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Abstract

target genes of biological relevance.

Background: Normalization of target gene expression, measured by real-time quantitative PCR (gPCR), is a
requirement for reducing experimental bias and thereby improving data quality. The currently used normalization
approach is based on using one or more reference genes. Yet, this approach extends the experimental work load
and suffers from assumptions that may be difficult to meet and to validate.

Results: We developed a data driven normalization algorithm (NORMA-Gene). An analysis of the performance of
NORMA-Gene compared to reference gene normalization on artificially generated data-sets showed that the
NORMA-Gene normalization yielded more precise results under a large range of parameters tested. Furthermore,
when tested on three very different real gPCR data-sets NORMA-Gene was shown to be best at reducing variance
due to experimental bias in all three data-sets compared to normalization based on the use of reference gene(s).

Conclusions: Here we present the NORMA-Gene algorithm that is applicable to all biological and biomedical gPCR
studies, especially those that are based on a limited number of assayed genes. The method is based on a data-
driven normalization and is useful for as little as five target genes comprising the data-set. NORMA-Gene does not
require the identification and validation of reference genes allowing researchers to focus their efforts on studying

Background

Real-time quantitative PCR (qPCR) represents the
current state-of-the-art approach for measuring gene
expression; and the method has numerous applications
in both biology and biomedicine. Although qPCR is a
robust technique results can vary depending on factors
such as RNA integrity, reverse transcriptase (RT) effi-
ciencies, sample-to-sample variations in amplification
efficiency, and variation in ¢cDNA sample loading.
Using equal sample sizes, assessing RNA integrity and
equalizing RNA concentrations prior to RT are funda-
mental normalization steps in qPCR [1]. Still, normali-
zation to some internal control is essential for accurate
qPCR in order to balance sample-to-sample variations
within the RT and PCR reactions. Currently, the pre-
ferred internal control is achieved by using reference
genes (also referred to as housekeeping genes) or bet-
ter a normalization factor based on several reference
genes calculated using e.g. geNorm [2]. However, the
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use of reference genes suffer from a circular argument;
i.e. we normalize target gene expression data to
exclude the systematic variation by the means of refer-
ence gene expression data obtained by the same
method as the data that need normalization. Thus, an
assumption for using reference genes is that they are
unaffected by the experimental treatment(s) and mea-
sured accurately and without error, as we rely on the
target gene data to be correctly normalized by the
reference gene(s). The circularity is partly evened out
by the normalization factor approach, based on the
expression of several reference genes, following the
assumption that the distribution of three or more
reference genes is more accurately estimating systema-
tic error than the distribution of only one gene [2].
However, in many studies reference genes are chosen
more or less randomly and are not always being vali-
dated for the particular experimental conditions. A
further downside is that it can be difficult to find sui-
table reference genes for certain experimental condi-
tions that affect gene expression broadly [3]. Searching
for and validating reference genes is thus both time
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and money consuming and might not always be practi-
cal or successful. Heterogeneous samples, however,
require a robust normalization strategy. Yet, conven-
tional normalization may introduce unintentional ran-
dom changes to the variance and mean expression of
target genes in lack of good reference genes. This may
cause invalid conclusions, and prevent good target
gene data-sets from being accurately analyzed increas-
ing the risk of making type I and II statistical errors.
Thus, the use of reference genes has become the cho-
sen method not because it is extremely good, but
because it represents the best available option.

Here we present an algorithm, NORMA-Gene, which
is applicable to all biological and biomedical studies,
especially those that are based on a limited number of
genes measured with qPCR. The method is based on a
data-driven normalization of target genes and is valid
for as little as five target genes comprising the data-set.
It does not require the use of reference genes allowing
researchers to focus their efforts on studying target
genes of biological relevance.

