
METHODOLOGY ARTICLE Open Access

FAAST: Flow-space Assisted Alignment Search Tool
Fredrik Lysholm1*, Björn Andersson2 and Bengt Persson1,2

Abstract

Background: High throughput pyrosequencing (454 sequencing) is the major sequencing platform for producing
long read high throughput data. While most other sequencing techniques produce reading errors mainly
comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less
efficiently detected by most conventional alignment programs and may produce inaccurate alignments.

Results: We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak
information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing
run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program
named FAAST (Flow-space Assisted Alignment Search Tool).

Conclusions: We present and discuss the results of simulations that show that FAAST, through the use of the
novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments,
depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is
able to perform these high quality alignments at high speed.
The tool is available at http://www.ifm.liu.se/bioinfo/

Background
The nature of DNA sequencing has taken a dramatic turn
in the last few years, most notably improved through the
development and broad use of 2nd generation sequencing
methods. The first 2nd generation sequencing method was
454 sequencing, introduced in 2005 with the GS20
sequencing machine which produced 20 million base-pairs
(Mbp) per run [1]. 454 sequencing has since been
improved steadily both regarding quality and throughput,
and the GS FLX Titanium, introduced in 2008, produces
500 Mbp per run, as reads of approximately 350 bp [2].
Although, since 2005, other 2nd generation sequencing
methods have emerged, 454 still produces the longest
reads and is one of the most widely used platforms. The
long reads produced by 454 sequencing makes the method
especially attractive for metagenomic sequencing, where
the sample is highly complex and overlapping reads are
more rare. The enormous technology improvements
represented by novel sequencing technologies do not only
enable many new studies but also poses great challenges
in terms of processing the sequence data. The major

underlying technology for data processing is sequence
alignment, which plays a key part in all steps from
sequence assembly to annotation.
In 1970, the global sequence alignment was proposed

and a computational method for solving it [3]. The algo-
rithm utilised the fact that the problem can be solved
through solving a number of sub-problems, dynamic pro-
gramming, which greatly reduced the number of pathways
to explore. A decade later, through a modified dynamic
programming algorithm, Smith and Waterman defined
the local alignment and a method for solving it [4]. Yet
another year later Gotoh added non-linear gap penalties
to the algorithm [5]. In terms of accuracy dynamic pro-
gramming methods are still the preeminent methods for
solving the two problems and later methods such as
FASTA [6,7] and BLAST [8,9] use the same underlying
technology to calculate alignments.
The traits of 454 data are different from those of other

sequencing techniques, which occasionally cause problems
for computer analysis software. To minimise the effect of
sequencing error and maximise the efficiency of 454
sequencing, it is crucial to consider the particular charac-
teristics of 454 data while computing alignments. 454
sequencing is a pyrosequencing method, where DNA frag-
ments are associated with synthetic beads in picolitre sized

* Correspondence: frely@ifm.liu.se
1IFM Bioinformatics and SeRC (Swedish e-Science Research Centre),
Linköping University, S-581 83 Linköping, Sweden
Full list of author information is available at the end of the article

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

© 2011 Lysholm et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ifm.liu.se/bioinfo/
mailto:frely@ifm.liu.se
http://creativecommons.org/licenses/by/2.0


reactor wells and sequenced in parallel. Nucleotide
reagents for detection of thymine (T), adenine (A), cyto-
sine (C) and guanine (G) are repeatedly cycled over the
DNA template fragments while elongating the comple-
mentary strand [1]. The intensity of each reaction is
recorded, as a so-called flowpeak, by a CCD camera for
each well where the intensity is proportional to the length
of the homopolymer at that position, see Figure 1. A flo-
wed base in which the complementary strand is not elon-
gated is denoted as a negative flow and consequently flows
in which it is elongated are denoted as positive flows, i.e.
flow peaks < 0.5 and ≥ 0.5, respectively [1]. For example,
the flows A(0.11), C(1.83), G(0.97) and T(0.97) would be
one negative and three positive flows most likely produced
by a “CCGT” 4-mer. Because the homopolymer length is
estimated from the flowpeak value, homopolymer indels
(insertion or deletion) is the most common type of reading
error. To produce a substitution reading error, an under-
call must be followed by an overcall, or vice versa [1]. At
the same time, many scattered indels are normally more
rare than dispersed substitutions, and therefore, in stan-
dard sequence alignments, more heavily punished [10]. As
a consequence, current alignment search programs are
more optimised towards detecting alignments with occa-
sional substitutions rather than many small gaps.
Recently, to improve the alignment quality using 454

