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Abstract

Background: Activation of the NF-�B transcription factor and its associated gene expression in microglia is a key
component in the response to brain injury. Its activation is dynamic and is part of a network of biochemical
species with multiple feedback regulatory mechanisms. Mathematical modeling, which has been instrumental for
understanding the NF-�B response in other cell types, offers a valuable tool to investigate the regulation of NF-�B
activation in microglia at a systems level.

Results: We quantify the dynamic response of NF-�B activation and activation of the upstream kinase IKK using
ELISA measurements of a microglial cell line following treatment with the pro-inflammatory cytokine TNFa. A new
mathematical model is developed based on these data sets using a modular procedure that exploits the feedback
structure of the network. We show that the new model requires previously unmodeled dynamics involved in the
stimulus-induced degradation of the inhibitor I�Ba in order to properly describe microglial NF-�B activation in a
statistically consistent manner. This suggests a more prominent role for the ubiquitin-proteasome system in
regulating the activation of NF-�B to inflammatory stimuli. We also find that the introduction of nonlinearities in
the kinetics of IKK activation and inactivation is essential for proper characterization of transient IKK activity and
corresponds to known biological mechanisms. Numerical analyses of the model highlight key regulators of the
microglial NF-�B response, as well as those governing IKK activation. Results illustrate the dynamic regulatory
mechanisms and the robust yet fragile nature of the negative feedback regulated network.

Conclusions: We have developed a new mathematical model that incorporates previously unmodeled dynamics
to characterize the dynamic response of the NF-�B signaling network in microglia. This model is the first of its kind
for microglia and provides a tool for the quantitative, systems level study the dynamic cellular response to
inflammatory stimuli.

Background
The nuclear factor-�B (NF-�B) transcription factor is
ubiquitously expressed in mamallian cells and regulates
the expression of many target genes. In the nervous sys-
tem NF-�B is known to play a key role in the immune
and injury responses and in governing normal brain
function [1]. During cerebral ischemia NF-�B is a pri-
mary regulator of the inflammatory response to ischemic
injury, affecting cell death and survival [2]. Microglia, the
resident immune cells in the brain, are activated follow-
ing ischemia and play a controversial role in this decision.
Microglia respond to injury in part by releasing both

cytoprotective and cytotoxic signaling molecules to sur-
rounding cells, many of which are regulated by NF-�B
[3]. As the dynamics of NF-�B activation control gene
expression [4-6], characterizing the dynamics of NF-�B
activation in microglia is of great interest.
Members of the NF-�B family of transcription factors

are found in their inactive state as dimers bound to their
IkB inhibitor proteins. Upon stimulation by a diverse set
of stimuli, NF-�B is freed from its inhibitor to coordinate
gene expression in a highly specific and tightly regulated
manner. The I�Ba inhibitor and p65(RelA):p50 NF-�B
heterodimer are the most extensively studied members of
their respective families, and their response to extracellu-
lar stimuli illustrates the canonical pathway of NF-�B
activation (Figure 1).
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In the canonical pathway, binding of extracellular
TNFa trimers to TNFR1 receptors at the cell membrane
initiates NF-�B activation. The ligand-receptor complex
interacts with several adapter proteins, including TNF
receptor-associated factor 2 (TRAF2) and receptor-inter-
acting protein-1 (RIP1), which are essential for recruit-
ment and activation of the I�B kinase complex (IKK) [7].
The IKK complex involved in canonical NF-�B activation
is composed primarily of the regulatory subunit IKKg
(NEMO) and two catalytic subunits: IKKa/IKK1 and
IKKb/IKK2. Upstream signals activate IKK by phosphor-
ylation of the kinase domain of IKKb, which in turn
phosphorylates I�Ba on serines 32 and 36 [8]. Phos-
phorylated I�Ba is recognized by the bTrCP containing
Skp1-Culin-Roc1/RBx1/Hrt-1-F-box (SCF) E3 ubiquitin
ligase complex (SCF-bTrCP), which facilitates K48-linked

polyubiquitination of I�Ba and targets it for degradation
by the 26S proteasome [9,10].
NF-�B is released following proteasomal degradation

of I�Ba [11] and translocates to the nucleus, where it
activates gene expression. Of the hundreds of genes tar-
geted by NF-�B [12], two in particular are ikba and a20.
The expression of these genes is rapidly induced by NF-
�B and triggers the synthesis of de novo I�Ba and A20
proteins. Newly synthesized I�Ba sequesters NF-�B
from the nucleus to inhibit further transcriptional activ-
ity, forming a strong negative feedback regulatory
mechanism. The synthesis of A20 proteins creates a sec-
ond negative feedback loop by regulating the ubiquitina-
tion of adapter proteins responsible for activating the
IKK complex, thus inhibiting further NF-�B activation
[13]. Many characteristics that define TNFa induced
NF-�B activation also underlie cellular responses to
many other stimuli, necessitating a thorough under-
standing of this pathway.
Given the dynamic nature of NF-�B signaling and its

regulation involving multiple feedback loops, it is neces-
sary to consider the network as a whole when studying
this system. The seminal work by Hoffmann and collea-
gues [4], in which simulation predictions were used in
coordination with experimental studies of I�B knockout
cells to reveal functional differences among three I�B iso-
forms, established mathematical modeling as a vital tool
for studying NF-�B signaling at a systems level. Subse-
quently a number of researchers have used modeling to
investigate various aspects of NF-�B activity [5,6],[14-18].
Here we develop a mathematical model to describe

NF-�B signaling in microglia. Beginning with a recently
published model structure shown to be capable of pre-
dicting NF-�B signaling in other cell types [14], we
attempt to identify model parameters to match experi-
mental data sets of NF-�B and IKK activation obtained
from a microglial cell line. The inability of the original
model to recapitulate NF-�B activation that is consistent
with experimental data – regardless of model parameter
choice – leads us to expand the model to incorporate
previously unmodeled dynamics of the I�Ba ubiquitin-
proteasome degradation pathway. We also find that IKK
activation in microglia is highly nonlinear, which
prompts refinement of the upstream signaling module.
We use the new model to predict the levels of another
network component, total I�Ba, and are able to validate
this prediction experimentally. The results offer a vali-
dated model that can be used as a new tool to study the
dynamics of NF-�B activation in microglia. While we
find that many key features of canonical NF-�B activa-
tion are shared in microglia, the model suggests a
potentially more prominent role for the ubiquitin system
in regulating the dynamics of NF-�B activation. We use
numerical analyses of this model to gain insight into

Figure 1 The canonical NF-�B activation pathway. Binding of
TNFa trimers to TNFR receptors initiates the canonical signaling
pathway by activating the upstream kinase IKK. IKK phosphorylates
the I�B inhibitor that is bound to NF-�B in the resting state. This
targets I�B proteins for the ubiquitin-proteasome system, which
leads to I�B destruction by the 26S proteasome and release of NF-
�B. Free NF-�B enters the nucleus and activates gene expression of
many target genes and induces negative feedback regulation by
synthesizing I�B and A20. I�B proteins inhibit NF-�B activity by
sequestering NF-�B from the nucleus to form an inner feedback
loop, while A20 attenuates stimulus induced IKK kinase activation
further upstream in an outer negative feedback loop.
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how microglia regulate both IKK and NF-�B activity in
response to inflammatory stimuli. Our sensitivity
anlayses emphasizes the dynamic nature of how key sys-
tem responses are regulated, a feature that may not be
apparent from similar analyses. The analysis further
highlights the robust yet fragile nature of the NF-�B sig-
naling pathway due to the multiple layers of feedback
regulation.

