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Abstract

sites.

Background: Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal
transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a
desire to predict phosphorylation sites using computational methods. However, previous studies regarding in silico
prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data. Thus, we
are motivated to propose a new method that investigates different substrate specificities in plant phosphorylation

Results: Experimentally verified phosphorylation data were extracted from TAIR9-a protein database containing
3006 phosphorylation data from the plant species Arabidopsis thaliana. In an attempt to investigate the various
substrate motifs in plant phosphorylation, maximal dependence decomposition (MDD) is employed to cluster a
large set of phosphorylation data into subgroups containing significantly conserved motifs. Profile hidden Markov
model (HMM) is then applied to learn a predictive model for each subgroup. Cross-validation evaluation on the
MDD-clustered HMMs yields an average accuracy of 82.4% for serine, 78.6% for threonine, and 89.0% for tyrosine
models. Moreover, independent test results using Arabidopsis thaliana phosphorylation data from UniProtKB/Swiss-
Prot show that the proposed models are able to correctly predict 81.4% phosphoserine, 77.1% phosphothreonine,
and 83.7% phosphotyrosine sites. Interestingly, several MDD-clustered subgroups are observed to have similar
amino acid conservation with the substrate motifs of well-known kinases from Phospho.ELM-a database containing
kinase-specific phosphorylation data from multiple organisms.

Conclusions: This work presents a novel method for identifying plant phosphorylation sites with various substrate
motifs. Based on cross-validation and independent testing, results show that the MDD-clustered models
outperform models trained without using MDD. The proposed method has been implemented as a web-based
plant phosphorylation prediction tool, PlantPhos http://csb.cse.yzu.edu.tw/PlantPhos/. Additionally, two case studies
have been demonstrated to further evaluate the effectiveness of PlantPhos.

Background

Protein phosphorylation is the most widespread and
well-studied post-translational modification in eukaryo-
tic cells. It is one of the most prevalent intracellular pro-
tein modifications that influence numerous cellular
processes [1]. It has been estimated that one-third to
one-half of all proteins in a eukaryotic cell are phos-
phorylated [2]. Furthermore, protein phosphorylation,
catalyzed by specific kinases, plays crucial regulatory
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roles in intracellular signal transduction. Networks com-
posed of proteins and small molecules that transmit
information from the cell surface to the nucleus are ulti-
mately affected by transcriptional changes [3]. An esti-
mated 1% to 3% of functional eukaryotic genes encode
protein kinases; this suggests that they are involved in
many aspects of cellular regulation and metabolism [4].
However, a full understanding on the mechanism of
intracellular signal transduction remains a major chal-
lenge in cellular biology.

Protein phosphorylation regulates various cellular pro-
cesses not only in mammals but also in plants. It is
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reported that the regulation of carbon and nitrogen
metabolism in plants is driven by phosphorylation [5].
Phosphorylation is also involved in modulating a sucrose
phosphate synthase enzyme which controls the signaling
pathway for the process of sucrose synthesis in plants
[6]. Phosphorylation also aids in modulating the plant
process of synthesizing Ammonia, an organic compound
which is required to give energy to certain organs which
are not able to photosynthesize [6]. Furthermore, pro-
tein phosphorylation is involved in the process of plant
growth and plant response to stress [6,7]. Stone et al.
have identified a number of plant kinases; however, the
precise functional roles of specific protein kinases were
not widely elucidated [4].

Due to the interest of the scientific community in
further understanding the process of phosphorylation,
mass spectrometry-based proteomics have been used to
enable the large-scale mapping of in vivo phosphoryla-
tion sites [8]. With this, several databases have been
proposed to store experimentally verified phosphoryla-
tion sites with catalytic kinases, such as Phospho.ELM
[9], PhosphoSite [10], UniProtKB/Swiss-Prot [11],
PHOSIDA [12], and dbPTM [13,14]. While most
resources focus on phosphorylation sites in mammalian
organisms, there are some databases which store phos-
phorylation sites in plants such as PhosPhAt [15], P3DB
[16] and TAIR [17]. PhosPhAt consolidates knowledge
of mass spectrometry-based identified phosphorylation
sites in Arabidopsis thaliana and offers a phosphoryla-
tion site prediction tool specifically trained on experi-
mentally identified Arabidopsis thaliana
phosphorylation motifs [15]. P3DB provides a resource
of protein phosphorylation data from multiple plants.
Moreover, a phosphopeptide BLAST browser was imple-
mented to allow users to query the database for phos-
phopeptides similar to protein sequences of their
interest [16]. TAIR maintains a database of genetic and
molecular data for Arabidopsis thaliana [17]. Protein
data stored in TAIR includes the complete protein
sequence along with phosphorylation site annotations.