reads, an attempt was made to utilise the flowgram infor-
mation through probabilistic flowgram matching [11]. The
downside of using flowgram matching, i.e. direct matching
of flowgrams, is that an SNP will either shift the flowgram
one cycle or be matched as two insertions, resulting in an
insignificant hit or a hit of low significance, respectively.
As SNPs, if not already a factor, also occur as PCR arte-
facts in sequencing, direct flowgram matching can only be
used in conjunction with sequence alignment to improve
the accuracy in the cases where homopolymer ambiguity
affects the results. Another tool named PanGEA [12]
employs a dynamic gap penalty for alignments where the
gap penalties are decreased with an increasing homopoly-
mer. The downside of PanGEA is that it does not consider

the pyrosequencing flowpeak values and also uses a linear
gap-extension penalty for homopolymer correcting gaps.
Through combining the ability to correct for homopo-

lymer reading errors with sequence alignments, more
accurate alignments of 454 data can be achieved. To
address these problems, we suggest the use of flow-
space assisted Smith-Waterman-Gotoh alignments, i.e.
giving the local alignment algorithm the ability to cor-
rect for likely sequencing errors while computing the
alignment. We implemented the flow-space assisted
Smith-Waterman-Gotoh alignment algorithm in a C++
tool named FAAST (Flow-space Assisted Alignment
Search Tool) and performed alignments using both reg-
ular Smith-Waterman-Gotoh alignments and FAAST.

Results
Evaluation of the effect of flow-space assisted local
alignment
By introducing the possibility to perform flow-peak cor-
rection, the ‘degrees of freedom’ for the maximum likeli-
hood estimate increases, potentially producing untrue
alignments. For example, if any flow-peak correction was
allowed without penalty, any flowgram could match any
sequence identically. Therefore, an extensive study of the
effect of the flow-space assisted local alignment is
needed. The model used for the Smith-Waterman-Gotoh
alignment is match/mismatch score = 2/-3 and gap
open/extended penalty 5/2, and the additional parameter
(see Methods) for the flow-space assisted local alignment
is program default (k = 0.25).
Three targets of 25, 50 and 100 nucleotides were ran-

domly picked from the ethidium bromide resistance
determinant of Staphylococcus epidermidis (NC_003969),
see additional files. For each of these an additional 100
decoy sequences were generated, resulting in a database
of 101 nucleotide sequences. The decoys were generated
through introducing random SNPs corresponding to 92%
identity. This small sequence set would represent the
homologs found in an everyday database search.
Finally, query sequences were generated from the target

sequence and the algorithms were assessed on their ability
to recover the target sequence as the highest scoring align-
ment, thus find the ‘correct’ homology in a set of similar
decoys. The query sequences were generated ranging from
100% down to 72% nucleotide identity (through introdu-
cing random SNPs) using no 454 data simulation (Plain) as
well as using Flowsim [13] to simulate 454 data. 454 data
was generated through Flowsim with the generation set-
tings (-G) set to ‘Titanium’ and ‘GS20’, as well as a ‘high
noise’ model. The ‘high noise’-model constituted a
LogNormal(-2.5, 0.2) distribution for negative flows and a
Normal(n, 0.15*n) distribution for positive flows of length n.
The results were evaluated using FAAST with the

homopolymer penalty regulating parameter at k = 0

Figure 1 Example of a flowgram. A ‘flowgram’ where ‘flowpeak’
values provided on the y-axis are proportional to the number of
nucleotides found at each position.

