
RESEARCH ARTICLE Open Access

ss-TEA: Entropy based identification of receptor
specific ligand binding residues from a multiple
sequence alignment of class A GPCRs
Marijn PA Sanders1, Wilco WM Fleuren1, Stefan Verhoeven2, Sven van den Beld1, Wynand Alkema2,
Jacob de Vlieg1,2 and Jan PG Klomp2*

Abstract

Background: G-protein coupled receptors (GPCRs) are involved in many different physiological processes and their
function can be modulated by small molecules which bind in the transmembrane (TM) domain. Because of their
structural and sequence conservation, the TM domains are often used in bioinformatics approaches to first create a
multiple sequence alignment (MSA) and subsequently identify ligand binding positions. So far methods have been
developed to predict the common ligand binding residue positions for class A GPCRs.

Results: Here we present 1) ss-TEA, a method to identify specific ligand binding residue positions for any receptor,
predicated on high quality sequence information. 2) The largest MSA of class A non olfactory GPCRs in the public
domain consisting of 13324 sequences covering most of the species homologues of the human set of GPCRs. A set of
ligand binding residue positions extracted from literature of 10 different receptors shows that our method has the best
ligand binding residue prediction for 9 of these 10 receptors compared to another state-of-the-art method.

Conclusions: The combination of the large multi species alignment and the newly introduced residue selection
method ss-TEA can be used to rapidly identify subfamily specific ligand binding residues. This approach can aid
the design of site directed mutagenesis experiments, explain receptor function and improve modelling. The
method is also available online via GPCRDB at http://www.gpcr.org/7tm/.

Background
G-protein coupled receptors (GPCRs), also known as 7
transmembrane receptors, represent a large superfamily
of proteins in the human genome and are responsible for
the transduction of an endogenous signal into an intra-
cellular message, which triggers a response in many dif-
ferent physiological pathways. The structural architecture
and chemo-mechanical concept of G-protein coupled
receptors can be seen as an evolutionarily success as wit-
nessed by the large amount of family members and diver-
sity of applications in biological processes [1].
Not surprisingly, an increasing number of these

GPCRs is the subject of investigation as targets in drug
discovery. Historical drug discovery approaches have
identified GPCRs as a successful drug target, since 25-

50% of the drugs currently on the market interact with
a GPCR [1,2].
In humans, the family of 7 transmembrane receptors

is represented by approximately 900 members which
can be divided in several classes based upon standard
similarity searches [3-5].
Recently there has been a reclassification of receptors

according to the GRAFS system which has the following
groups: glutamate, rhodopsin, adhesion, frizzled/taste2,
and secretin [6]. From the structural and functional view-
point the rhodopsin-like family, also known as the class
A receptors, is the largest and best studied family [6].
Receptors from different families are very diverse

[1,5,7], but can all be characterized by the presence of
seven structurally conserved alpha helices, which span
the cell membrane. Most GPCRs couple to a G-protein
complex upon ligand binding, resulting in the dissocia-
tion of the alpha subunit from the beta and gamma sub-
unit. The final signal depends on the alpha subunit of

* Correspondence: J.Klomp@cmbi.ru.nl
2Department of Molecular Design and Informatics, MSD, Molenweg, Oss, The
Netherlands
Full list of author information is available at the end of the article

Sanders et al. BMC Bioinformatics 2011, 12:332
http://www.biomedcentral.com/1471-2105/12/332

© 2011 Sanders et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.gpcr.org/7tm/
mailto:J.Klomp@cmbi.ru.nl
http://creativecommons.org/licenses/by/2.0


the G-protein (Gai, Gas, Gaq/11, Ga12/13) which is acti-
vated and is presumed to be receptor and ligand depen-
dent [8-12]. The non olfactory Class A receptors
recognize a large variety of ligands including photons
[13], biogenic amines [14], nucleotides [15], peptides
[16], proteins [17] and lipid-like substances [18-21].
Most ligands are believed to bind fully or partly within
the transmembrane bundle and to trigger signaling
through a conserved canonical switch [9]. The assump-
tion that similar molecules bind to similar receptors
[22] and that small molecules bind within the upper
part of the transmembrane helices, similar to 11-cis ret-
inal in bovine rhodopsin, carazolol in the human beta
adrenergic receptor 2, timolol in the turkey beta adre-
nergic receptor 1 and ZM-241385 in the human adeno-
sine A2 receptor, gives rise to the application of pattern
recognition analysis on multiple sequence alignments of
those helices or parts thereof to identify ligand binding
residues. It has also been shown that for some receptors
which bind large proteins, like the luteinizing hormone
receptor (LHR), low molecular weight (LMW) com-
pounds can be designed which bind in between the
TM-bundle and modify signaling [23,24], suggesting
that the same pattern detection techniques could be
used for those receptors as well.
Structure based drug design strategies often rely on high