Results
TNFa stimulates dynamic NF-�B and IKK activation in BV2
microglia
To characterize the dynamics of canonical NF-�B activa-
tion in microglia, cells from the microglial cell line BV2
were cultured and treated with 10 ng/ml TNFa. Whole
cell extracts were collected in triplicate over a time
course following stimulation in five identical experiments
conducted on different days. ELISA measurements of
NF-�B p65 DNA binding activity show that NF-�B acti-
vation in BV2 microglia is strongly induced by TNFa
(Figure 2A). Five minutes following TNFa treatment NF-
�B activation remains near basal levels but increases
rapidly thereafter, reaching maximal activity near 20 min.
Following the initial peak, NF-�B activity declines until
approximately 90 min when it returns to a second, smal-
ler amplitude peak. The biphasic NF-�B activity profile

in BV2 microglia is consistent with the NF-�B response
to sustained TNFa stimulation observed from population
level measurements in many other cell types [19].
To better characterize the inflammatory response in

microglia we additionally examined the activation of the
upstream I�B kinase (IKK) experimentally. The time
course of IKK activity was measured for the first 30 min
following 10 ng/ml TNFa treatment in three identical
experiments. IKK is rapidly activated, reaching peak
levels near 5 min. By 10 min IKK activity sharply drops
to below half-maximal levels and gradually declines to
near basal levels over the next 20 min (Figure 2B). This
transient profile resembles IKK activation characteristic
of the response in most other cell types to high TNFa
doses, in which IKK activity peaks between 5-15 min
and drops below 25% of its maximal value by 30 min
[20,21]. However, the rapid decline from maximum
activity at 5 min to ~33% activity by 10 min is particu-
larly prominent in microglia.

Intermediate steps in the IKK-induced I�Ba degradation
pathway reconcile the mathematical model with NF-�B
activation in microglia
Next we sought to quantitatively describe microglial NF-
�B activation using a mathematical model. While a num-
ber of mathematical models for NF-�B have been pub-
lished in recent years (reviewed in [19]), our preference
was to begin with a simple description that still captures
the essential components of the network. For this pur-
pose we selected a deterministic, ordinary differential
equation (ODE) model structure recently published by
Ashall et al [14], which was based primarily on an earlier
model by Lipniacki et al [18]. This model includes the
core architecture of the canonical signaling pathway and
was able to predict many key features of NF-�B activa-
tion in different cell types under a variety of conditions.
We first attempted to identify parameters for the exist-

ing model structure to fit the experimental NF-�B and
IKK activation profiles of microglia. An optimization-
based parameter estimation algorithm was run using
many randomly selected parameter values from the para-
meter space as initial guesses. However, no parameter
sets were found that matched microglial IKK and NF-�B
activity. In particular, the model was unable to qualita-
tively reproduce the rapid induction and attenuation of
IKK activity observed in microglia for any of the para-
meter sets tested, and NF-�B activation was predicted
to occur more rapidly than the 5 min delay observed in
Figure 2A. The discrepancies between the model and
data prompted us to investigate the time interval imme-
diately following TNFa stimulus.
Sensitivity analyses were performed on the model to

quantify the relative contributions of each of the system
parameters to the concentration of free NF-�B during
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Figure 2 Dynamics of NF-�B and IKK activation in BV2
microglia treated with TNFa. ELISA measurements of (A) NF-�B
p65 DNA binding activity and (B) IKKb kinase activity following
continuous stimulation by 10 ng/ml TNFa. Data markers at each
time point are sample averages from independent experiments
performed on separate days. Error bars indicate one standard
deviation of the samples.
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the first 10 min given the large mismatches between the
model and data in this interval. Only seven of the origi-
nal 26 system parameters have appreciable effects on
NF-�B activity during this time based on their time-
averaged sensitivity scores (Figure 3A, Additional file 1:
Figure S1). Notably, the most significant parameters
comprise the rates governing IKK activity, IKK-induced
phosphorylation and degradation of bound I�Ba,
nuclear import of NF-�B and its association with I�Ba,
and the ratio between the volumes of the cytoplasm and
nucleus. No parameters governing transcriptional regu-
lation or other downstream processes have significant
effects on NF-�B activation during this early time

interval as evidenced by their very small sensitivity
scores. Moreover, this ruled out the possibility that feed-
back from other I�B isoforms (e.g. I�Bε) not included in
this model could be added to account for the discrepan-
cies in the dynamics. This suggested that the brief delay
in the initiation of NF-�B activation observed in micro-
glia was likely due to unmodeled dynamics involved in
the IKK-dependent degradation of I�Ba or to dynamics
in the upstream signaling pathway governing IKK activa-
tion, allowing us to restrict our initial attention to only a
subset of key upstream parameters.
To more easily explore these possibilities and to facili-

tate model development, we first considered the
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Figure 3 New model structure required to characterize NF-�B activation in microglia. (A) NF-�B activity during the first 10 minutes
following stimulation was only highly sensitive to seven of the 26 rate parameters. (B) By using an IKK signal derived from experimental
measurements as the model input, the outer feedback loop can be removed (indicated by gray lines), isolating the downstream NF-�B
activation module with I�Ba feedback. Similarly, once the concentration of nuclear NF-�B is known, this signal can be used to drive the
upstream IKK activation network independently of the downstream module. (C) Model structure from the original model (top) and the new
model (bottom). (D) Simulations with parameters estimated for the existing model (dashed line) and the new model (solid line) using the
experimental IKK curve as input. The inset provides a detailed view of the model fits during the initial activation phase. (E) The results of 1980
randomly initialized parameter estimates for each model were checked for statistical consistency with the data using Fisher’s Method (see
Methods) and binned according to p-value. No estimated parameter sets with the original model achieved a P-value >10-7 (red), while nearly
half the estimated parameter sets with the new model (blue) had P > 0.01.
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downstream network independently of the upstream
IKK activation network. IKK interacts with the down-
stream module only through its enzymatic phosphoryla-
tion of I�Ba and through feedback inhibition from A20
(Figure 3B). We isolated the downstream network by
breaking the outer A20 feedback loop and using the
interpolated experimental IKK activation data as the
model input in a manner resembling previous work by
others [22].
With the IKK profile fixed as the model input, the least

