization step.
As with most normalization strategies, a number of

parameters in the proposed method require a degree of
tuning. As with loess normalization, the smoothing para-
meter was set to 0.2 in this study. Local structure can be
captured using smaller values. In addition, we used den-
sity estimates to the power of four as weights in the loess
normalization for KDL, although this could certainly be
set higher or lower to put more or less emphasis on the
data in the middle of the major trend. This multiplicity
plays an important role when asymmetry is strong.
KDL is applied to the entire data set with a weighting

scheme while KDQ adopts an approach similar to that
of other invariant-set normalization methods. This is
accomplished by initially selecting a subset of data to be
normalized and extending the normalization process to
the other data not included in the selected subset. The
selection of subset is based on kernel density estimation
as well as knowledge related to the proportion of genes
expected to be differentially expressed across arrays.

Figure 7 ROC curves on simulation data with asymmetric
expression change. The data is simulated with 10% of significant
genes as described in the context. All the treatment effects are
positive.
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Selecting the proportion of genes in the training subset
should be based on a thorough understanding of the
data. According to our empirical study and simulation, a
conservative proportion would prevent the inclusion of
any variable genes, particularly in situation involving a
high degree of asymmetry. In other respects, KDQ is
quite robust with regard to this parameter.
In the above comparison with the Golden Spike

experiment and simulation data, we found that KDQ
performed slightly better than KDL in probe level nor-
malization, although both of these methods produced
similar results. Nevertheless, the soft weighting scheme
of KDL automatically included all of the data points in
the analysis, while KDQ relied on extrapolation to nor-
malize data points outside the range of the invariant set.
Hence, if special patterns are observed in the intensity-
based curvature across arrays at the two ends of the
data, it is preferable to adopt KDL over KDQ.
The steps of preprocessing and expression summary

play an important role in determining the accuracy of
estimation. The statistics for the detection of differen-
tially expressed genes further improves the retrieval of
correct signals from noise. This study does not compare
all possible combinations of analysis strategies to pro-
vide the best suggestion, as this would be impractical.
Rather, we aimed to demonstrate the importance of
dealing with asymmetric patterns in the normalization
step and how methods based on invariant sets are better
able to improve existing methods. If the characteristics
of the data are accurately detected and dealt with, statis-
tical testing for inference will proceed far more
smoothly. The proposed KDL and KDQ methods are
presented as improved substitutes for both loess and
quantile normalization in general, and more specifically
for integration with GCRMA.

4. Conclusion
The proposed KDL approach is a simple strategy to
improve the accuracy of GCRMA in estimation. Based
on our results using t-test and fold change, it is clear
that detection power is enhanced; therefore, it is highly
recommended for the routine practice of microarray
data analysis. Both KDL and KDQ are implemented in
JMP Genomics Version 5.0.

5. Methods
5.1 Golden Spike Experiment
To demonstrate the strength of the proposed methods,
we used a dataset with spiked-in transcripts of known
concentrations. The Golden Spike experiment [4] has
been discussed and used to compare methodologies in
many studies [25-27]http://www2.ccr.buffalo.edu/halfon/
spike/spikedownloads.html. The Golden Spike experi-
ment was the first, and one of the few entirely

controlled experiments with known transcript levels for
every gene in the array. The experiment consists of
three replicates for the S group and three replicates for
the C group using DrosGenome1 GeneChip. The S
group includes 1331 spiked-in transcripts with higher
concentrations than C group, and 2535 spiked-in tran-
scripts of equal concentration in the two groups. The
other 10144 probe sets in the arrays are empty sets that
do not target any spiked-in sequences.
Criticism of this data generally relates to the con-

founding effects between transcript level and fold
change, (assigning larger fold changes to higher intensity
probes), an unfair experimental design, asymmetry in
gene effects toward up-regulation and the existence of
an unusually large empty set [16,18,21]. However, con-
founding effects also exist in real data. Researchers have
often observed in MA plots that a gene expressed at a
higher level has a strong effect when differentially regu-
lated. It is unclear whether this stronger effect is caused
by artifacts from the normalization step or represents an
actual biological phenomenon. Issues related to design
can be found in nearly every microarray experiment.
This issue is not limited to spike-in experiments and
most two group comparisons suffer from such problems
because experiments cannot be perfectly controlled.
Such systemic variations must be corrected before any
inference can be made about differential expression.
Furthermore, this data set is particularly well suited to
assessing sensitivity to violations of symmetric
assumptions.