Due to the high complexity and difficulty of phos-
phorylation site identification using mass spectrometry,
a number of mammalian protein phosphorylation pre-
diction tools have been developed using different meth-
ods and yielding various predictive performance.
KinasePhos 1.0 [18,19], incorporated profile HMM for
identifying kinase-specific phosphorylation site predic-
tion, whose overall predictive accuracy is about 87%.
Version 2.0 of KinasePhos [20] incorporated support
vector machine (SVM) with the protein coupling pattern
to identify phosphorylation sites for 58 kinase groups.
NetPhosK [21] applied an artificial neural network algo-
rithm to predict 17 PK groups-specific phosphorylation
sites. Scansite 2.0 [22] identified short protein sequence
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motifs that are recognized by modular signaling
domains, phosphorylated by serine/threonine, tyrosine
kinases or those that mediate specific interactions with
protein or phospholipid ligands. GPS [23,24] is a group-
based phosphorylation site prediction and scoring plat-
form which clusters 216 unique protein kinases in 71
groups. PPSP [25] developed an approach based on
Bayesian decision theory for predicting the potential
phosphorylation sites accurately for around 70 protein
kinase groups. PHOSIDA [12], incorporated SVM with
surface accessibility and evolutionary conservation,
made 91.75%, 81.06%, and 76.19% accuracies in serine,
threonine, and tyrosine, respectively.

With regard to plant phosphorylation prediction,
PhosPhAt [15] has utilized a set of 802 experimentally
validated phosphoserine sites to develop a classifier of
SVM for identifying pSer sites in Arabidopsis thaliana.
This yielded an area under curve rate of around 0.81 on
a redundant TAIR7 [17] protein dataset. More recently,
Gao et al. [26] incorporated protein sequence informa-
tion and protein disordered regions, and integrated k-
nearest neighbor and SVM for predicting phosphoryla-
tion sites. Their method utilized the PhosPhAt dataset
of pSer in Arabidopsis thaliana and the TAIR7 non-
redundant protein database. However, these works do
not predict phosphorylation sites according to plant
substrate site specificity [26]. Therefore, there is a need
to investigate the various substrate site specificities in
plants and utilize this information for predicting kinase-
specific plant protein phosphorylation sites.

Information regarding protein kinases that phosphory-
late substrates in plants is very limited. Based on the
collection of experimentally verified plant phosphoryla-
tion sites from TAIR9 and UniProtKB/Swiss-Prot, phos-
phorylation sites are not annotated with its
corresponding kinase. Due to this limitation, majority of
the published methods for computationally identifying
kinase-specific phosphorylation sites are trained mainly
by using data from non-plant organisms. This study
aims to analyze plant phosphorylation sites, investigate
substrate site specificity in plants, and most importantly,
present a novel method for identifying potential phos-
phorylation sites in plant proteins using the available
substrate site specificity information. This work applies
maximal dependence decomposition (MDD) [27] to
cluster all phosphorylated fragments into subgroups pre-
senting meaningful and statistically significant site speci-
ficity. MDD was firstly used to group the splice sites
during the identification process of splice site prediction
[28]. A large group of aligned sequences can be moder-
ated into subgroups that capture the most significant
dependencies between positions. Huang et al. [19] have
applied MDD to improve the prediction performance of
PKA, PKC, and CK2 kinase groups. In this study, MDD



Lee et al. BMC Bioinformatics 2011, 12:261
http://www.biomedcentral.com/1471-2105/12/261

is adopted to investigate various substrate specificities of
plant phosphorylation sites. Additionally, the motif of
each MDD-clustered subgroup is compared to the sub-
strate motifs of known kinases in Phospho.ELM [9]-a
database for integrating comprehensive information of
kinase-specific phosphorylation sites from multiple
organisms. According to a five-fold cross-validation eva-
luation, models trained with MDD-clustered subgroups
could improve predictive accuracy as compared to mod-
els trained without the application of MDD clustering.
Furthermore, an independent data set is used to further
evaluate the effectiveness of the models that achieve the
best accuracy during cross-validation. Finally, the MDD-
clustered models are adopted to implement an effective
web-based tool, namely PlantPhos, for identifying plant
phosphorylation sites with substrate motifs that may
potentially be recognized by plant kinases. The predic-
tion tool and the data used in this study can be available
at http://csb.cse.yzu.edu.tw/PlantPhos/.

Materials and methods

Figure 1 depicts the system flow of this study. The
method consists of the following processes: data collec-
tion, redundancy removal, data clustering by MDD,
model learning and cross-validation, and independent
testing. The details of each process are described as
follows.