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 2 of 7



(Smith-Waterman-Gotoh algorithm) and k = 0.25
(FAAST algorithm) and to provide stable means each
sub-test ran 10,000 times, see Figure 2. In general, as
expected, the accuracy drops as the identity between the
generated query sequence and the target sequence
decreases. When the decoy sequences are more similar
to the target than the generated query sequence it is
hard for both algorithms to find the target. Also, with
an increasing alignment length (i.e. 100 compared to 50
compared to 25), the accuracy in terms of per cent ‘cor-
rect’ homologs identified increases as more non-SNPs
positions still match. For alignments of query sequences
not passed through Flowsim (non-454-like data), the
Smith-Waterman-Gotoh algorithm slightly outperforms
FAAST. However, for Titanium up to ‘high noise’ 454
data the alignment results are generally improved by
flow-peak correction.
To further test the effect of the FAAST algorithm we

evaluated the number of correctly aligned nucleotides
in reads sampled from Salmonella enterica subsp.
enterica serovar Typhi str. CT18. 100,000 Titanium
reads averaging 521 bp were generated at an identity
of 100% down to 95% using Flowsim [13]. The results
were evaluated using FAAST with at k = 0 (Smith-
Waterman-Gotoh algorithm) and k = 0.25 (FAAST
algorithm), see Figure 3. As expected, both algorithms
performed very well aligning close to all nucleotides
correctly. However, FAAST were able to utilise the
flowspace information to place more gaps correctly

and thus gain a significant amount of correctly aligned
nucleotides compared to the Smith-Waterman-Gotoh
algorithm.

Evaluating the performance of FAAST
As a straightforward performance test, FAAST was
compared to NCBI BLAST 2 and SSAHA2 in a moder-
ate sized alignment task. The test consisted of the typi-
cal task of aligning a set of sequenced reads against a
small database. The query set was made up of Giardia
P15 reads [14], produced using the Roche 454 GS FLX
sequencing platform [2]. The sequencing run produced
221,245 reads, in total 45.8 Mbp, averaging 207 bp in
length. The Giardia reads were queried against a data-
base of all Giardia sequences in GenBank (2011-02-20),
accessed through taxonomy identifier 5740. The data-
base was composed of 11,178 sequences, in total 65.3
Mbp, see additional files for a complete list of files and
scripts used in the evaluation.
The results of the alignment test are shown in table 1.

FAAST finished the task in 6 minutes and 38 seconds,
while SSAHA2 spent 4 min 48 sec and BLAST spent 28
min and 30 sec. SSAHA2 both spent the least wall time
and spent the least CPU time showing outstanding effi-
ciency. FAAST in comparison with BLAST was able to
more efficiently make use of the multi-core CPU and
BLAST actually exhausted slightly less CPU time. The
Giardia sequencing run and the database can be down-
loaded through http://www.ifm.liu.se/bioinfo/.

Figure 2 Evaluation of the effects of flow-space assisted local alignment. Showing the rate of recovered target sequence (per cent on y-
axis) at dropping query-target identity (x-axis) among 100 decoys generated at 92% identity to each target sequence. The test was performed
for three different targets of 25, 50 and 100 bp, using FAAST and Smith-Waterman-Gotoh alignment.

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 3 of 7

http://www.ifm.liu.se/bioinfo/


FAAST - Flow-space Assisted Alignment Search Tool
In order to implement our algorithm, we have constructed
an alignment search tool called FAAST (Flow-space
Assisted Alignment Search Tool). FAAST is implemented
as a C++ program and compatibility has been ensured
using GNU GCC, Intel ICC 12.0 on Linux, but FAAST
also compiles with minGW or Intel on the Windows plat-
form. FAAST is an open source project and it is available
both as pre-compiled Linux binaries and as source code at
http://www.ifm.liu.se/bioinfo/. To facilitate searching with
flow peak information, FAAST reads the SFF format
(Standard Flowgram Format), which is used to pack
454 data. Furthermore, since the SFF format is a binary
format that may be difficult to edit manually, a new format
named FFASTA (Flowgram-FASTA) is supported.
FFASTA is a FASTA-like format, but it expresses a flow-
gram for each entry instead of a nucleotide/amino acid
sequence. In the FFASTA-format the flowgram is repre-
sented as an array of float values for each peak separated
by white-space, just as the QUAL format for quality
scores. FAAST is implemented with a wide range of para-
meters for adjusting indexing heuristics, the local align-
ment model, output-format etc. More information can be

found in the FAAST documentation at http://www.ifm.liu.
se/bioinfo/ (Under ‘454 Tools’).