5.2 Kernel Density weighted Loess normalization (KDL)
The kernel method is a non-parametric technique for
the estimation of density. Let f (x, y) be the joint density
function of the bivariate random variable (X, Y), and let
(Xi , Yi ), i = 1, ..., n be a sample of size n drawn from
this distribution. The kernel density estimate of f (x, y)
based on this sample is

f̂ (x, y) =
1
n

n∑

i=1

φh(x− Xi, y − Yi)

=
1

nhXhY

n∑

i=1

φ(
x− Xi

hX
,
y − Yi
hY

)

where hX > 0 and hY > 0 are the bandwidths and j(x,
y) is the standard normal density.
Ni et al. proposed a kernel density based method, fit-

ting kernel density to the M values restricted to points
within a particular range of A values, where M stands
for the difference between the two compared samples
and A stands for the mean intensity of the two samples.
The mode of one-dimensional kernel estimation is used
to represent the bias of effect size on non-differentially
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expressed genes within each region of A, and the nor-
malization curve is derived by connecting the modes
across various regions of A with smoothing splines. This
two-step approach requires a number of empirical para-
meters with which to select modes.
Unlike the method of Ni et al., our approach measures

density in two dimensions (M and A) jointly, and loess
normalization is used to fit polynomial curves locally
with the data. Points proximal to one another along the
x axis jointly determine the main trend of the curve.
KDL simply assigns different weights to the data points
according to the estimated kernel density when fitting
the loess curve. This paper applied the estimated kernel
density to the power of 4, as the weight of the corre-
sponding probe. Genes deviating from the major group,
which consists of null genes, are down-weighted. The
weighting strategy of KDL benefits from not having to
establish any hard decisions in the selection of the
invariant set, while allowing the normalization process
to rely heavily on probe intensities that remain consis-
tent across arrays. Because all of the probes are included
throughout the normalization process, the common
issue of having to extrapolate scores for methods based
on invariant sets does not exist in KDL.
The only requirement of KDL is that null genes be

distributed more closely than others. This is true in
most empirical studies, but the Golden Spike experi-
ment violates this assumption by including two distinct
null sets, 1× genes and empty genes. These genes do
not perform like a single group, and therefore distort
most of the normalization strategies. We will discuss the
results of both including and excluding empty genes.
The SAS procedures, PROC KDE and PROC LOESS

(SAS Institute Inc., 2009), are used for estimating kernel
density and loess model fitting. First, the average of all
arrays is taken as a common reference. Each array is
normalized against the reference by fitting the weighted
loess curve to the MA plot. The A dimension is
employed as reference data, rather than using the mean
between the target array and reference array. This slight
difference provides an enormous advantage in resolving
heterogeneity in data, as shown in Section 2.1.

5.3 Kernel Density Quantile normalization (KDQ)
Kernel density estimation can also be used to select
invariant sets, which should include the null genes. We
integrated this idea with quantile normalization. The
global normalization strategy associated with quantile
normalization can be adjusted for asymmetric data. The
proposed steps are as follows.
Step 1. Invariant set selection
We first apply kernel density estimation to the MA plot
between each array and the reference array. The refer-
ence array can be objectively selected or set to the

average of all of the arrays. As with KDL, we assign the
common average among all arrays as the A component.
The M component represents the difference between
each individual array and the reference array. The esti-
mation of density is a score showing the relative impor-
tance of each data point in the plot. Probes with greater
importance scores are included in the invariant set.
Similar to other invariant set selection methods, there
are always a number of thresholds that must be deter-
mined. KDQ requires prior knowledge with which to
establish the proportion of data included in the invariant
set. It is recommended that this proportion be set lower
than but close to the expected proportion of probes
without differential expression across arrays. For the
Golden Spike experiment, we set this proportion to 85%
and 50% including empty null genes and excluding
empty null genes, respectively. This tuning parameter is
sensitive and data dependent.
Step 2. Quantile normalization with the invariant set
The second step involves conducting the general quan-
tile normalization procedure on the invariant set for all
of the arrays.
Step 3. Scoring the non-invariant set
Data not included in the invariant set has to be scored
relative to the invariant set. For data within the range of
the invariant set, linear interpolation is applied within
each array. For data outside the range of the invariant
set, linear extrapolation is adopted, based on a small set
of data at the boundary of the invariant set. To clarify
this point, we will illustrate it with an example. Assume
that the intensities of n probes in the invariant set are
x1, x2, ..., xn. Their order statistics are x(1), x(2), ..., x(n).
The corresponding normalized intensities from Step 2
are y(1), y(2), ..., y(n) ordered from smallest to largest.
When considering a probe that is not in the invariant
set with intensity x falling between x(i) and x(i+1), the
interpolated value will be y(i)+(x-x(i))x(y(i+1)-y(i))/(x(i+1)-x
(i)). If x is greater than x(n), extrapolation will depend on
the highest m values of the invariant set. In this case, m
is set to 100. Let xa be the average of x(n-99), x(n-98), ..., x

(n) and ya be the average of y(n-99), y(n-98), ..., y(n). The
normalized value for x will be ya+(x-xa). This is only
adjusted for the average shift between the original and
the normalized data of the rightmost 100 observations
in the invariant set.
5.4 Probe level normalization and post summary
normalization
Our proposed normalization based on kernel density
can be applied to probe level data as well as probe set
level data, and these have been summarized for each
probe set in Affymetrix GeneChip data. The implemen-
tation of post summary normalization is straightforward,
as described in Sections 5.2 and 5.3. For probe level
data, a small twist is made. We first take the median of
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each probe set and apply normalization to the medians.
The probe level data is then reconstructed by adding
back the corresponding difference of each probe relative
to the median.
Both KDL and KDQ were implemented in SAS 9.2

(SAS Institute, Cary, NC) and integrated into JMP
Genomics Version 5.0 (SAS Institute, Cary, NC). The
SAS codes and corresponding SAS dataset are available
at: http://www.stat.nthu.edu.tw/~wphsieh/KD.htm.