squares parameter estimation procedure was repeated
with certain parameter values and biological features
constrained by the literature (Additional file 1: Table S2).
Simulations of the existing downstream model with the
estimated parameters predicted free NF-�B levels
increasing sooner than what was detected in microglia, as
was also the case for the full model (Figure 3D). To test
whether this result was limited to a particular set of
values or held more generally, many additional estimates
were obtained starting from initial values randomly
sampled from the parameter space using both a least-
squares objective function and an alternative objective
function adapted from the parameter estimation method
proposed by [23]. Following the methodology in [23], we
applied an a posteriori statistical test based on Fisher’s
Method to check whether model simulations at each esti-
mated parameter set were consistent with the experimen-
tal data, taking into account measurement errors in the
data (see Methods). The results showed that with the ori-
ginal model structure, 100% of the estimated parameter
sets had P-values < 10-7 (Figure 3E), leading us to con-
clude that the original model could not produce
dynamics consistent with the data.
Taken together with the sensitivity results showing that

very few system parameters significantly affect NF-�B
activation during the first 10 min of activation, this
strongly suggested there were likely unmodeled dynamics
within the IKK-induced I�Ba degradation pathway. We
next investigated whether the model could be modified
in a biologically meaningful way to incorporate missing
dynamics and to better fit the data.
The original model structure describes IKK-dependent

I�Ba degradation in two steps: phosphorylation of I�Ba
catalyzed by IKK, and degradation of phosphorylated
I�Ba (Figure 3C). However, this two-step description
omits many intermediate steps which occur prior to I�B
degradation by the 26S proteasome [7]. We therefore
extended the model to include two intermediate reac-
tions following I�Ba phosphorylation and preceding
I�Ba degradation, which we posited might be sufficient
to account for the missing dynamics. The reactions
roughly correspond to recognition of phosphorylated
I�Ba by an E3 ligase intermediate, and attachment of a
ubiquitin (Ub) chain to the substrate (Figure 3C). It must

be noted that each of these reactions potentially encom-
passes numerous intermediate steps and may not corre-
spond directly to the reactions as they are described here;
however, the mechanistic details of this pathway obtained
from the literature provide a biological basis for develop-
ing this model.
With the new model structure in place, the parameters

corresponding to the new stimulus-induced I�Ba degrada-
tion reactions were estimated using the optimization algo-
rithm while fixing all other parameters downstream of
I�Ba degradation to their previously estimated values.
Remarkably, parameters were found to closely match
microglial NF-�B activation, decreasing the data fitting
error by nearly 67%, with over a 9-fold improvement dur-
ing the first 20 min in particular (Additional file 1: Figure
S2). Re-estimating the other parameters with the modified
model provided even better agreement with the data,
further reducing the fitting error from 0.67 to 0.30 (Figure
3D). The consistency between simulations of the new
model and the data was assessed using the a posteriori sta-
tistical test as before. At these parameters the test yielded
a P-value of 0.038, implying that the null hypothesis could
not be rejected with a high significance level. This result
was corroborated by obtaining a large number of para-
meter estimates and finding that nearly 50% of the esti-
mates with this model structure had P > 0.01 (Figure 3E).
These results provide strong evidence that the addi-

tion of dynamics roughly corresponding to the steps
involving phosphorylated I�Ba recognition and binding
by the E3 ligase, polyubiquitination, and proteasomal
degradation is sufficient to account for the slightly
delayed NF-�B activation observed in microglia.

Nonlinearities in IKK activation and inactivation produce
the rapid transient IKK activity in microglia
We next focused our attention on the upstream signal-
ing pathway governing IKK activation in response to
TNFa stimulation. The upstream signaling module was
decoupled from the downstream model by using the
concentration of free nuclear NF-�B produced by the
downstream module as a fixed model input (Figure 3B).
This enabled us to consider only the reactions immedi-
ately governing IKK activity and its regulation by A20,
again greatly simplifying the model development task.
The original upstream model in [14], which includes

IKK cycling among three states (native, active, and inac-
tive) and feedback from A20, was unable to adequately
fit either the rapid activation or deactivation of micro-
glial activation (Figure 4B). Therefore, we examined
ways in which the model could be modified consistent
with the biology to better correspond with the data.
Activation of the IKK complex at the biomolecular

level involves the recruitment and assembly of a signal-
ing complex following TNFa binding to its receptor, as
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well as numerous post-translational modifications to the
complex subunits before IKK is activated by phosphory-
lation at two residues within its kinase domain [7].
Although other studies have attempted to model the
upstream pathway in a greater level of detail [24-26],
many of the details are still being resolved and we opted
to retain the basic IKK cycling description from [14].
The activation reaction rate was changed from a linear
function to a nonlinear Hill equation as a coarse
approximation to the many intermediate steps involved
in IKK activation.
The quick attenuation of IKK activity following its

induction is essential to proper signaling and the result-
ing biphasic NF-�B activity [20,27]. IKK reportedly
undergoes hyperphosphorylation at 9 or 10 residues in
the C-terminal, which was found to significantly decrease
kinase activity in cells [27]. We posited that potential

cooperativity in IKK inactivation due to autophosphory-
lation may lead to nonlinearites in the inactivation rate
equation of the model. Accordingly the linear reaction
rate was changed to a nonlinear Hill equation.
Feedback from A20 in the published model was pro-

posed to inhibit the transition of inactivated IKK back to
its native state [14]. Because we were unaware of any bio-
logical basis for such a mechanism, we adopted two
mechanisms of A20 interaction (Figure 4A) that had been
identified in the literature and had also been included in
prior models. The first is direct inactivation of the IKK
complex by A20 protein, a mechanism reported in [28,29]
and previously modeled in [18]. We used the identical
mathematical description of this interaction from [18] in
our model. Secondly A20 is known to inhibit activation
indirectly through its ubiquitin-editing activities of
upstream signaling components [13]. This mechanism has
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been included in previous models that have a more
detailed description of the upstream signaling pathway
[25,26]. We adapted this second interaction to our model
by assuming that A20 attenuates the rate of TNF-induced
IKK activation in a concentration dependent manner.
Parameter estimation was performed using the newly

developed upstream model with fixed nuclear NF-�B as
the model input. Parameters were found for which the
model produced excellent agreement with microglial
IKK activation (Figure 4B), decreasing the fitting error
by more than an order of magnitude compared to the
best fit achieved with the original upstream model
(error 0.04 compared with 0.66). Consistency of the pre-
dictions using the new upstream model with the IKK
data is more statistically significant (P = 0.85 compared
to P = 0.0002) than with original model structure from
[14]. Remarkably, we observed that the best fits with the
new model were achieved with high Hill coefficients
(>3) for IKK inactivation, suggestive of a highly coopera-
tive mechanism in the underlying biological process
(Additional file 1: Figure S3).
The newly developed upstream and downstream sig-