Discussion
Due to the specific nature of pyrosequencing, mostly
produced by 454 sequencing machines, regular Smith-
Waterman-Gotoh alignments may be inadequate. A
homopolymer reading error will introduce a gap in the
alignment, which needs approximately 4-5 identities to
be outweighed using typical alignment parameters.
Thus, any homopolymer indel not flanked by a high
enough number of identities will cause early termination
of the alignment and/or erroneous alignments. By
extending the model to allow the introduction of these
gaps at a lower cost at points of homopolymer uncer-
tainties, we show that alignment accuracy can be
improved, see Figure 2. While flow-space assisted local
alignment slightly decreases accuracy for non-pyrose-
quencing data, accuracy is gained for pyrosequencing
data. Naturally, the improvement in alignment results
also depends on the amount and lengths of homopoly-
mer-tracts present in the original data as well as the
complexity of the background, see Figure 2. We also
note that with increasing sequence length the accuracy
is higher at the same query identity level as 100 decoys
sample less of the combinatorial space (i.e. there are
more ways to place 4 SNPs in a 50 bp sequence then
there are to place 2 SNPs in a 25 bp sequence). How-
ever, when then complexity of the background begin the
affect the results the performance difference is similar
regardless of nucleotide length. This is illustrated in
Figure 3 where FAAST is able to improve the alignment
results of full-length Titanium reads. However, since
Titanium 454 data generally is of very high quality and
trivially aligned, regular Smith-Waterman-Gotoh aligned
over 99.5% of the nucleotides correctly and in total the
gain of using FAAST could in some cases be considered
small.
Even though FAAST was developed to deal with

homopolymer reading errors of 454 data, the FAAST
algorithm may be applied to other pyrosequencing
methods or any sequencing method or data where
homopolymer reading errors occur, for example the Ion
Torrent Technology. Furthermore, many bioinformatic
algorithms and software are based upon or use to some
extent Smith-Waterman, for which the FAAST algo-
rithm could be utilised to better handle homopolymer
reading errors.
While BLAST relies on query indexing, FAAST uses

database indexing, as implemented in the SSAHA align-
ment search tool [15]. This provides a speed advantage at
the cost of requiring more RAM. The heuristics of
FAAST is rudimentary and restricts the number of align-
ments performed simply through requiring n number of

Table 1 Performance evaluation of the FAAST program

Program Wall time CPU time Memory

FAAST 1.0 6m38s 51m26s 348 Mb

SSAHA2 2.5.3 4m48s 4m48s 271 Mb

BLAST 2.2.21 28m30s 46m09s 37.8 Mb

Resources exhausted by FAAST, SSAHA2 and BLAST in alignment of 221,245
454 reads (45.8 Mbp in total) against a database of 11,178 sequences (65.3
Mbp in total). The test was performed on a 64-bit Linux machine with an
‘Intel Core i7 920’ processor, HT enabled. FAAST was executed with default
parameters, thus indexing 11-mer nucleotides running in 8 threads and
reporting 10 results per query. SSAHA2 was executed with the parameters
‘-kmer 11 -skip 2 -best 10 -seeds 2’ and BLAST with ‘-v10 -b10 -a8’ also
indexing 11-mer nucleotides and reporting top 10 hits. The SSAHA2 and
BLAST times do not include times for building the database (ssaha2Build and
formatdb).

Figure 3 Mapping evaluation of flow-space assisted local
alignment. Showing the number of incorrectly aligned nucleotides
(lines, left y-axis) as well as the per cent correctly aligned
nucleotides (diamonds/squares). The test was performed through
simulating 100,000 Titanium reads, at 100% down to 95% identity
(x-axis) from Salmonella enterica subsp. enterica serovar Typhi str.
CT18. The reads were finally aligned back against the genome and
number of correctly aligned nucleotides was assessed.