Data collection and preprocessing
With reference to PhosPhAt [15], this work obtains
plant protein phosphorylation data from the TAIR9
database [17]. TAIR9 consists of 3006 phosphorylation
data from the plant species Arabidopsis thaliana. The
database contains annotations of the phosphorylated
sites in each plant protein data. Based on the concept of
binary classification, the residues serine (S), threonine
(T), and tyrosine (Y) which are annotated as phosphory-
lation sites in the database are regarded as positive data.
On the other hand, with reference to previous works
[18,26], S, T, and Y residues which are not annotated as
phosphorylated are extracted as negative data. In order
to investigate the surrounding residues of phosphoryla-
tion sites in a comprehensive manner, sequence frag-
ments are extracted using a window size of 21 with S,
T, or Y as the central residue. As presented in Table 1,
this resulted in 2516 positive data and 97965 negative
data for S; 382 positive data and 51434 negative data for
T; and 108 positive data and 26405 negative data for Y.
Redundant sequence fragments or sequences which
contain the same amino acids on each corresponding
position in both the positive data sets and negative data
sets are removed. In the case of redundant sequence
fragments found in both positive and negative data sets,
the sequence in the negative data set is removed and
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the sequence in the positive data set is retained as
shown in the redundancy removal step of Figure 1. The
removal of redundant data resulted in 2506 positive
fragments and 87877 negative fragments for S; 378 posi-
tive fragments and 10402 negative fragments for T; and
108 positive fragments and 1681 negative fragments for
Y. Since the number of the negative fragments is much
greater than the number of the corresponding positive
fragments, the number of data is balanced by obtaining
the same number of negative fragments based on the
number of positive fragments. The idea of balancing the
negative data with the positive data is done in reference
to PhosPhAt [15] which uses random selection to obtain
a balanced data set. However, in order to avoid an
unstable prediction performance through a non-repre-
sentative data set derived using random selection, the K-
means clustering method [29] is used for this study. K-
means clustering selects well-represented data from a
large data set in order to achieve a more globalized sam-
ple. A data point which has a minimal distance from
other data points surrounding it is selected as a repre-
sentative data. For this study, K-means clustering is per-
formed based on sequence identity. The value of K
which denotes the number of samples to be obtained
from the negative data set is defined by the number of
the corresponding positive data. This resulted in a data
set consisting of 2506 positive and negative S fragments;
378 positive and negative T fragments; and 108 positive
and negative Y fragments. Table 1 shows the final num-
ber of positive and negative fragments in S, T, and Y
used for this study.

Data clustering by maximal dependence decomposition

One of the aims of this study is to investigate the sub-
strate site specificity of plant phosphorylation sites
based on amino acid sequences. In order to explore the
conserved motifs from a large data set, MDD is applied
to cluster all phosphorylated fragments into subgroups,
which can show statistically significant site specificity.
MDD [28] is a methodology to group a set of aligned
signal sequences to moderate a large group into sub-
groups that capture the most significant dependencies
between positions. In previous studies [28], MDD was
proposed to group splice sites during the identification
process of splice site prediction. However, in this work,
we group protein sequences instead of nucleotides.
MDD adopts chi-square test y*(A;, Aj) to evaluate the
dependence of amino acid occurrence between two
positions, A; and Aj, which surround the phosphoryla-
tion site. In order to extract motifs that have conserved
biochemical property of amino acids when doing MDD,
we categorize the twenty types of amino acids into five
groups: neutral, acid, basic, aromatic, and imino groups,
as shown in Additional file 1, Table S1. Then, a
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Figure 1 System flow of this study.

contingency table of the amino acids occurrence
between two positions is constructed, as presented in
Additional file 1, Figure S1. The chi-square test is
defined as:

5 5 2
(an - Emn)
SCZOED D) DR (1)

m=1 n=1 n

where X,,,, represents the number of sequences that
have the amino acids of group m in position A; and
have the amino acids of group # in position A;, for each
pair (A, A;) with i#j. E,,, is calculated as mRX e
where X,z = X1+ .+ X5, Xcyw = Xipt+ o+ Xs,, and X
denotes the total number of sequences. If a strong
dependence is detected (defined as a X” value is larger
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Table 1 Data statistics of the experimentally verified phosphorylation sites collected from TAIR9 protein database

Phosphorylated residue Type of Data Original data Non-redundant data Balanced data
S positive 2516 2506 2506
negative 97965 87877 2506
T positive 382 378 378
negative 51434 10402 378
Y positive 108 108 108
negative 26405 1681 108

than 34.3, corresponding to a cutoff level of P = 0.005
with 16 degrees of freedom) between two positions,
then the process is continued as described by Burge and
Karlin [28]. As illustrated in Additional file 1, Figure SI,
it can be observed that position +1 has the maximal
dependence with the occurrence of imino amino acids.
Subsequently, all data can be divided into two subgroups
where one has the occurrence of imino amino acids in
position +1 while the other does not have the occur-
rence of imino amino acids in position +1. MDD clus-
tering is a recursive process which divides the positive
sets into tree-like subgroups. When applying MDD to
cluster the sequences in the positive set, a parameter, i.
e., the minimum-cluster-size, should be set. If the size
of a subgroup is less than the minimum-cluster-size, the
subgroup will not be divided any further. The MDD
process terminates until all the subgroup sizes are less
than the value of the minimum-cluster-size. With refer-
ence to previous works that utilize MDD [18], there
exists no set values for the parameters of MDD cluster-
ing. In order to obtain an optimal minimum cluster size,
MDD clustering is executed using various values. Each
subgroup is represented using WebLogo [30] to graphi-
cally visualize the corresponding substrate motif. The
resulting clusters are then analyzed as to whether or not
they contain significant conserved motifs. Subgroups
with very similar motifs are further grouped together
into a single cluster in order to provide more meaning-
ful groups and avoid redundant clusters as shown in the
MDD clustering step of Figure 1.