naling modules were integrated to form the full model
characterizing both IKK and NF-�B activity in response
to persistent TNFa stimulus (Additional file 1: Tables
S1-S3). Model predictions using the parameter sets esti-
mated from the isolated signaling modules, while giving
good agreement during the first 30 min, predicted a
higher amplitude second phase of NF-�B activity (Addi-
tional file 1: Figure S4), which was inconsistent with the
data (P < 10-6). Numerical investigation showed this
more oscillatory behavior predicted by the integrated
model was due to small changes in the later activation
profile of IKK predicted by the upstream model, which
had been assumed to remain at a constant, low level
when developing the isolated downstream signaling mod-
ule. After increasing the rate of I�Ba nuclear import and
re-estimating the A20 feedback and IKK recycling rates,
the newly developed model was able to provide good
agreement with the data, with fitting errors of only
0.34 for NF-�B (P = 0.013) and 0.43 for IKK (P = 0.291)
(Figure 4C and 4D).

Model prediction validated experimentally
Given that the model was developed using a limited set
of data from IKK and NF-�B activation, we next sought
to test its ability to predict the dynamics of other model
species for which no information was used during para-
meter estimation. The model was first simulated to
obtain the levels of total cellular I�Ba protein following
TNFa stimulus (Figure 4E). The model predicted that
the level of protein stays relatively unchanged during
the initial delay, but begins a decline by 5 min. At

20 min, the model predicts that I�Ba protein levels
have been reduced beyond half of their initial amounts.
To test this prediction experimentally, BV2 cells were

again treated with 10 ng/ml TNFa, and levels of total
cellular I�Ba were measured at several time points after
treatment using ELISA. The results of the experiments
were normalized with respect to the initial quantities
and compared with the simulation predictions (Figure
4E). The experimental data were in excellent agreement
with the predicted I�Ba levels, providing a level of
experimental validation to the model.

Model analysis highlights robustness properties of the
network and a dynamic role of feedback regulation in
both NF-�B and IKK signaling
The model was next analyzed using sensitivity analysis to
gain deeper insight into how the different components of
the system interact to regulate the dynamic NF-�B
response in microglia. Sensitivity analyses of the NF-�B
regulatory network have been performed previously
[30-33], and have provided significant contributions to
understanding how the system operates. Here we expand
upon these studies by considering the dynamic trajec-
tories of the sensitivity coefficients, and examining how
the sensitivity of the system response with respect to net-
work parameters changes with time.
The normalized sensitivity coefficients for NF-�B acti-

vation were solved and plotted as heat maps to illustrate
the dynamic relationship between the signaling compo-
nents and the system response (Figure 5A).
The sensitivity results clearly show that the NF-�B

response is nearly completely insensitive to variations in
some rate parameters (rows of light green), but also
moderately or highly sensitive to others (dark red and
blue) (Figure 5A), consistent with earlier results which
found that only a relatively small number of network
parameters signifcantly influenced NF-�B activity [30].
A notable feature of our analysis is that, with the excep-
tion of the NF-�B nuclear shuttling rates (ki1 and ke1)
for which the sensitivity scores remain high throughout
the entire response, NF-�B activity exhibits highly
dynamic sensitivity with respect to most other para-
meters. In other words, there is a strong temporal com-
ponent to the regulation of NF-�B activity, where
variations in different parameters can exhibit great influ-
ence over certain phases of activity but have only mar-
ginal effects on activation during other time intervals
(Figure 5A and Additional file 1: Figure S6). The first 20
min of NF-�B activity is predominantly influenced by
the rates for IKK-induced phosphorylation, ubiquitina-
tion and degradation and also IKK activation, with little
contribution from the feedback parameters. As I�Ba is
degraded and free NF-�B ascends towards its maximal
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activity, the nuclear shuttling rates of free NF-�B have
the greatest effect.
However, the system shows extreme sensitivity to

rates controlling the inner and outer feedback loops.
The system is very senstive to the rates for induced
I�Ba synthesis and its association with NF-�B during a
time period coinciding with the decline of the first peak,

with synthesis and binding rates negatively affecting NF-
�B activation. The rate of conversion of inactivated IKK
back to native IKK (kp) also is among the most signifi-
cant parameters in the attenuation of NF-�B activity.
While NF-�B activity is at its lowest levels between 60-
90 min, the stability of the remaining I�Ba transcripts
and the induced phosphorylation, ubiquitination and
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Figure 5 Model analysis of transient IKK and NF-�B activation in microglia. Sensitivity analysis of the model shows the dynamic NF-�B
response (A) and IKK response (B) are regulated differently by different groups of parameters depending on the time interval of interest. See
Additional file 1: Tables S2-S3 for complete descriptions of the parameters. (C) Parameter scans were used to find the Euclidean distance
between the nominal and perturbed NF-�B responses as the parameters varied over four orders of magnitude. Dark colors indicate little change,
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degradation of I�Ba exert more influence on free NF-�B
levels. The second peak of NF-�B activity is regulated
greatly by the nuclear import rate of free I�Ba, as evi-
denced by the high sensitivity of ki3a only during this
time period. Feedback from I�Ba again has highly sig-
nificant contributions to the dynamics of the second
peak, with induced synthesis of I�Ba and its affinity to
unbound I�Ba having very high sensitivities.
The NF-�B response is also highly sensitive to the

outer A20 feedback loop in a time-dependent manner.
The rates for IKK inactivation by A20 significantly affect
the termination of initial NF-�B activity as well as the
second phase of activity. This effect is actuated through
inhibition of the activation of IKK that has recently
been converted from the inactive form and made avail-
able for activation; feedback from A20 inhibition of IKK
activation has a less substantial role on the dynamics in
the model. The outer feedback parameters governing
A20 act in opposition to the IKK recycling rate (kp) to
regulate this response, made clear by the opposite signs
of sensitivity values throughout the response.
Although many features of the NF-�B response have

been studied previously using sensitivity analysis, little
attention has been paid to the dynamic sensitivities of
IKK. We therefore assessed parameter sensitivities of
IKK activation in the same way as just described for
NF-�B (Figure 5B). IKK activity is sensitive to fewer
parameters than NF-�B, which is expected due to fewer
reactions involved in the upstream module, and its only
direct interaction with the downstream signaling path-
way occurring through feedback from A20. As with NF-
�B, the IKK sensitivities are also highly dynamic,
emphasizing the dynamic nature of its regulation during
the initial transient and late, low-activity phase. The
initial peak only exhibits sensitivity to the activation rate
(ka) and inactivation rate parameters controlling the
magnitude (ki) and the dissociation constant (kmmi).
Twenty minutes after the initial stimulus when IKK is
mostly in its inactivated form, the response becomes
highly sensitive to the IKK recycling rate and to A20
synthesis, degradation, and negative feedback rates
which constitute the outer feedback loop. The late
phase IKK response is also relatively sensitive to the
rates governing I�Ba induced synthesis and transcript
stability, and to a lesser extent to its induced degrada-
tion of I�Ba protein, which indicates that the dynamics
of IKK are still highly coupled to the inner feedback
loop of I�Ba despite the absence of direct crosstalk
reactions.
While sensitivity analysis with respect to small varia-