Methods

We have defined two levels of variance in the qPCR
data-sets. The first level refers to among replicate var-
iation (hereafter referred to as bias). This variation
includes biological variation and variation in RNA
extraction and reverse transcription (RT) efficiency.
The second level of variance refers to the variation
among the measured genes within a single replicate
(hereafter referred to as variation). This variance
reflects the technical and random variation in the
qPCR part of the procedure. NORMA-Gene reduces
systematic and artificial between-replicate bias utilizing
the entire data-set of the target genes being studied.
The approach is based on calculating mean expression
values for each replicate across the studied target
genes and subsequently estimating a normalization fac-
tor that estimates and reduces the systematic bias of a
replicate across all genes. For this a Least Square
method is applied to secure the best possible minimi-
zation of variability in the data-set based on the bias
between replicates within treatment. Least square
regression is non-robust to outliers and careful quality
control measurement throughout the qPCR process (i.
e. verifying equal PCR efficiencies, verifying PCR pro-
duct quality by melting curve inspection, etc.) is thus
essential pre-normalization. The procedure allows the
estimation of the remaining variance in the data-set,
not explained by experimental bias between the repli-
cates, and the calculation of the precision (variance) of
the identified bias. The procedure is only affected by
the number of replicates and genes within a treatment;

Page 2 of 7

however, for more than three replicates the number of
genes is predominantly of importance for the precision
of the normalization. The procedure is not affected by
up-or down-regulation as no between treatment rela-
tions are being used. Detailed derivation of the follow-
ing equations is available in Additional file 1,
Appendix A.

The mathematical theory behind NORMA-Gene

The NORMA-Gene algorithm for a single treatment is
shown below and in more detail in Additional file 1,
Appendix A. Within each treatment of the non-normal-
ized data-set, n genes are measured for m replicates.
The normalization will take place using log-transformed
data. The normalization factor for each replicate within
a treatment is calculated as:

i=N;j
> [ (1ogX), — log(X))]

log(a) = (”

Nj

where a; is the bias coefficient for replicate j, i is the
index for the genes and N; is the number of genes that

are recorded for replicate j, Xi is the measured gene

expression value for sample j and gene i, and (log(X))i
is the estimated mean value for log-transformed gene
i data

The standard deviation of a; is found as a global stan-
dard deviation within the same treatment assuming that
all a; are following the same probability distribution
function. A first order uncertainty assessment for the
estimation of 4; is given as:
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where Ojogx is the standard deviation of a; assuming
variance homogeneity which is similar to assuming the
same relative (percentage) error for the data:
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Eq. 2 will tend to take a simple approximately form: a;
will tend to be close to unity otherwise the data errors
are very large and M; will normally be more than 3 and
thus the product of N; -M; will tend to be much larger

than N; and thus the ratio will dominate in Eq. 2

1
Nj
(and see Additional file 1, Appendix A for a detailed
derivation of the equations). If there are not very many
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missing data then N; will tend to be constant and equal
n and if all these statements are correct then Eq. 2 can
be reduced to:

__ Olog(X)

Oa \/ n (4)

Data handling

Target gene normalization has been simplified by auto-
mating all calculations in an Excel workbook (Microsoft)
entitled NORMA-Gene (freely available upon request
from the corresponding author. This macro-based work-
book enables swift normalization of imported raw
expression data. It is feasible to use both fluorescent
data derived from the software available on the used
qPCR platform, or computed by e.g. the DART-PCR
algorithm [4].

Missing data

In even the most carefully designed and executed
experiment missing data might occur. This is proble-
matic as many qPCR studies are performed with limited
sample sizes. Especially, the occurrence of missing a
replicate of the reference gene is problematic as it leads
to the loss of an entire target gene (biological) replicate
when relying on reference gene normalization.
NORMA-Gene is very flexible and little affected by
missing data, and is able to normalize samples in treat-
ments with missing data. The calculated NORMA-Gene
normalization factor is valid for and can be used on all
genes in a corresponding replicate, as the factor is repli-
cate-specific.

The NORMA-Gene normalization improves gradually
with the number of genes that are included in the target
gene data-set (see Figure 1 and results). Thus, as long as
a minimum number of data points (five or more) is
available within a replicate (across genes) normalization
by NORMA-Gene can be performed. It is not required
that the same five data points are available in all repli-
cates within a treatment, and as such NORMA-Gene
can proceed even with quite extensive missing data.