Model learning and evaluation

In this work, profile HMM is learned from the site
sequences of each optimized MDD-clustered subgroups.
An HMM describes a probability distribution over a
potentially infinite number of sequences [31]. It can also
be used to detect distant relationships between amino
acids sequences. Here, we use the software package
HMMER version 2.3.2 [31] to build the profile HMMs,
to calibrate the HMMs, and to search the putative phos-
phorylation sites against the protein sequences. HMM
builds a model based on positive instances of a class;
thus, in this study, only positive data were utilized to

build a model. The MDD-clustered sets of the phos-
phorylation sites are taken as training sets to learn the
HMMs. One HMM is built for each MDD-clustered
subgroup.

For each model of the MDD-clustered subgroups, a
threshold parameter is selected as a cut-off value in
identifying potential positive data from a query [31]. An
optimized threshold is selected as the value which gives
the most optimal cross-validation performance for each
training model. To search the hits of a HMM, HMMER
returns both a bit score and an expectation value (E-
value). The bit score is the base two logarithm of the
ratio between the probability that the query sequence is
a significant match and the probability that it is gener-
ated by a random model. The E-value represents the
expected number of sequences with a score greater than
or equal to the returned HMMER bit scores. A search
result with an HMMER bit score greater than the
threshold parameter is taken as a positive prediction.
While decreasing the bit score threshold favors finding
true positives, increasing the bit score threshold favors
finding true negatives.

Cross-validation is an important evaluation procedure
prior to the application of a predictor [32]. The predic-
tive performance of the constructed models is evaluated
by performing five-fold cross validation. The training
data is divided into five groups by splitting each dataset
into five approximately equal sized subgroups. During
cross-validation, each one of the five subgroups is
regarded as the validation set in turn, and the remainder
is regarded as the training set. Next, the following mea-
sures of predictive performance of the trained models
are calculated: Precision (Pre) = TP/(TP+FP), Sensitivity
(Sn) = TP/(TP+EN), Specificity (Sp) = TN/(TN+FP),
and Accuracy (Acc) = (TP + TN)/(TP+FP+TN+EN),
where TP, TN, FP and FN represent the numbers of
true positives, true negatives, false positives and false
negatives, respectively. Along with 5-fold cross-valida-
tion, different values for the HMMER bit score were
also tested in order to obtain the optimal threshold
parameter for predicting query sequences. Each value
from -20 to 0 was each tested as the HMMER bit score.
Then, the results of each fold using each bit score value
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is compared and analyzed. The value which yields the
highest cross-validation performance on all five folds of
a specific model is selected as the optimal HMMER
threshold for that HMM.

Independent testing

As for classification, the prediction performance of the
trained models may be overestimated due to a possi-
ble over-fit in the training set; thus, an independent
test is done. The experimental plant phosphorylation
sites of UniProtKB/Swiss-Prot [11], which were not
included in TAIR9 [17], are regarded as the indepen-
dent test set and are used to estimate the actual pre-
diction performance. Using a window size of 21-mer,
there are 332, 105, and 14 phosphorylation sites for S,
T, and Y, respectively. Similar to the extraction of a
negative set of training data, there are 664, 210, and
28 non-phosphorylation sites for S, T, and Y, respec-
tively, are regarded as the negative set of independent
test data. A balanced number of negative data is
selected using K-means clustering to match the num-
ber of positive data. After performing a five-fold
cross-validation evaluation, the independent test set is
used to evaluate the MDD-clustered HMMs with the
highest accuracy. After searching against all HMMs,
the prediction result for each test data on each HMM
is evaluated. If a query data is predicted by at least
one HMM to be positive, then it is reported by Plant-
Phos as a phosphorylation site. This is because each
HMM represents the target motif of a specific plant
protein kinase which means that a positive hit of a
certain model matches the motif it represents. In case
where a query data is predicted by two or more
HMDMs as a phosphorylation site, the cluster which
gives the highest prediction score is treated as the
plant protein kinase motif that the query data
matches. Meanwhile, if a query data is predicted by all
HMDMs to be negative, then it is considered as a non-
phosphorylation site. In order to justify the results
due to the balancing of the positive and negative data,
the independent testing is done 10 times on S, T, and
Y data.
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Results and discussion

Investigation of substrate site specificities

This work aims to investigate the various substrate site
specificities in the plant species Arabidopsis thaliana
based on amino acid sequences. According to a previous
mass spectrometry-based identification of plant phos-
phorylation sites, a total of 2506, 378, and 108 non-
redundant data for S, T, and Y, respectively, are
extracted from the TAIRY database [17] through its
authors. As presented in Table 2, the Two Sample Logo
[33] indicates that phosphoserine (pSer), phosphothreo-
nine (pThr), and phosphotyrosine (pTyr) sites contain
various conserved amino acids as opposed to non-phos-
phorylated S, T, and Y. In order to further investigate
different substrate site specificities from the available
data, this work applies MDD to cluster all phosphory-
lated fragments into subgroups that capture the most
significant dependencies of amino acid composition
between positions. Phosphorylated sequences in each
MDD-clustered subgroup which shows a conserved
motif, represents particular substrate site specificity. The
flanking amino acids (-10 ~ +10) of the non-redundant
phosphorylation sites, which are centered on position 0,
are graphically visualized as sequence logos using
WebLogo [30,34].