tions is informative, the nonlinear nature of the system
makes it possible that the results may be different when
large magnitude changes to the parameters are consid-
ered [30]. Robustness of the system response to large

changes in parameter values was therefore assessed by
varying each parameter over four orders of magnitude
and computing the Euclidean distance between the nom-
inal NF-�B response and the NF-�B response simulated
at these perturbed parameters (Figure 5C and 5D).
NF-�B activity remains relatively unchanged when many
of the parameters for nuclear shuttling and I�Ba protein
degradation are changed to values which differ substan-
tially from their estimated values, indicating that the sys-
tem response is relatively robust to changes in these
parameters (Figure 5C). Examination of the trajectories
at parameter values spanning two orders of magnitude
shows that indeed the response remains similar when the
protein degradation rates are varied by large amounts,
and that altering the nuclear import rate of I�Ba changes
the amplitude of the second peak but retains an other-
wise similar profile (Additional file 1: Figure S7). Consis-
tent with the sensitivity results (Figure 5A) in which
NF-�B was insensitive to activation and inactivation rates
for IKK, the NF-�B response is robust to changes in
these parameter values (Figure 5C). Only extremely large
changes in the IKK activation rate parameters signifi-
cantly alter the response, with much higher activation
rates leading to a more oscillatory response (Additional
file 1: Figure S8). The parameter scans also show that the
system tolerates up to 5-fold changes in the new I�Ba
induced ubiquitination and degradation parameters while
maintaining a similar NF-�B response, but with the tim-
ing of the first peak slightly shifted (Figure 5D and Addi-
tional file 1: Figure S7). Decreasing the rate further,
however, decreased the amplitude of the response signifi-
cantly. Surprisingly the system is relatively robust to the
nuclear import and export rates (ki1 and ke1), a result
which is unexpected given the sensitivity analysis results
in which these rates were among the most sensitive.
Large changes in these parameters alter the level of
damping in the second phase of the response, but the
initial peak remains nearly identical (Figure 5D and Addi-
tional file 1: Figure S7).
While the system response is robust to large changes in

many of the parameter values, the system is much more
responsive to changes in the reaction rates involved in
both the inner I�Ba and outer A20 feedback loops. In
particular, the NF-�B activation profile changes signifi-
cantly when the rates of induced transcription or transla-
tion are changed only a small amount, as indicated by the
large distance between the nominal and perturbed trajec-
tories at these values (Figure 5C). Changes in these para-
meters by 3-fold significantly alter how quickly the
response is attenuated and change the frequency of the
second phase of activity (Figure 5D and Additional file 1:
Figure S7). Similarly, the distance remains small for only
a relatively narrow range of rates near the nominal values
for most A20 feedback parameters, indicating that the

Sheppard et al. BMC Bioinformatics 2011, 12:276
http://www.biomedcentral.com/1471-2105/12/276

Page 9 of 16



system response changes appreciably when these rates
deviate substantially from their nominal values (Figure
5C). Large changes in the A20 feedback loop parameters
significantly alter both the amplitude and timing of the
second peak and how quickly the first peak is attenuated,
but leave the early dynamics relatively unchanged (Figure
5D and Additional file 1: Figure S8).

Discussion
Our quantitative experimental studies show that micro-
glia share many general features of canonical NF-�B
activation observed in many other cell types [19].
Namely, microglial NF-�B activity exhibits a biphasic
profile with a high amplitude first peak followed by a
damped lower-amplitude second phase (Figure 2). NF-
�B activation begins following a brief delay of nearly
5 min and reaches a peak near 20-25 min, resembling
profiles observed in other studies with immortalized
mouse embryo fibroblasts (MEFs) (see, e.g. [4,34]). The
second phase of activity appears to be lower amplitude
and more heavily damped than that observed in fibro-
blasts [4,20], although differences in experimental mea-
surement techniques make direct comparison difficult.
The observed damping may reflect asynchronous and
oscillatory responses at the single cell level [5,35]. IKK
activity in microglia also resembles the tightly con-
strained IKK profile in other cell types that consists of a
fast initial peak occurring 5-10 min followed by rapid
down-regulation to low levels of activity at later times
[20]. One distinction of IKK activation in microglia,
however, appears to be the severe attenuation of IKK
activity by 10 min following stimulation, only 5 min
removed from peak activation levels (Figure 2B).
Despite the general similarities in NF-�B and IKK

activation between microglia and other cell types, a
recently published mathematical model of the signaling
network [14] was unable to recapitulate the nuances of
the rapid attenuation of IKK activity simultaneously
with the brief delay in the onset of NF-�B activity in
microglia. Noting that the largest discrepancies between
the data and model simulations occurred within the first
20 min of activation, we used this information together
with insight gained from sensitivity analysis to develop a
new model that is able to match both IKK and NF-�B
activity in this cell type.
The new model was developed in a modular fashion,

which was made possible by collecting ELISA-based
measurements of IKK in addition to measurements of
NF-�B activity and by exploiting the multiple feedback
structure of the network. First the IKK data set from
microglia was used to develop the downstream signaling
module independently of the outer feedback loop, then
the upstream signaling pathway was modified to fit IKK
activation data, and finally the two modules were

integrated to form the full model for which the para-
meter estimates were refined. The novel downstream
signaling pathway includes additional reactions preced-
ing stimulus-induced I�Ba degradation, which are suffi-
cient to capture the delayed onset of NF-�B activity
observed in microglia (Figure 3D and Figure 4C). The
mathematical representation we use to describe the
additional dynamics is rather basic, yet captures effects
that are likely significant at the biomolecular level. We
attribute the intermediate model reactions to key steps
in the ubiquitination pathway that implicitly have been
lumped together in prior models.
Ubiquitination of I�Ba is typically thought to occur