Benchmarking NORMA-Gene on artificial data-sets

As the true values of real data-sets are always unknown
it can be difficult to evaluate normalization procedures.
Thus, we generated artificial data-sets to evaluate the
performance of reference gene and NORMA-Gene nor-
malization. Each data-set was comprised of a single
treatment with four replicates, with one reference factor
(which could represent a single reference gene or a
normalization factor based on several genes) and eight
target genes measured in each replicate. The artificial
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Figure 1 The figure shows the theoretical (top panel) and
empirical (bottom panel) relative variance reduction with
number of genes used for NORMA-Gene normalization. As the
number of genes increases the relative standard deviation for the
fitted a is reduced as displayed (see Eq. A8 in Additional file 1,
Appendix A for the mathematical rationale). Top panel: The figure
shows the theoretical prediction that the standard deviation of the
fitted a is more than halved when using five genes. Adding further
genes to the analysis only slightly improves the estimate of a.
Bottom panel: The figure shows the reduction in the standard
deviation of the fitted @ when NORMA-Gene is applied to real data.
Dark gray, light gray and white bars represent data-sets |, Il and lIl,
respectively. As the improvements (reduction) of the standard
deviation is a result of adding one more gene to the analysis, the
result is dependent on the genes included in each data-set when
all genes are not used. Thus, means and error bars represent three
different randomly normalizations. These corroborate with the
theoretical predictions of stable and robust normalization when five

Or more genes are used.

data-sets were generated in two steps, each with inde-
pendent variation. First, we sampled four replicates from
a treatment with a true mean of zero and an experiment
dependent bias (among replicate variation, see above).
The second step was to generate the variation (among
genes within a replicate). The targets genes were in all
cases sampled with a fixed variation of 10% while the
reference factor was sampled with different levels of var-
iation. By comparing normalized data to the known true
means we were able to evaluate and validate the perfor-
mance of the NORMA-Gene normalization relative to
the reference gene method at different bias-to-variation
ratios and at different variation in reference gene-to-var-
iation in target gene ratios. Note that the variation
referred to here does not regard the among treatment
variation in the reference gene or normalization factor
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as is usually the concern of this type of normalization.
In the artificial data we assumed no between treatment
effects and the reference gene or normalization factor is
thus assumed to reflect the optimal situation with no
variation among treatments. Rather the sampled varia-
tion of both reference and target genes only reflect the
precision by which the signal (gene expression) is mea-
sured. Each set of experimental conditions were re-
sampled 40 times.

Data analysis

Differences in the efficiency of reducing variances by the
two normalization methods (reference gene(s) v
NORMA-Gene) were tested with Wilcoxon’s signed-
ranked test for two groups of paired observations [5].

Results

The results of the analysis of artificial data-sets are
shown in Figure 2. To evaluate the performance of the
NORMA-Gene normalization on the artificial data we
tested; i) the variance reduction at different bias-to-var-
iation ratios using NORMA-Gene. Further, to test the
effects of normalization methods we compared perfor-
mance on two sets of parameter combinations in artifi-
cial data; ii) the bias-to-variation ratio, and iii) the ratio
of reference-gene variation relative to target-gene varia-
tion. In these two latter tests the quality of the normali-
zation was judged by the deviation of expression level in
normalized data from the true expression values.

Increasing the bias-to-variation ratio in the artificial
data leads to more variation being removed from the
data-set by NORMA-Gene (Figure 2, top panel). This is
not surprising as NORMA-Gene is designed to identify
and reduce bias, and as bias increases as a larger pro-
portion of the total variance is being removed. The rela-
tionship was little affected by number of replicates (2-4)
and only slightly by number of genes (3-12 was tested,
but only 3 genes showed a difference from the situation
with other genes).