Maximal dependence decomposition is executed
multiple times with varying values in order to obtain
the most optimal minimum cluster size. Setting the
minimum cluster size to 200 for S data yielded 22
small groups. However, by further analyzing these
groups through its corresponding entropy plots, it is
observed that several groups contain very similar
motifs. These groups are then combined together and
visualized using WebLogo. The resulting entropy plots
of the combined group exhibit the same motif as the
smaller groups. Therefore, the groups were further
tuned by combining similar groups into one group.
This resulted in 9 subgroups for S. For T and Y data,
the minimum cluster size was set to 100, and 30,
respectively, which resulted to 6 subgroups containing
distinct motifs for both data sets. The conservation of
flanking amino acids in each MDD-clustered subgroup

Table 2 Two Sample Logo in plant phosphoserine, phosphothreonine, and phosphotyrosine

Phosphorylated Residue

Number of Non-redundant data

Entropy Plot of Sequence Logo

S 2506

Y 108
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is represented using entropy plot of sequence logo.
Table 3 shows the number of positive data in each
subgroup of pSer and their corresponding predictive
performances based on a five-fold cross-validation eva-
luation. According to the chi-square test of the depen-
dence of five amino acid groups in flanking positions
(see Additional file 1, Table S1), eight subgroups con-
tain conserved motifs at a specific position. Subgroup
S1 reveals that the most pronounced feature of plant
pSer sites is the abundance of proline residue at posi-
tion +1. Moreover, another significant substrate speci-
ficity is observed in subgroup S2 (786 pSer sequences)
which contains a statistically conserved motif of nega-
tively charged amino acids (D and E) at positions +3.
Five out of all MDD-clustered subgroups contain con-
served motifs of positively charged amino acids (K and
R) at a specific position. In particular, subgroup S5
contains a conserved proline motif at position -9,
which is distant to the phosphorylation site (position
0). Also, subgroups S3 and S8 contain conserved
motifs at distant positions +9 and +10, respectively. It
is observed that subgroup S9 does not contain signifi-
cantly conserved amino acid at any position.

The MDD-clustered subgroups of pThr and pTyr are
presented in Table 4 and 5, respectively. In plant pThr
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sites, subgroup T1 also has the abundance of proline
residue at position +1. Another featured motif of pThr
is in subgroup T3 which contains the statistically signifi-
cant conservation of amino acid residues (D, E, N and
Q) at positions +5. Additionally, subgroups T2, T4, and
T5 contain conserved motifs at distant positions -7, +10,
and +9, respectively. For plant pTyr sites, subgroup Y3
contains conserved motif of basic amino acids (K, R and
H) at position -6; meanwhile, subgroups Y4 and Y5 con-
tain conserved motifs of basic residues (K and R) and
imino residue (P) at positions -1 and +2, respectively.
Both T6 and Y6 do not contain significantly conserved
amino acid at any position as observed in the entropy
plot motif of Table 4 and Table 5, respectively.
Although the application of MDD on 108 pTyr
sequences could result in six subgroups, the number of
data is deemed insufficient to investigate representative
significant motifs. In order to further investigate S9 and
T6, MDD clustering is re-applied on these subgroups.
As shown in Additional file 1, Table S6, potential sub-
strate specificities can be found within S9 and T6. How-
ever, the number of data on each potential substrate
motif found is too small to support its validity. This
may be improved as additional plant phosphorylation
data are acquired.

Table 3 The substrate site specificity and predictive performance in nine MDD-clustered subgroups of phosphoserine

Group Number of data Entropy plot of substrate motif HMMER bit score Pre Sn Sp Acc

S1 624 ] w -3 89.8% 90.6% 89.7% 90.2%
B

S2 786 N 5 -4 76.6% 71.9% 78.1% 75.0%
E;‘ 5

S3 355 ) s -7 72.1% 68.9% 732% 71.0%
b K
T TR A,

S4 230 A -6 90.3% 93.0% 90.0% 91.5%
i )

S5 77 -12 76.9% 75.0% 74.3% 74.5%
‘ 5.-P:“'.‘—' EL’TS’—'-"—'-, ]

S6 93 -10 90.2% 88.0% 90.4% 89.1%

S7 109 _: s -8 90.8% 83.3% 91.7% 87.5%

S8 61 -12 77.7% 85.0% 80.2% 82.7%

S9 171 -6 79.6% 83.1% 78.5% 80.8%

Average 82.6% 82.0% 82.9% 82.4%
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Table 4 The substrate site specificity and predictive performance in six MDD-clustered subgroups of

phosphothreonine

Group Number of data Entropy plot of substrate motif HMMER bit score Pre Sn Sp Acc
T1 43 -16 79.4% 74.1% 81.1% 77.7%
T2 88 -9 89.4% 91.9% 88.6% 90.3%
T3 77 -9 82.1% 80.3% 81.9% 81.1%
T4 34 -15 78.6% 76.6% 77.1% 76.5%
T5 42 -13 79.4% 71.1% 81.1% 75.9%
T6 94 ! -8 74.9% 61.0% 79.8% 70.5%

Areeans: [zrelraete
Average 80.6% 75.8% 81.6% 78.6%

Predictive performance of five-fold cross-validation

The cross-validation process includes the selection of
the threshold parameter for each model. The threshold
parameter is a specific bit score that serves as the cutoff
value of HMMsearch for determining matching query
sequences for an HMM [31]. The threshold is selected
by first testing each value from the range of -20 to 0 as
the bit score. The threshold is tuned to a specific value
which allows an HMM to yield a high and balanced
Specificity and Sensitivity for a specific HMM. Table 3
shows the threshold score selected for each model of
pSer as well as its individual predictive performance.