almost instantaneously following its phosphorylation by
IKK [36]. Consistent with this view, recent in vitro kinetic
studies revealed in exquisite detail that the SCF-bTrCP
E3 ligase sequentially adds ubiquitin (Ub) molecules to
phosphorylated substrate to form a polyubiquitin chain
able to be recognized by the proteasome in a process last-
ing only seconds after the first Ub molecule has been
added [37]. However, the same study [37] also demon-
strated that the addition of the first Ub to the substrate is
the rate limiting step and occurs with low efficiency dur-
ing a single encounter between enzyme and substrate,
suggesting that any cellular differences affecting how effi-
ciently the initial Ub is conjugated will contribute appre-
ciably to the dynamics. One such possibility for the
differential ubiquitination dynamics is cell-type specific
expression of the E3 ligase components, such as the
F-box protein, bTrCP, which recognizes phosphorylated
I�Ba [10]. A smaller pool of bTrCP available to bind
I�Ba, either as a consequence of reduced expression or
increased competition with other substrates such as
b-catenin, potentially alters how efficiently the substrate
is recognized and hence affects the dynamics. Alterna-
tively differential expression of the two bTrCP isoforms -
bTrCP1 and bTrCP2 - may in part account for the
altered response in microglia, as studies using genetic
knockouts of bTrCP1 found that TNFa induced I�Ba
degradation was impaired but not prohibited [38]. Others
have posited that the unstable bTrCP2 isoform may be
stabilized by increased levels of phosphorylated substrate
[39], allowing the possibility that microglia express
bTrCP2 in excess of bTrCP1 and thereby have altered
ubiquitination dynamics.
Besides potentially less efficient recognition of I�Ba by

bTrCP, another possibility is that the normally rapid
polyubiquitination of I�Ba occurs less efficiently in
microglia due to smaller quantities of Nedd8-ylated Cul-
1 in the SCF complex. Conjugation of only a small frac-
tion of Cul-1 with Nedd8 greatly increases the efficiency
of ubiquitination of I�Ba without affecting the associa-
tion between bTrCP and phosphorylated I�Ba [40] due
to facilitated recruitment of Ub-linked E2 to the E3
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complex [41]. It follows then that different levels of
Nedd8 or the Nedd8-conjugating enzyme, Ubc12, could
likely contribute to delayed ubiquitination in microglia.
Although we cannot decisively point to a particular
mechanism as the source of the additional dynamics
needed to match the data in microglia, there are many
plausible mechanisms which may warrant further study
in the future.
The new model structure indicates a more prominent

role of the ubiquitin-proteasome system in regulating NF-
�B activation dynamics, which merits consideration of
what are its functional implications on how microglia
respond to inflammatory stimuli. Analyses of the model
show that the ubiquitin-related parameters have large
effects on the initial activation of NF-�B and a relatively
smaller role in regulating later dynamics (Figure 5A). Para-
meter scans validate this, as large changes in these para-
meters change the timing of the first peak by as much as
15 min and alter the amplitude and timing of the later
response somewhat (Figure 5C and 5D, Additional file 1:
Figure S7). This suggests that altered ubiquitination signal-
ing may be important to regulating the timing of the initial
response, but how this affects gene expression and cellular
function is not clear at present.
Substantial modifications to the upstream signaling

pathway are required to fit the new model to the micro-
glial IKK activation data. The TNFa-induced IKK activa-
tion and inactivation reaction kinetics are changed from
first order linear mass-action rates to nonlinear Hill
equations in the new model. We note that the new
model differs from [14] in that it includes mechanisms of
A20 feedback that more closely reflect the known biology
[13,42], but these mechanisms have also been modeled in
previous studies [18,25,26]. The nonlinear reaction rates
are essentially black box descriptions of a complex
upstream signaling network but allow the model to fit
the microglial IKK data remarkably well (Figure 4D).
Interestingly, the best agreement with the data is
obtained with large Hill coefficients (>3) for the inactiva-
tion rate (Additional file 1: Figure S3). This may corre-
spond to cooperativity involved in autophosphorylation
at 9 or 10 serines in IKK [27]. Additionally, while autop-
hosphorylation decreases phosphorylation in some cells
[27], this effect is not observed in all cells [43], which
leaves open the possibility that mechanisms besides
autophosphorylation are responsible for the rapid non-
linear deactivation in microglia. Although nonlinearities
in the activation and inactivation rates are necessary to
match the IKK data well in microglia, they do not appear
to have a significant influence on the resulting NF-�B
activity, as indicated by our parameter scans (Figure 5
and Additional file 1: Figure S8). Similar findings have
been reported elsewhere [20,22,26], and suggest that cells
respond robustly to TNFa stimulus by producing an

initial peak of NF-�B activity via transient activation of
IKK, even in an uncertain environment in which the pre-
cise IKK levels may deviate quantitatively but qualita-
tively remain the same.
In contrast to the parameters governing initial transient

IKK activity, our model analyses indicate that the signal-
ing components which regulate later phase IKK activa-
tion also exert significant control over NF-�B activation
(Figure 5, Additional file 1: Figure S8). Key among these
is feedback inhibition by A20, which is known to modu-
late late phase NF-�B activity through its inhibition of
IKK activity [25,42]. Our analysis suggests that direct
A20 inactivation of IKK contributes more to later regula-
tion than feedback inhibition of IKK activation, although
more detailed models are likely to provide better insight
into the complex regulatory role of A20. The analysis
also shows that the inner feedback loop of I�Ba is signifi-
cant in later regulation, emphasizing the interconnected
nature of the system.
The sensitivity analyses of the new model presented here

provide new insights into how this signaling pathway is
regulated. In particular, we show by examining the tem-
poral evolution of the sensitivities that there is a strong
temporal component to system regulation (Figure 5A and
5B). Previous studies have used sensitivity analysis to iden-
tify the key parameters affecting the NF-�B response.
These results have typically been reported by ordering the
parameters based on the sensitivity scores observed for
certain features of the response like the timing and ampli-
tude of NF-�B[30], the L2-norm of the dynamic sensitiv-
ities [33], or a combination of several dynamic features
[32]. While the insights afforded by such analyses are valu-
able, they can potentially obscure information about the
dynamics that are of practical value for model develop-
ment and parameter estimation. Consider for instance the
development of the present model. A reasonable strategy
to determine where to modify the model to account for
the NF-�B delay might be to start by examining reactions
described by the most sensitive parameters as suggested
by the literature. However, if these sensitivity rankings are
based largely on the effects on later dynamics as opposed
to the initial activation, as is the case for all of the feedback
parameters, then trying to modify these parameters would
be much less effective. Thus, results from our dynamic
sensitivity analysis can be of particular importance when
trying to identify how to modify a model to correct discre-
pancies between model simulations and data, as it pro-
vides valuable information.
It is important to note that our particular model,

which is developed to reproduce population average
measurements of IKK and NF-�B activity in microglia,
is not unique and other models are capable of produ-
cing the same dynamics. It may be desirable in different
contexts to extend or otherwise modify this model to
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explore aspects not considered here. For instance,
delayed negative feedback from the I�Bε isoform may
also contribute substantially to later phase NF-�B sig-
naling dynamics [35,44], but is omitted from the present
model. It may be useful to extend the model to include
interactions from I�Bε in future studies. Using data
from bulk population level averages also masks asyn-
chronous NF-�B oscillations at the single cell level
[5,14,34,45]. Thus a different approach, such as simulat-
ing the deterministic model with random parameter dis-
tributions [34] or using stochastic-deterministic hybrid
models [6,14,26], may be more appropriate when specifi-
cally considering individual cell responses.
The analysis from this model for microglial NF-�B acti-