resolution information derived from protein crystal struc-
tures. Elucidating GPCR structures at atomic resolution
remains difficult and has only been successful for a small
set of receptors so far (bovine rhodopsin [25], squid rho-
dopsin [26], human beta-2-adrenergic receptor [27], tur-
key beta-1-adrenergic receptor [28] and the human A2A
adenosine receptor [29]). These structures have been
extremely helpful for understanding the function and
ligand binding properties of class A receptors and are a
major step forward towards rational drug design in this
class of receptors. However, understanding the differences
in for example agonist and antagonist binding or extrapo-
lating structural information on a small subset of GPCRs
to evolutionary distant receptors remains problematic and
perhaps may only be solved as more structures become
available [30]. As long as this information is limited there
will be a need for comparative methods to explain the
structural and functional differences between GPCRs.
With the recent genome sequencing efforts, more and

more data becomes available to perform comparative
modelling. Currently, data on 51 species is available in
ensemble [31] (release 56) enabling the large scale com-
parison of sequences within and across species. Methods
to mine sequence data and identify structurally and
functionally important residues have been developed.
For example, in 1996 Lichtarge introduced the evolu-
tionary trace method to calculate the conservation of a
residue in each trace of a phylogenetic tree [32]. In 2004

Oliveira et al. introduced the entropy variability plot and
showed that the location of the aligned residue positions
in these plots correlate to structural characteristics [33].
Based on a similar concept as the entropy variability
plot Ye et al. introduced the two entropy analysis (TEA)
in 2006 to identify structural and functional positions in
the transmembrane region of class A GPCRs [34].
Here we present subfamily specific two entropy analysis

(ss-TEA), the first method to identify the ligand binding
residues on subfamily level. In contrast to the previously
published methods ss-TEA is able to discriminate
between subfamilies and able to identify the approxi-
mately five residues that are involved in ligand binding
for each individual subfamily of the class A GPCRs. ss-
TEA is predicated on high quality sequence information
deduced from a multiple sequence alignment (MSA)
which was generated by extracting species homologues of
the class A non olfactory GPCR sequences with a method
reported here. This new MSA is characterized by a more
complete set of species orthologs which improves the
subfamily definition and results of ss-TEA. Receptor spe-
cific sets of ligand binding residues, generated by ss-TEA,
improve the understanding of receptor ligand interac-
tions and the design of mutagenesis experiments, and
guide the process of homology modelling.

Results & Discussion
Sequence retrieval & Alignment
Using a template set of 286 human GPCR sequences, a
BLAST search was performed to retrieve non olfactory
class A GPCR sequences. This resulted in 20111
sequences originating from 1941 species. An alignment
of the transmembrane helices was obtained by gap free
alignment of all retrieved sequences using HMM models
of the TM domains. Subsequent removal of sequences
with low HMM scores resulted in a MSA of 13324 class
A GPCR sequences. 33 of the 1941 species contained
over 100 class A non olfactory GPCR sequences and
were deposited in a database and used for further analy-
sis. The resulting multiple sequence alignment (MSA)
comprises 6876 sequences of which 4816 sequences ori-
ginate from Ensembl and 2060 from Swissprot and
TrEMBL. For all aligned helices in the database, it can
be shown that the overlap with the predicted helices in
Swissprot is over 90% for 90% of the TM sequences and
that almost no helices can be found which have less
than 75% overlap (Additional file 1, Appendix 2). Due
to the gap free alignment procedure of TM domains
only those regions are subject to further analysis, loop
regions will be omitted and anomalies in helix architec-
ture, i.e. proline induced kinks will not be addressed.
From the distance matrix of all 6876 sequences a hier-