Also, Table 4 and 5 show the threshold score selected
for each model of pThr and pTyr, respectively, as well
as its individual predictive performance.

According to a five-fold cross-validation evaluation, the
predictive performance of MDD-clustered HMM performs
significantly better than the non-MDD-clustered HMM of
pSer, pThr, and pTyr. As shown in Table 6, the single
HMM for pSer yields a Precision rate of 49.5%, a Sensitiv-
ity rate of 58.6%, a Specificity rate of 70.0%, and an Accu-
racy rate of 66.2%. On the other hand, the performance of
HMM for pSer with MDD clustering yields a Precision
rate of 82.6%, a Sensitivity rate of 82.0%, a Specificity rate

Table 5 The substrate site specificity and predictive performance in six MDD-clustered subgroups of phosphotyrosine

Group Number of data Entropy plot of substrate motif HMMER bit score Pre Sn Sp Acc
Y1 11 ] y -16 93.3% 90.0% 90.0% 90.0%
A |
Y2 7 ﬂ -14 80.0% 80.0% 100% 90.0%
%ﬁ e n.i
Y3 15 ] | -18 85.0% 90.0% 86.6% 85.0%
Y4 20 -17 90.0% 90.0% 90.0% 90.0%
Y5 16 -16 90.0% 86.6% 88.3% 87.1%
Y6 39 -16 93.3% 92.1% 92.5% 924%
Average 88.6% 88.1% 91.2% 89.0%
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Table 6 The comparison of five-fold cross-validation
between single HMM and MDD-clustered HMMs

Method Phosphorylated Pre Sn Sp Acc
residue

Single HMM S 49.5% 586% 70.0% 66.2%

T 454% 60.5% 634% 62.5%

Y 754% 90.6% 84.7% 86.6%

MDD-clustered S 826% 82.0% 829% 824%
HMMs

T 80.6% 758% 81.6% 78.6%

Y 886% 88.1% 91.2% 89.0%

of 82.9%, and an Accuracy rate of 82.4%. With regard to
pThr, using a single HMM yields a Precision rate of
45.4%, a Sensitivity rate of 60.5%, a Specificity rate of
63.4%, and an Accuracy rate of 62.5%. On the other hand,
the performance of MDD-clustered HMM for pThr yields
a Precision rate of 80.6%, a Sensitivity rate of 75.8%, a Spe-
cificity rate of 81.6%, and an Accuracy rate of 78.6%. With
regard to pTyr, using a single HMM yields a Precision rate
of 75.4%, a Sensitivity rate of 90.6%, a Specificity rate of
84.7%, and an Accuracy rate of 86.6%. On the other hand,
the performance of HMM for pTyr with MDD clustering
yields a Precision rate of 88.6%, a Sensitivity rate of 88.1%,
a Specificity rate of 91.2%, and an Accuracy rate of 89.0%.
This results show that HMM for pSer, pThr, and pTyr
which utilizes MDD performs significantly better than
using a single HMM without MDD clustering.

Evaluation of the selected models using independent test
set

Owing to a possible over-fit of the training set used in
PlantPhos, the method was further evaluated by using

Table 7 The comprison of independent testing
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an independent data set. The independent testing data
was tested on each HMM model using the selected
threshold score. Independent testing is done 10 times
on pSer, pThr, and pTyr data in consideration for the
balancing of the positive and negative testing data. The
independent performance of each pSer model is shown
on Additional file 1, Table S2; each pThr model on
Additional file 1, Table S3; and each pTyr model on
Additional file 1, Table S4. Moreover, as shown in
Table 7, the method yields a significantly high sensitivity
rate with 81.4% for MDD-clustered pSer models; 77.1%
for MDD-clustered pThr models; and 83.7% for MDD-
clustered pTyr models. On the other hand, it is also
observed that the method yields slightly low specificity
on the independent test data with a rate of 71.6% for
MDD-clustered pSer models, 69.7% for MDD-clustered
pThr models, and 68.7% for MDD-clustered pTyr mod-
els. The slightly high rate of False Positive predictions
could be explained by the number of models we have
for pSer, pThr, and pTyr. It is observed that although
each model yields a high predictive specificity (90%), the
existence of a large number of models may induce
higher false positive predictions (see Additional file 1,
Figure S2). Without the annotation of the corresponding
kinase on each phosphorylation site, each query data is
predicted based on observed substrate site specificities
represented by MDD-clustered HMMs. As discussed
above, if a query data is predicted by at least one of
MDD-clustered HMMs to be positive, then it is
reported by PlantPhos as a potential phosphorylation
site. Meanwhile, if a query data is predicted by all
HMM models to be negative, then it is considered as a
non-phosphorylation site. Thus, a high false positive
rate may be yielded by the prediction system.