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 4 of 7

http://www.ifm.liu.se/bioinfo/
http://www.ifm.liu.se/bioinfo/
http://www.ifm.liu.se/bioinfo/


k-mer hits along the same diagonal not spaced more than
J nucleotides apart. Although SSAHA2 is much faster
that FAAST in a single CPU context, FAAST utilizes the
multi-core environment well and still completes the
alignment task evaluated in reasonable time. FAAST also
compares fairly well to BLAST and in general it would be
possible to use the FAAST software for producing align-
ments with 454 data.

Conclusions
FAAST provides the possibility to both identify potential
homopolymer reading errors in pyroseqencing data as
well as providing more accurate alignments with pyrose-
quencing data. FAAST does not only provide high quality
alignments but it does so using reasonable computational
resources. Therefore, we propose that FAAST could
serve as a useful tool in the analysis of genomic and
metagenomic data as well as analysis where correctly
aligned bases are vital, such as SNP detection.

Methods
FAAST alignment algorithm
The FAAST alignment algorithm is based on the Smith-
Waterman-Gotoh algorithm. For a Smith-Waterman-
Gotoh alignment using pyro-sequencing data, at least two
maximum likelihood estimates are used. The first inter-
prets the pyro-sequencing flowgram data into a nucleotide
sequence and the second constitutes the actual alignment.
By performing an alignment with flowpreak information, a
single maximum likelihood estimate will be calculated,
which eliminates error propagation from the first estimate
to the second.
The local alignment can be solved using dynamic pro-

gramming where each cell score, Di. j, is calculated
through equation 1 (Smith-Waterman-Gotoh alignment).

Di,j = max

⎧⎪⎪⎨
⎪⎪⎩

Di−1,j−1 + s(di, qj)
Ei,j
Hi,j

0

(1)

The variables, d and q represent the two sequences
aligned where di and qj are position i and j in the
respective sequence. The function s(di, qj) determines
the score for aligning di with qj. Finally, Ei, j describes
the optimal score of each cell that ends with a gap in
the sequence d and Hi, j describes the optimal score of
each cell that ends with a gap in the sequence q. The
two variables are calculated through Ei, j= max(Ei-1, j -
G0, Ei-1, j - Ge) and Hi, j = max(Hi, j-1 - G0, Hi, j-1 - Ge)
where G0 is the minimum gap penalty and Ge is the gap
extension penalty.
In the FAAST algorithm, calculations of each cell is

substituted with Ci, j = max(Di, j, Si, j). Di. j represents

the Smith-Waterman-Gotoh score as defined in equa-
tion 1 and Si. j is the optimal score of each cell given a
homopolymer correction in (i, j), defined in equation 2.

Si,j = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Di−1,j − Pdj,1
Di−2,j − Pdj,2
Di−3,j − Pdj,3
Di−4,j − Pdj,4
Di,j−1 − Puj,1
Di,j−2 − Puj,2
Di,j−3 − Puj,3
Di,j−4 − Puj,4

(2)

Here, Si. j is limited to describing a homopolymer cor-
rection up to four nucleotides. Pdj, n describes the ‘down-
calling’ penalty for a query position j, where n is the
number of bases by which the homopolymer is shor-
tened. Accordingly, Puj, n describes the ‘up-calling’ pen-
alty for a query position j where n is the number of bases
by which the homopolymer is lengthened. However, Pu
is only evaluated as non-infinite when di is equal to qj.
Consequently, corrections are not allowed when a corre-
sponding database nucleotide that can be corrected
against is not found. For example, the query sequence
“TAAT” would potentially align to “TAAAT” with a
homopolymer correction in A, while it could not be
aligned against “TAACT”.
Both vectors Pd and Pu can be pre-calculated for a

query sequence and the penalties are only set to non-
infinite if j is the last position of a homopolymer and
the penalties are smaller than the penalty for a corre-
sponding normal gap. Since a longer homopolymer gap
is more (or for extreamly long homopolymers equally)
penalised than a shorter (Pdi, j, n ≤ Pdi, j, n+1), if Pdi, j, n
is infinite, so is Pdi, j, n+1 and it does not need to be
included in the calculation of Si, j. An example of a
FAAST alignment is shown in Figure 4.