vation clearly portrays the canonical NF-�B response on
one hand as very robust: cells are able to parse extracellu-
lar signals into transient IKK activation to produce a
quick and dynamic rise in NF-�B activity, even in the
face of uncertainty in many of the reaction rates in both
the upstream and downstream pathways. This finding is
consistent with sensitivity analysis of related models, in
which the response was found to be largely insensitive to
the majority of the rate parameters [30]. On the other
hand, this analysis reveals the highly responsive nature of
the network, evident from the high sensitivity and low
robustness of the NF-�B response to changes in the feed-
back parameters (Figure 5). We note that although pre-
vious analyses have identified the sensitivity of the NF-�B
response to many of the same parameters identified here
[30,32], none appear to have interpreted the importance
of such parameters in the context of feedback control
systems. The behavior of the NF-�B regulatory network
is not unlike that commonly encountered in feedback
systems in the engineering world. Consider, for instance,
the operation of an amplifier designed to amplify signals
in an electronic system. High gain amplifiers with nega-
tive feedback amplify signals robustly even when sub-
jected to relatively large changes in feedforward system
parameters. But the response is sensitive to feedback
parameters, which both permits the system to be finely
tuned by selecting proper feedback components, and
makes the system vulnerable to failure if the feedback
parameters are altered significantly, perhaps as a result of
severe damage. This exemplifies the “robust yet fragile”
response that is a general characteristic of complex sys-
tems with feedback regulation, whether in biology or
engineering [46].
In the NF-�B signaling network, feedback from I�Ba-

induced transcription allows the system to respond
robustly to stimuli to control gene expression, but at the
same time makes the system sensitive to changes in
feedback parameters. The highly responsive nature of
the system makes it particularly susceptible to network
perturbations affecting the feedback molecules I�Ba and

A20, perhaps as might be seen with severe injury such
as stroke. However this feature also provides great
opportunities for targeted treatment or intervention to
modulate the response. Mathematical modeling and
analysis may prove indispensible for future exploration
of the NF-�B response and drug targeting in microglia,
especially when considering crosstalk among multiple
pathways that are simultaneously activated by brain
injury.

Conclusions
Mathematical modeling has been used extensively in
recent years to provide a detailed view into the activation
of NF-�B, helping to make sense of the multiple layers of
feedback and to provide a much deeper understanding of
how the system functions as a whole. Here we present
the development of a mathematical model that quantita-
tively describes canonical IKK and NF-�B activation in a
novel cell type: microglia. The approach we used in
model development exploits the multiple feedback struc-
ture of the network, and allows the model to be devel-
oped in multiple stages by breaking individual feedback
loops and developing the modules using the appropriate
experimental data. This approach may also prove useful
for modeling other biological systems with feedback
regulation.
This mathematical model differs significantly from

existing NF-�B signaling models in two regards. First, it
introduces nonlinearities into the activation and inactiva-
tion rates for IKK, which are necessary to reproduce the
quantitative IKK profile obtained experimentally and cor-
respond with known biological mechanisms. Secondly,
the model includes intermediate dynamics in the induced
I�Ba degradation pathway. We showed these additional
dynamics are essential to characterize NF-�B signaling
observed in microglia in a statistically significant manner
and are likely due to reactions involved in the ubiquitina-
tion and proteasomal degradation of I�Ba, suggesting a
more prominent role for this system in modulating the
NF-�B response.
The mathematical model developed here is the first of

its kind for microglia and offers a valuable new tool to
study inflammatory signaling in this cell type, permitting
rapid numerical simulation and analysis. Our numerical
analyses emphasize the highly dynamic nature of regula-
tion of the NF-�B network in response to TNFa stimu-
lus, an aspect which has received relatively little attention
in prior analyses. While several key parameters play a sig-
nificant role in modulating the response throughout the
entire duration, many others only regulate the response
during specific time intervals, such as during the initial
activation phase or the oscillatory later phase. The analy-
sis further provides insight into the robustness properties
of the system, indicating high sensitivity to feedback
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parameters, which we note is analogous to the operation
of negative feedback systems in engineering.

Methods
Cell culture
BV2 cells, a mouse microglia cell line and kind gift from
Dr. K. Andreasson at Stanford University, were cultured
in Dulbecco’s Modification of Eagle’s medium (DMEM,
GIBCO, cat# 11995) supplemented with 8% Fetal Bovine
Serum (Hyclone, cat#SV30014.03), Penicillin (100 U/ml,
GIBCO, cat#15140), and Streptomycin (100 μg/ml,
GIBCO, cat#15140). Cells were passaged every four days
and were used between passages 10-20.

Measurement of activated NF-�B p65
BV2 cells were seeded at 4 × 105 cells per well in six well
plates 36 hrs prior to treatment with 10 ng/ml recombi-
nant mouse TNFa (R&D systems, cat# 410-MT). Cells
were then harvested for protein at the indicated time
points with Phosphosafe Extraction buffer (Novagen,
cat#71296) supplemented with 0.01 volume Protease
Inhibitor cocktail (Sigma, cat# p8340) and 5 mM DTT
before use. Protein concentration was measured using
the Coomassie Plus assay (Pierce, cat#23236). 25 μg total
protein from each sample was transferred to a pre-chilled
Eppendorf tube and brought to 25 μl with complete lysis
buffer. These aliquots were stored at -80°C until use for
activated NF-�B p65 measurement. Active NF-�B was
measured using the Trans AM NF�B p65 Transcription
Factor Assay Kit (Active Motif, cat#40096) according to
the manufacturer’s instructions. 20 μg total protein was
used for each sample. Three cultures were assayed for
each group. Standards were prepared from recombinant
p65 (Active Motif, cat#31102).