Method Phosphorylated residue Pre (%) Sn (%) Sp (%) Acc (%)
Single HMM S 52.6% 50.6% 77.2% 68.3%
T 50.0% 20.9% 89.5% 66.6%

Y 36.3% 28.5% 75.0% 59.5%

MDD-clustered HMMs S 74.2% 81.4% 71.6% 76.5%
T 71.8% 77.1% 69.7% 734%

Y 72.8% 83.7% 68.7% 76.2%

PhosPhAt 3.0 S 55.5% 61.9% 50.6% 56.2%
T 55.0% 57.1% 53.3% 55.2%

Y 4.0% 14.2% 78.5% 46.4%

NetPhos 2.0 S 58.6% 71.6% 49.3% 60.5%
T 47.5% 36.1% 59.6% 47.8%

Y 44.4% 28.5% 64.2% 46.4%

DisPhos 1.3 S 66.8% 60.6% 69.3% 65.0%
T 47.5% 36.1% 61.2% 48.6%

Y 57.1% 47.5% 64.2% 55.8%
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Furthermore, reasonably assuming that each MDD-clus-
tered HMM used in PlantPhos represents the target
motif of a plant protein kinase, a false positive predic-
tion may be considered as a novel phosphorylation site.
This is due to the fact that the negative data used in
this study are not necessarily non-phosphorylation sites
although it has not yet been experimentally identified to
be phosphorylation sites.

Comparison with other methods
Currently, very few prediction methods dedicated to
identifying phosphorylation sites in plants have been
proposed. Among these are PhosPhAt [15] which uses a
SVM classifier and the work of Gao et al. [26] which
incorporates protein sequence information, protein dis-
ordered regions, integrated k-nearest neighbor, and
SVM for predicting phosphorylation sites (see Addi-
tional file 1, Table S5). However, only PhosPhAt offers a
readily-available web tool, PhosPhAt 3.0, for predicting
plant phosphorylation sites. For comparison, the inde-
pendent test data set used for evaluating PlantPhos was
utilized. Using a window size of 21-mer, 332 pSer,
105pThr, and 14 pTyr sites were used as the positive
test data. A balanced number of negative data is then
selected using K-means clustering to match the number
of positive data. The resulting data are then classified as
phosphorylation or non-phosphorylation sites using
both PlantPhos and PhosPhAt 3.0. Finally, the precision,
sensitivity, specificity, and accuracy of both methods are
calculated in order to compare their respective predic-
tive performance. Table 7 shows the results of both
methods after being tested on the same data set. It can
be observed that PhosPhAt 3.0 yields an accuracy of
56.2%, 55.2%, and 46.4% for predicting S, T, and Y sites,
respectively, which is lower as compared to the pro-
posed method which yields an accuracy of 76.5%, 73.4%,
76.2% for predicting S, T, and Y sites, respectively.
Moreover, the predictive performance of PlantPhos is
compared with general phosphorylation prediction tools
in order to compare its ability in identifying plant phos-
phorylation sites. NetPhos is a general phosphorylation
prediction tool trained on mammalian phosphoproteins
which uses an artificial neural network method to pre-
dict phosphorylation sites in query sequences [35]. Dis-
Phos is another general phosphorylation prediction tool
trained on experimentally verified phosphorylation sites
which uses disorder information to improve prediction
accuracy [36]. Furthermore, DisPhos provides an Arabi-
dopsis thaliana predictor, which is selected for this test.
These two phosporylation tools, which are available
online, are tested using the same independent data set
used for evaluating PlantPhos. Table 7 shows that Net-
Phos yields an accuracy of 60.5%, 47.8%, and 46.4% for
predicting S, T, and Y sites. On the other hand, DisPhos
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1.3 [36] yields an accuracy of 65.0%, 48.6%, and 55.8%
for predicting S, T, and Y sites.

Comparison of motifs between MDD-clustered subgroups
and well-known kinase groups

In order to further investigate the significance of each
MDD-generated motif that represents its corresponding
substrate specificity, each MDD-generated motif is com-
pared with the motifs of known kinase-specific motifs. In
order to obtain known kinase-specific motifs, all available
kinase-specific phosphorylation sites of multiple organisms
were obtained from Phospho.ELM [9] and were integrated
together to generate a set of known kinase-specific motifs.
The resulting MDD motifs generated in this study were
then mapped to the kinase-specific motifs generated from
the available data in Phospho.ELM. According to the chi-
square test of the dependence of five amino acid groups in
flanking positions of plant pSer, the most featured motif is
the group that contains conserved proline (P) at position
+1, which is highly similar to two well-known kinase
groups in Phospho.ELM, Mitogen Activated Protein
Kinase (MAPK) and Cyclin Dependent Kinase (CDK).
From the pSer subgroups, it is observed that S1 shows a
conserved P at position +1; thus, it can be matched with
MAPK and CDK. Furthermore, it is observed that S2 con-
tains a conserved Glutamic Acid (G) and Aspartic Acid
(D) at positions +1, +2 and +3. A similar conservation is
seen in the Casein kinase II (CK2) family of non-plant
organisms in Phospho.ELM. Thus, the pSer group S2 can
be matched with CK2. Additionally, the conserved Argi-
nine (A) and Lysine (K) at position -3 in the pSer group
S4 is observed to be similar with the CAMK family 2
(CAMK?2) of non-plant organisms in Phospho.ELM; there-
fore, S4 can be matched with CAMK2. Overall, as pre-
sented in Table 8, plant pSer groups S1 is matched to
kinase groups MAPK and CDK, as well as S2 and S4 are
matched to kinase groups CK2 and CAMK2, respectively.
Similar to the matches in pSer subgroup S1, pThr sub-
groups T1 is matched to kinase groups MAPK and CDK
for having similar conserved amino acids at the same posi-
tion. Additionally, subgroup T3 is matched to the kinase
group CK2.