Homopolymer correction penalties
Given a flowpeak value, f, the peak will be called as an
n-homopolymer, where n is the rounded integer value
of the flowpeak value. The deviation in flowpeak value
required to call the peak as a m-homopolymer can be
calculated given equation 3.

Devm =

⎧⎨
⎩
f −m− 0.5 m < n

0 m = n
m− 0.5− f m > n

(3)

Homopolymer correction penalties are in FAAST pro-
portional to this minimum flowpeak deviation, thus cal-
culated through P = a *Devm/n, where a is the
proportionality constant. The homopolymer correction
penalty, P, could alternatively be described relative to
the minimum gap penalty G0 through P = G0 *(Devm/

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 5 of 7



n)/k and thus k describes at which relative flowpeak
deviation, Devm/n, one would obtain a homopolymer
penalty equal to the minimum gap penalty, thus also the
maximum flowpeak correction allowed. The gain of spe-
cifying penalties through k is a gap-penalty agnostic
parameter as well as a parameter that is easier for the
users to understand. Notably, the use of k = 0 would
revert the FAAST algorithm into Smith-Waterman-
Gotoh as homopolymer penalties would be infinitely
large and thus Ci, j = Di, j. An example of homopolymer
penalties in FAAST at various flowpeak value deviations
for different n-mers is shown in Figure 5. As can be
seen the homopolymer correction penalty, P, is in the-
ory proportional to Devm and inversely proportional to
k, while integer rounding and non-centred (non-integer)
flow-peak values often make it non-linear.

Indexing and heuristics
The first part of the search algorithm is composed of
constructing a database index, by which the occurrence
of any k-tuple can be requested. FAAST employs a

direct and compact database indexing model where the
occurrences of all valid k-tuples and the corresponding
database position are noted, in the same way as in
SSAHA [15]. All occurrences (database positions) are
noted in a list, L. Each k-tuple of valid nucleotides ("T”,

Figure 4 An example of a FAAST alignment dynamics programming matrix. Showing the calculated FAAST alignment where one peak
(260, A) has been identified as a potential overcall (penalized with -1) and another peak (347, C) have been identified as a likely undercall (not
penalized). In this example a nucleotide match score, M = [2, -3] and a gap penalty of G = [5,2] were used. The score of each cell Ci, j is marked
in the middle and the non-homopolymer score Di, j is marked in each upper right corner. Each flowpeak value is also indicated in each upper
right corner of the query sequence (first row). Homopolymer corrections are marked in the produced alignment by lower-case characters, either
inserted as with undercalls or aligned towards a database sequence gap as with overcalls. The corresponding Smith-Waterman-Gotoh alignment
would result in an alignment of the non-gaped middle part of both queries ("AATTCCC”).

Figure 5 Homopolymer deviation penalties. Illustrating
homopolymer correction penalties as calculated in FAAST, for peak-
value deviations ranging from -2.5 to 2.5 for homopolymers of
length n = [1,8]. The maximum allowed flowpeak range, k = 0.25
(25%), as well as the minimum gap penalty of 7 (corresponds to the
proportionality constant a = 28) was used for the calculation were
the calculated penalty is rounded to the closest integer.

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 6 of 7



“A”, “C” or “G”) is then treated as an integer value of
base 4 with the 4 nucleotides as alphabet. A second
pointer list, P, of size 4k is allocated and populated so
that P holds a pointer to L for each k-tuple of valid
nucleotides. Finally, L and P are ordered so that each
position of the list P points to the first occurrence of
the corresponding k-tuple in L and the value of Pi <Pi+1.
Consequently, the last occurrence of any k-tuple found
at position, i, is retrieved through reading the first
occurrence of the next k-tuple found in position, i + 1,
in P.
Through matching all k-tuples found in each query

against the database-index, all positions at which the
query and database share at least k nucleotides are
found, denoted as a ‘hit’. The ‘hits’ are subsequently
sorted by diagonal and an alignment is generated if at
least n hits are found on the same diagonal spaced less
than J nucleotides apart. Finally, for the v top-scoring
alignments, a re-alignment with complete trace is per-
formed to enable full-alignment output. The default
parameters of FAAST use k = 11, n = 2 and J = 50, thus
requiring at least two 11-mer ‘hits’ spaced no more than
50 bp apart.