IKK measurements
IKK activity was measured by immunoprecipitation of
IKK trimers, followed by a kinase assay/ELISA using a
modification of the K-LISA IKKb Inhibitor Screening Kit
(Calbiochem, cat# is CBA044). A total of 400 μg protein
from each sample was incubated at 4°C 5 hrs with 5 μg
goat anti-IKKg antibody M18 (Santa Cruz Biotechnology,
Cat# is SC8256) with shaking, followed by overnight
incubation with shaking with 50 μl 2 × diluted Protein
G-Sepharose (Sigma, Cat# is P3296) previously washed in
complete lysis buffer. Beads were then centrifuged for
5 min at 13,000 rpm 4°C, the post-immunoprecipitation
supernatant removed, and beads were washed in the 1 ×
kinase assay buffer from the K-LISA kit. Beads were then
incubated with shaking in an incubator for 1 h at 30°C in
75 μl 1 × kinase assay buffer containing 150 ng GST-
I�Ba and 1 × ATP/MgCl2 mix from the kit. Beads were
then centrifuged at 13,000 rpm for 5 min at 4°C, and
60 μl of supernatant was transferred to a well of the

glutathione coated 96-well plate provided with the K-
LISA kit. Two-fold serial dilutions of the recombinant
IKKb provided with the kit were run as standards accord-
ing to the kit instructions, but omitting IKK inhibitor. In
addition the post-immunoprecipitation supernatant was
concentrated 20 × and run to demonstrate that all IKK
activity was depleted from the supernatant. In all cases
this sample showed no IKK activity. The plate was incu-
bated 30 min at 30°C to allow the GST-I�Ba to bind, and
subsequent processing was done according to the ven-
dor’s instructions. Final concentrations measured were
normalized to the total amount of protein used in a given
experiment.

Total I�Ba measurement
Total I�Ba measurements from TNFa treated BV2 cells
were performed using the PathScan Total I�Ba Sand-
wich ELISA kit from Cell Signaling (#7360). BV2 cells
from passage 14-18 were seeded at 4 × 105 cells/ml on
day one and treated with 10 ng/ml TNFa on day three.
Cell lysates were prepared and ELISA analysis per-
formed following the manufacturer’s instructions. Total
protein concentrations were measured using the BCA
method; 275 μg total protein was used to measure total
I�Ba at each time point. The experiments were repeated
3 times.

Analysis of experimental data
Data from each experiment for NF-�B and IKK was
normalized relative to the maximum mean level of activ-
ity during that particular experiment to account for var-
iations in optical absorbance readings between
experiments. The normalized data were then averaged
to produce the ensemble average data set used for data
fitting.

Mathematical modeling and simulation
The model, based on the ordinary differential equation
two-feedback model in [14], was developed to incorpo-
rate intermediate steps involved in the ubiquitination and
proteasomal degradation of I�Ba, A20 feedback at multi-
ple points, and nonlinear IKK activation and inactivation
rates. The model was integrated numerically using
MATLAB 7.7.0 (MathWorks) following the simulation
protocol used in [14]. Briefly, the system was initialized
with concentrations of total NF-�B and IKK, with all
other species set to zero (Additional file 1: Table S1). The
model was simulated without stimulus for sufficient time
to equilibrate the system. Equilibrium concentrations
were then used as the initial conditions for simulations
with TNFa stimulus present. Active IKK was assumed to
be zero during equilibration and to remain constant at a
low level of activity at time points beyond 30 min [20,22]
for simulations in which the experimental IKK curve was
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used as input. The IKKa concentration was computed at
each time point during simulation using piecewise cubic
Hermite interpolation (’pchip’) with the interp1 function
in Matlab. Similarly, nuclear NF-�B was interpolated in
an identical procedure from a simulated curve for devel-
opment of the upstream module. Further details about
the mathematical modeling and tables listing all model
species, reactions and parameters can be found in Addi-
tional file 1 and Additional file 2. The Matlab source
code for the ODE model and simulation script are avail-
able upon request.

Statistical evaluation of model simulations
The agreement between model simulations and experi-
mental data was assessed using an approach based on
Fisher’s combined probability test [47], which is justified
as follows. Each experimental sample is assumed to be
the sum of the population mean and measurement noise.
The measurement noise is assumed to be iid Gaussian
with zero mean. Each data point itself is the bulk average
of a large number of cells (>105), and so it is assumed
that the sample average from this large collection of cells
is normally distributed with mean equal to the popula-
tion average, but that the standard deviation can vary
with time. Individual samples are assumed to be indepen-
dent across experiment replicates and identically distrib-
uted with regard to their respective time points. This is
justified since all samples are collected from independent
cell populations.
Under these assumptions, a two-sided one sample t-

test can be used to compare the population mean from
the model simulations corresponding to a specific set of
parameters, θ, to the sample mean from ni experimental
samples collected at time ti. The null hypothesis that the
two are consistent is rejected at a significance level a if
the p-value corresponding to the ith t-statistic is pi< a.
Fisher’s method combines the information from the

individual test results to test the shared null hypothesis
that all the ni experimental samples come from cell
populations whose time evolution of the population
average is given by the kinetic model. The test statistic
for Fisher’s method is computed by combining each
independent test as follows:

χ2
F = −2

n∑
i=1

log(pi),

where log denotes the natural logarithm, and pi are
the p-values from the t-tests at n time points. Under the
null hypothesis, c2F follows a chi-square distribution
with 2n degrees of freedom. The shared null hypothesis
is rejected at a significance level aF confidence if pF< a,
thus giving a statistical basis upon which a candidate
parameter set can be rejected or retained.

Parameter estimation and sensitivity analysis
Parameter values were estimated by minimizing the a
cost function based on the goodness of fit between model
and data. Two objective functions were used: one which
computed the normalized sum of squares error (SSE),

SSE(θ) =
n∑
i=1

(
yobs(ti)− y(ti, θ)

yobs(ti)

)2

,

between the model simulations at parameter set θ, y
(ti,θ), and observed data points yobs(ti), where i indexes
the n time points at which data was collected. A second
objective function used the chi-square test statistic com-
puted from Fisher’s method (c2F), an adaptation of the
moment-matching algorithm proposed in [23]. The
simulated concentrations of NF-�B and IKK were nor-
malized to their respective concentrations at 20 min and
5 min to allow direct comparison with experimental
data. Optimization was performed using the fmincon
constrained minimization algorithm from the Matlab
Optimization Toolbox (MathWorks). Lower and upper
bounds for the parameter values were taken from the
available literature, as specified in Additional file 1.
The normalized first order sensitivity coefficients of

the system,

sij(t) =
θj

yi(t, θ)
∂yi(t, θ)

∂θj
,

where yi is a system output and θj is the jth rate para-
meter, were solved using the CVODES forward sensitiv-
ity solver from the SUNDIALS 2.4.0 software suite
(Lawrence Berkeley National Labs). Sensitivity scores
were also assigned based on the time-averaged integral
of the normalized sensitivity magnitudes,

s̄ij =
1

tf − t0

tf∫
t0

∣∣sij(τ )∣∣ dτ .

Additional material

Additional file 1: Supplementary text and figures. The pdf contains
supplementary text describing development of the mathematical model;
Tables S1-S3 which list the model species, reactions, and rate parameters;
and Figures S1-S8 that provide more detailed simulation results.

Additional file 2: SBML model of microglial NF-�B activation. This .
xml file is an SBML translation of the mathematical model originally
developed in Matlab (MathWorks). Simulations correspond to the
response of microglia cells following treatment with 10 ng/ml TNFa.
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