Implementation of the prediction scheme

Due to the time-consuming and laboratory-intensive
nature of experimental identification, even though a
protein can be phosphorylated, precisely identifying the
phosphorylation sites on the plant substrate proteins is
difficult. Therefore, an effective prediction tool should
be developed to identify phosphorylation sites with its
substrate site specificity. Following the evaluation by
cross-validation and independent testing, the MDD-clus-
tered HMMs are utilized in the construction of web-
based prediction system. Users can submit their
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Table 8 The MDD-clustered subgroups matched to the well-known kinase groups in non-plant organisms of Phospho.

ELM

Group Number of data

Entropy plot of motif

Matched kinase Entropy plot of kinase motif
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uncharacterized protein sequences in the system; conse-
quently, the web tool, PlantPhos, returns the predicted
sites together with the position of the predicted site, the
flanking amino acids, the matched MDD-clustered sub-
strate motif, and the prediction score. To demonstrate
the performance of the proposed tool, two experimen-
tally verified phosphorylated plant proteins which do
not exist in the training data set was studied. The first
case study is performed using AT5G05040.1 which is a
Cysteine protease inhibitor protein from Arabidopsis
thaliana obtained from the Plant Protein Phosphoryla-
tion Database [16]. As shown in Figure 2(A),
AT5G05040.1 contains 2 experimentally verified pSer at
positions 36 and 43, and an experimentally verified pTyr
at position 34. PlantPhos is able to correctly predict the
experimentally verified pSer at positions 36 and 43 as
well as the experimentally verified pTyr at position 34.
Moreover, three more S residues are reported by Plant-
Phos as novel phosphorylated sites. Next, in order to
evaluate the performance of PlantPhos in identifying
phosphorylation sites from a different plant species
aside from Arabidopsis thaliana, the second case study
is performed using Medtr6g031130.1 which is a
Remorin, N-terminal region protein from Medicago
Truncatula obtained from the Plant Protein Phosphory-
lation Database [16]. As shown in Figure 2(B),
Medtr6g031130.1 contains 1 experimentally verified
pSer at positions 76. PlantPhos is able to correctly pre-
dict the experimentally verified pSer at position 76.

Additionally, one more S and two T are reported by
PlantPhos as novel phosphorylated sites.

Conclusions

The importance of phosphorylation has been indicated
in the regulation of protein functions and cell signaling,
but the state of research in this field is hindered by
experimental difficulties especially for the investigation
of substrate site specificity in various organisms. In this
work, we have analyzed plant phosphorylation sites by
applying MDD clustering; using this method, the avail-
able plant phosphorylation data were grouped into sev-
eral subgroups-each showing a significant conserved
motif. Then, we developed a novel method for predict-
ing protein phosphylation sites in plants by training
HMDMs for each MDD-clustered subgroup which are
then used to predict potential phosphorylation sites by
HMMsearch. Our method is evaluated by means of 5-
fold cross-validation which yields an average accuracy of
82.4% for predicting pSer, 78.6% for predicting pThr,
and 89.0% for predicting pTyr. Moreover, our method is
further evaluated by testing it on an independent data
set which shows that our method can predict novel
phosphorylation sites by using the experimental phos-
phorylation data in plant proteins from UniProtKB/
SwissProt. Additionally, we were able to further investi-
gate the MDD-clustered motifs in plants by referencing
to the motifs of known kinases from Phospho.ELM [9].
Through this method, we were able to observe similar
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kinase motifs between plants and other organisms.
Lastly, the method has been implemented as a web tool
named PlantPhos in order for the research community
to be able to facilitate phosphorylation site prediction
on plant protein data using the proposed method.
Future development for PlantPhos involves (i) the
extension of the system to include other plant species
other than Arabidopsis thaliana; (ii) the acquisition of
additional experimentally verified plant protein data to

re-calibrate more robust MDD clusters; (iii) and a more
comprehensive investigation of substrate site specificities
in plants with additional plant phosphorylation data.

Availability

PlantPhos can be accessed via a web interface, and is
freely available to all interested users at http://csb.cse.
yzu.edu.tw/PlantPhos/. All of the data set used in this
work is also available for download in the website.


http://csb.cse.yzu.edu.tw/PlantPhos/
http://csb.cse.yzu.edu.tw/PlantPhos/
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Additional material

Additional file 1: Additional Figures and Tables. Contains additional
Figures and Tables showing further results in the study
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