Additional material

Additional file 1: Evaluation of the effect of flow-space assisted
local alignment. Scripts for running the evaluation test as well as all the
binaries and results from the run included in the manuscript. See the
enclosed README.txt for more information.

Additional file 2: Evaluating the performance of FAAST. Scripts for
running the evaluation test as well as all the binaries and results from
the run included in the manuscript. See the enclosed README.txt for
more information.

Acknowledgements
We gratefully acknowledge financial support from the Swedish Research
Council, the Research School of Medical Bioinformatics supported by the
Knowledge Foundation Sweden, Karolinska Institutet and Linköping
University. We thank Oscar Franzén for providing 454 SFF data from the
Giardia P15 sequencing.

Author details
1IFM Bioinformatics and SeRC (Swedish e-Science Research Centre),
Linköping University, S-581 83 Linköping, Sweden. 2Department of Cell and
Molecular Biology, Science for Life Laboratory, Karolinska Institutet, S-171 77
Stockholm, Sweden.

Authors’ contributions
FL has designed the algorithm and implemented the FAAST software and
written the manuscript. BP and BA have helped to design the study and
draft the manuscript and have provided feedback on the algorithm. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 February 2011 Accepted: 19 July 2011
Published: 19 July 2011

References
1. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,

Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML,
Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM,
Lei M, Li J, et al: Genome sequencing in microfabricated high-density
picolitre reactors. Nature 2005, 437:376-380.

2. Droege M, Hill B: The Genome Sequencer FLX System–longer reads,
more applications, straight forward bioinformatics and more complete
data sets. J Biotechnol 2008, 136:3-10.

3. Needleman SB, Wunsch CD: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol
1970, 48:443-453.

4. Smith TF, Waterman MS: Identification of common molecular
subsequences. J Mol Biol 1981, 147:195-197.

5. Gotoh O: An improved algorithm for matching biological sequences.
J Mol Biol 1982, 162:705-708.

6. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches.
Science 1985, 227:1435-1441.

7. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85:2444-2448.

8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403-410.

9. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

10. Dayhoff MO: Computer analysis of protein evolution. Sci Am 1969,
221:86-95.

11. Vacic V, Jin H, Zhu JK, Lonardi S: A probabilistic method for small RNA
flowgram matching. Pac Symp Biocomput 2008, 75-86.

12. Kofler R, Torres TT, Lelley T, Schlötterer C: PanGEA: identification of allele
specific gene expression using the 454 technology. BMC Bioinformatics
2009, 10:143.

13. Balzer S, Malde K, Lanzén A, Sharma A, Jonassen I: Characteristics of 454
pyrosequencing data–enabling realistic simulation with flowsim.
Bioinformatics 2010, 26:i420--i425.

14. Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E,
Andersson JO, Svärd SG, Andersson B: Genome analysis and comparative
genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics
2010, 11:543.

15. Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA
databases. Genome Res 2001, 11:1725-1729.

doi:10.1186/1471-2105-12-293
Cite this article as: Lysholm et al.: FAAST: Flow-space Assisted Alignment
Search Tool. BMC Bioinformatics 2011 12:293.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Lysholm et al. BMC Bioinformatics 2011, 12:293
http://www.biomedcentral.com/1471-2105/12/293

Page 7 of 7

http://www.biomedcentral.com/content/supplementary/1471-2105-12-293-S1.ZIP
http://www.biomedcentral.com/content/supplementary/1471-2105-12-293-S2.ZIP
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16056220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18616967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18616967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18616967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2983426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3162770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5791823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20929575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20929575?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11591649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11591649?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Evaluation of the effect of flow-space assisted local alignment
	Evaluating the performance of FAAST
	FAAST - Flow-space Assisted Alignment Search Tool

	Discussion
	Conclusions
	Methods
	FAAST alignment algorithm
	Homopolymer correction penalties
	Indexing and heuristics

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