The result of the second test showed a superior per-
formance of the NORMA-Gene method with a larger
degree of samples closer to the true mean than when
reference gene normalized under a large range of condi-
tions (Figure 2, middle panel; Additional file 2, Figure
S1). The bias (among replicate variation) to variation
(among genes within replicates) ratio affected the rela-
tive performance of the NORMA-Gene normalization
method. With increasing bias-to-variation ratio, the per-
formance of NORMA-Gene decreased until the two
methods were equal with the bias being 2 times larger
than the variation; and the reference factor method was
only superior at bias-variation ratios larger than 2.
Furthermore, re-sampling the data-set with only four
genes did not affect the performance of the NORMA-
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Figure 2 The figure shows the results of analysis of artificial
data-sets. Throughout means + SEM of the 40 re-samplings are
given. Top panel: This panel shows the variance reduction by
normalization and how this depends on the bias-to-variation ratio.
Increasing the bias-to-variation ratio in the artificial data leads to
more variance being removed from the data-set by NORMA-Gene.
Middle and bottom panels: These panels show the effectiveness of
NORMA-Gene versus reference gene normalization and the
dependence of different parameters. For each of the re-samplings
(see methods for detailed information on the construction of the
data-sets) the proportion of NORMA-Gene normalized data points
that were closer to the true mean was calculated and is shown on
the y-axis (0.5 represent equal performance of NORMA-Gene and
reference gene normalization). Middle panel: Here the x-axis
represents the ratio between bias (between replicate variation) and
variation (between genes within replicate variation). As bias among
replicates increase the performance of NORMA-Gene decreases. No
qualitatively difference was observed in the performance of
NORMA-Gene between re-sampling from eight or four genes.
Bottom panel: The x-axis represents the ratio of reference gene-to-
target gene variation (here 1 represent equal variation and 0.25
represent four-fold decreased variation in the reference factor).
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Gene methods confirming the stability of the method
even with few genes measured (not shown). As the bias-
to-variation ratio affects the effectiveness of NORMA-
Gene compared to reference gene normalization it is
highly relevant to estimate this ratio in real data-sets
before using the NORMA-Gene procedure. However,
the bias-to-variation ratio in real data-sets is difficult to
estimate. One way is to use the relationship between
bias-to-variation ratio and average variance reduction as
seen in Figure 2, top panel. Interestingly, the average
variance reduction in the three real data-sets (0.78, 0.78
and 0.91) suggests that the bias-to-variation in these
data is between 1.0 and 0.5 and thus in a range where
NORMA-Gene is performing better than reference gene
normalization.

The third and final test on artificial data concerned
the level of sample variation when sampling a reference
gene/reference factor. To remind, this level of variance
is the sampling variation among genes from the same
sample (replicate) and not among treatment variance.
Thus, for the validation of the method using artificial
data we have assumed the perfect reference gene, i.e. no
variation among treatments (the reference genes are all
sampled from a distribution with the exact same mean).
This is the optimal situation and quite unrealistic to
achieve in many studies as argued in the text. The varia-
tion we allowed to vary is the technically variation,
which determines how well the qPCR procedure mea-
sures the true amount of cDNA in the sample. The rea-
listic value in this case most be 1 (i.e. equal variation in
reference and target genes), as reference genes and tar-
get genes are measured in the same samples having
gone through the same extraction and cDNA synthesis
procedure, unless more replicates is used for reference
genes, or more care is taken by the experimenter while
measuring these genes compared to when measuring
target genes. Thus, by applying “perfect” reference genes
and allowing these to be measured more precisely than
target genes we are being very conservative in the test
of the NORMA-Gene procedure. Here we found, as
expected, that increasing the precision of the reference
gene/reference factor increased the performance of this
normalization method compared to NORMA-Gene
(Figure 2, bottom panel; Additional file 2, Figure S1).
The reference gene/reference factor approach needs to
be measured four times as precise as the target genes to
result in a normalization efficiency equal to the
NORMA-Gene method. As discussed above this will be
difficult to achieve using a single reference gene, but
possible using a normalization factor based on multiple
genes. Note that any effect of treatment on reference
genes will add to the level of noise and decrease the
precision of reference factor normalization; rendering
this situation of four times precision yielding equal
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normalization a conservative estimate. In experiments
using harsh treatments, e.g. stress research, those refer-
ence genes, totally unaffected by treatment, might prove
very difficult to identify.