Additional material

Additional file 1: Figure S1 - MA plots for probe-level normalization
using data with the empty genes. (a) Data are normalized with
quantile normalization and summarized with the median of each probe
set. (b) Data are normalized with loess normalization and summarized
with the median of each probe set. (c) Data are first background-
corrected with GCRMA and normalized with quantile normalization. The
expression summary is then computed using median polish. (d) Data are
first background-corrected with GCRMA and normalized with loess
normalization. The expression summary is then computed using median
polish. The blue points are empty genes, the red points are the 1×
genes and the green ones are spiked with higher concentration in the S
group than in the C group.

Additional file 2: Figure S2 - MA plots for invariant set based
normalization methods using data with the empty genes. (a) Data
are background-corrected with GCRMA and normalized at the probe
level with KDL. Median polish is used to summarize the probe set
expression level. (b) The same as (a) while replacing the normalization
with KDQ. (c) Data are background-corrected with GCRMA and
normalized at the probe level with quantile. Median polish is used to
summarize the probe set expression level. The data are then normalized
again at the post summary level with GRSN. (d) Li and Wong’s dChip
method implemented in R.

Additional file 3: Figure S3 - ROC curves with the empty sets. For
the probe level data, quantile normalization is substituted with either
KDL or KDQ in the workflow of GCRMA. They are presented in red and
black respectively. The original GCRMA is in light blue. The upper panel
uses T-test and the lower panel uses Fold Change as the criterion to
select differentially expressed genes. They both report similar orders of
performance. The two post summary normalizations, KDL and GRSN, are
presented in pink and green respectively.

Additional file 4: Figure S4 - Scatter plots for the probe data after
GCRMA background correction. The vertical and horizontal lines at left
bottom coner of each plot indicate certain truncation applied for the
low-end intensities.

Additional file 5: Figure S5 - ROC curves related to dChip with
empty genes. The ROC curve derived from dChip is in blue. GRSN and
KDL are then applied on the dChip data as the second normalization
and are shown as green and red curves, respectively. The upper panel
uses T-test and the lower panel uses Fold Change as the criterion to
select differentially expressed genes.

Additional file 6: Figure S6 - ROC curves on simulation data with
symmetric expression change. The data was simulated with 1% of
significant genes as described in the context. The treatment effects could
be either positive or negative. The curves for GCRMA, GCRMA + post
GRSN and GCRMA + post KDL are closely overlapped.

Additional file 7: Figure S7 - ROC curves on simulation data with
symmetric expression change. The data was simulated with 5% of
significant genes as described in the context. The treatment effects could
be either positive or negative. The curves for GCRMA, GCRMA + post
GRSN and GCRMA + post KDL are closely overlapped.

Additional file 8: Figure S8 - ROC curves on simulation data with
symmetric expression change. The data was simulated with 10% of
significant genes as described in the context. The treatment effects could

be either positive or negative. The curves for GCRMA, GCRMA + post
GRSN and GCRMA + post KDL are closely overlapped.

Additional file 9: Figure S9 - ROC curves on simulation data with
asymmetric expression change. The data was simulated with 1% of
significant genes as described in the context. All the treatment effects
were positive.

Additional file 10: Figure S10 - ROC curves on simulation data with
asymmetric expression change . The data was simulated with 5% of
significant genes as described in the context. All the treatment effects
were positive.

Additional file 11: Figure S11 - GCRMA with KDL on asymmetrical
data generated with 1% of significant genes. The data was simulated
with 1% of significant genes as described in the context. All the
treatment effects were positive.

Additional file 12: Figure S12 - GCRMA with KDL on asymmetrical
data generated with 10% of significant genes. The data was
simulated with 10% of significant genes as described in the context. All
the treatment effects were positive.

Additional file 13: Figure S13 - GCRMA + post KDL on asymmetrical
data generated with 1% of significant genes. The data was simulated
with 1% of significant genes as described in the context. All the
treatment effects were positive.

Additional file 14: Figure S14 - GCRMA + post KDL on asymmetrical
data generated with 10% of significant genes. The data were
simulated with 10% of significant genes as described in the context. All
the treatment effects were positive.

Additional file 15: Figure S15 - GCRMA with KDQ on asymmetrical
data generated with 1% of significant genes. The data was simulated
with 1% of significant genes as described in the context. All the
treatment effects were positive.

Additional file 16: Figure S16 - GCRMA with KDQ on asymmetrical
data generated with 10% of significant genes. The data was
simulated with 10% of significant genes as described in the context. All
the treatment effects were positive.
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