Validation on real data-sets

We applied the NORMA-Gene algorithm to three dif-
ferent data-sets (see Additional file 3, Table S1 for an
overview of data-set I-III): I) A data-set on springtails
with six target and one valid reference gene [3]; II) a
data-set on earthworms with nine target and one valid
reference gene (unpublished data-set); and III) a data-set
on Daphnia with 10 target and a geNorm based normal-
ization factor using three valid reference genes [6]. In all
three data-sets the reported results are for target genes
only, but reference genes were included in the
NORMA-Gene algorithm for data-set I and II, to
improve the stability of the normalization (see below).

The NORMA-Gene algorithm uses a Least Square
method to secure the best possible minimization of
variability in the data-set due to bias between replicates
(see Methods). The algorithm predicts the relative
reduction in variation as a function of the number of
genes comprising the data-set. NORMA-Gene generates
a stable normalization with as little as five genes, and
addition of further genes to the data-set has little rela-
tive effect on the normalization output (Figure 1). The
predicted effect of the number of genes on the normali-
zation output was confirmed in all three data-sets (see
Additional file 4, Figure S2) verifying that using a data-
set of five or more genes is a conservative approach for
obtaining a stable normalization.

Validation of the normalization efficiency was
achieved by looking at the distribution of standard
deviations for each sample in the raw data after
NORMA-Gene normalization, and after normalization
to a reference gene (data-sets I and II) or a normaliza-
tion factor based on three reference genes (data-set III).
We plotted the variance reducing effect of reference
gene or NORMA-Gene normalization on variances rela-
tive to the variance of raw data (Additional file 5, Figure
S3). The variance reduction was significantly larger fol-
lowing NORMA-Gene normalization for all three data-
sets (Additional file 5: Figure S3A, t; = 7.6, P < 0.001;
Figure S3B, t; = 6.6, P < 0.001; Figure S3C, t; = 2.8, P <
0.01); thus significantly reducing the variance compared
to the reference gene(s) based normalization.

The relative effect of the different normalization
approaches on mean expression values revealed that tra-
ditional reference gene normalization affects mean
expression values to a greater extend than NORMA -
Gene normalized data (see Additional file 6, Figure S4).
A comparable effect on mean was seen in the artificial
data when considering a bias-to-variation ratio of real
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data-sets of between 0.5 and 1.0 (see Additional file 2,
Figure S1). The mathematics behind NORMA-Gene
ensure that mean expression values within treatment are
affected minimally by normalization, and thus deviate as
little as possible from the raw expression values (see dis-
cussion on effects on mean expression values).

Discussion

Within microarray analysis a data-driven normalization,
e.g. global LOWESS, has long been applied [7], but
these methodologies rely on very large data-sets in order
to deliver meaningful outputs. Recently, two qPCR-
based methods using data-driven normalization have
been published providing proof of principle. The first
describes a microarray inspired data analysis approach
where quantiles are applied to normalize the target
genes; yet the approach is only applicable to high-
throughput qPCR analysis involving 50 to several thou-
sand genes [8]. The other method is developed for nor-
malization of microRNAs quantified using qPCR [9] and
is according to the authors only applicable to large-scale
gene expression studies. However, no data-driven nor-
malization alternative is currently available for small-
scale mRNA expression studies using qPCR. We show
here that our method produces normalized data which
are closer to the true means under a range of realistic
variance parameters. Furthermore, we show that
NORMA-Gene produces reduced experimental bias
(within treatment variation) to a higher extend and thus
outperforms the current approach based on reference
genes; even when good reference genes are available as
in the case of data-set III [6,10]. We furthermore show
that a reliable normalization may be obtained with as
little as a five genes comprising the data-set and verify
this on the artificial data-sets. The results of normaliza-
tion and the distributions of the normalized data show
high comparability between artificial and real data sug-
gesting that the artificial data are behaving in a similar
manner to real data and thus that the results of artificial
data can be taken as relevant and meaningful for the
validation of the method.

NORMA-Gene is designed to reduce within treatment
variation only and thus has little effect on the mean
expression values between treatments. Contrary, refer-
ence gene(s) normalization can have a large effect on
the estimated mean expression values across treatments
as this approach affects both within and between treat-
ment variation. This is not a problem if the reference
gene(s) have been measured correctly, and thus adjust
the raw data accurately. However, our analysis of the
artificial data-sets show that a four-fold reduction in
variation in the used reference factor is needed to obtain
similarly good results with reference genes. Thus, refer-
ence genes, being measured with the same technique as
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target genes, will realistically be measured with similar
error as target genes across treatments; or are affected
by the treatment (which is ignored in the artificial data-
sets to produce conservative estimates). Normalization
factors based on more than one reference genes, i.e.
using the geNorm procedure, reduces this problem but
does not eliminate it as seen for our real data-set III
This will introduce variation across treatments, which
was not present in the original data. Furthermore, biolo-
gical variation may distort the “true” mean expression
values when non-validated reference genes are being
used for normalization. In our opinion, the measured
raw data provide the best estimate of mean expression
values available; and only minor changes to these means
following normalization are to be expected as achieved
by NORMA-Gene normalization.

NORMA-Gene normalization is virtually non-affected
by the above-mentioned issues regarding reference gene
related effects on mean expression values. However,
NORMA-Gene requires using a block design to mini-
mize variation across treatments. If the experimental
setup is based on a block design and any handling (i.e.
RNA extraction, cDNA synthesis) of the samples has
been conducted block-wise, between treatments varia-
tion will be absolute minimal. Hence, a block design is
recommended regardless of which type of normalization
that is being applied to the raw data.

Conclusions

The NORMA-Gene algorithm is applicable to small
data-sets allowing more target genes to be investigated.
Unless reference gene(s) are un-affected by treatment,
can be measured much more precisely than target genes
or data-sets has bias surpassing variation by more than
2 fold (i.e. huge technical variation) the NORMA-Gene
algorithm produces equal or better normalization than
reference gene(s). Thus, no reference gene(s) are needed
when five or more target genes are being analyzed (i.e.
focusing of resources); although it could be an advan-
tage to include a number of valid reference genes to
serve as “negative biological controls”. Good quality
(random biased) data are achieved when using
NORMA-Gene; and the data are less sensitive to experi-
mental and biological outliers than the current approach
based on reference genes. The statistical assumption of
the method is that a relative sample error is randomly
distributed across the mean of all genes and replicates
within treatment. This assumption is more likely to be
met than the assumptions associated with reference
gene normalization.

The NORMA-Gene approach requires applying a
block design, i.e. carefully processing the same replicates
from each treatment together. Under these circum-
stances the design will control for all experimental
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variability between treatments, leaving NORMA-Gene to
normalize the within treatment variation. Applying a
block design has the additional advantage of minimizing
any potential confounding problems associated with co-
regulated genes (e.g. originating from the same pathway)
that might occur when using reference genes. NORMA-
Gene utilizes a general statistical normalization
approach and may thus also be applied on other similar
molecular data-sets (e.g. proteomics and metabolomics).

Additional material

Additional file 1: Appendix A. The file is an appendix providing
detailed derivation of the equations underlying the NORMA-Gene
algorithm.

Additional file 2: Figure S1. The figure shows scatter of the normalized
mean expression values in artificial data (see summary of this statistics in
Figure 2).

Additional file 3: Table S1-Overview of analyzed data-sets. The table
displays a table of experimental information related to the analysed data-
sets (I-1l).

Additional file 4: Figure S2. The figure provides a validation of the

effect of number of genes on mean and standard deviation of the fitted
a for the real data-sets.

Additional file 5: Figure S3. The figure shows the relative effect of
normalization on expression values in each replicate for the real data-
sets.

Additional file 6: Figure S4. The figure shows the relative effect of
normalization on variation in each treatment for the real data-sets.
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ay. bias coefficient for replicate j; i: index for the genes; N; number of genes
that are recorded for replicate j; m: number of replicates; M: number of
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