archical tree was constructed. A visualization of all
human entries of this tree is depicted in Figure 1A. The
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Figure 1 Phylogenetic tree of all GPCR sequences. A: Visualization of the human entries from the hierarchical tree constructed from the MSA
of the TM domains from all sequences in the database. The number indicated after the receptor name equals the number of sequences which
are grouped together in the visualized node. Leafs are colored according to the IUPHAR [36] family definition. B: Detailed view of the hierarchical
tree of the branch including the human thyroid stimulating hormone receptor 1 with the leafs colored according to phylogenetic relatedness. C:
Distribution of the number of sequences per species grouped together in a node containing one human receptor sequence. The number of
missing receptor sequences was calculated with the assumption that each human receptor has one ortholog in each species.
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number of sequences from all other species, which can
be grouped together with a human entry by collapsing a
node, is indicated behind the receptor name. Phyloge-
netic analysis between human and mouse indicated that
most human GPCRs have one ortholog in mouse [35].
Since most of the 33 species in our alignment are mam-
mals with an evolutionary distance to human compar-
able to mouse (Additional file 1, Appendix 3), it is to be
expected that one ortholog from every species can be
grouped together with every human receptor. Exceptions
to expected 1-1 ortholog pairs will be receptors that
have been subject to gene expansion or have become
pseudogenes. Examples include the MAS-related G-pro-
tein coupled receptors in which gene expansion has
occurred, and the GNRHR and 5HT5A receptors which
have pseudogenes in human [36]. Figure 1B shows the
distributions of species sequences grouped together in a
node with the thyroid stimulating hormone receptor
(TSHR). Figure 1C displays that in most cases one
sequence per species is grouped together in a node con-
taining only one human sequence, suggesting that these
are orthologs of this human receptor.

Subfamily definition
To identify ligand binding residues we use a score com-
posed of two entropy values. The underlying hypothesis
for this score is that the ligand binding residues are con-
served within a subfamily but not across all GPCRs. The
residues which are conserved amongst all GPCRs are
likely to be structurally important and can be easily iden-
tified by a low entropy value for all GPCRs. The size and
variability of the subfamily should ensure that apart from
structurally important residues only ligand binding resi-
dues are conserved within the subfamily. Phylogenetic
distance is a measure for the sequence conservation in a
subfamily. Figure 2 shows that most of the human recep-
tors in our test set have small phylogenetic distances in
subfamilies with sizes towards ~20 sequences. A subfam-
ily of ~20-60 receptors contains homologous receptors
(Figure 1) with slightly larger phylogenetic distances.
It is impossible to conclude whether or not ligand

binding residues are conserved in a subfamily based on
solely phylogenetic distances. Important aspects to con-
sider in subfamily selection are that the receptors in a
subfamily must bind to relatively similar ligands ensur-
ing evolutionary pressure on the conservation of the
residue positions involved in ligand binding, and that
evolutionary distances are large enough to observe dif-
ferent amino acid usage amongst residue positions
which are not involved in maintaining the structural
architecture of the GPCR, signal transduction or ligand
binding. We have therefore chosen to calculate the
entropy values of all subfamilies with at least 50 and at
most 300 sequences.

Reference set
Site directed mutagenesis experiments offer a tool to
investigate the function of specific residues in receptors.
These experiments have helped to identify residues
related to the signal transduction pathway as well as
residues involved in ligand binding in GPCRs. Extracting
this information from such experiments can however be
very complicated, especially if ligands are compared
which use different signaling pathways or when agonist
are compared to antagonists. Antagonists only have to
block active sites and this can be done via interactions
with arbitrary residues. Agonists have to trigger certain
responses and it is possible that ligands bind to different
residues to trigger different responses. Another impor-
tant aspect in the interpretation of mutation data is to
separate direct from indirect effects. Mutations on the
membrane facing side of a helix will for example very
likely not affect ligand binding in a direct manner, but
are more likely to have an influence due to distortion of
the secondary structure. We have used site directed
mutagenesis data described in literature, to the best of
our knowledge, to compile a reference set of ligand
binding residues for 10 selected receptors. This refer-
ence set consists of 47 residues located at 22 different
positions (Figure 3).

Ligand binding residue prediction
Prediction of ligand binding residues as performed by
for example evolutionary trace, TEA and Multi-RELIEF
is limited to the family level and results in a common
description of the structurally important residues and
ligand binding pocket. Analyses of the charged aspartate
3.32 in the amine receptors and lysine 7.33 in the
opsins, known to be crucial for ligand binding from
crystallography, show remarkable conservation

Figure 2 Phylogenetic distance towards the human receptor as
a function of the xth most similar receptor for the 10
receptors in the test set.
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characteristics. In both cases the residue is fully con-
served inside the family and only rarely observed out-
side. This suggests that ligand binding residues can be
identified by comparing the conservation level of a resi-
due position within a subfamily to the conservation at
this same position for all sequences outside this subfam-
ily. In Figure 4A the two entropy values reflecting both
observations are plotted for the ADRB2 receptor sub-
family, which also includes the human receptors ADRB1
and ADRB3. The residues shown to disrupt ligand bind-
ing are colored green and are found in the upper left
corner as expected. The distance of each residue to this
upper left corner is used to rank the residues and used
to evaluate the performance of ss-TEA. In Figure 4B the
crystal structure of the ADRB2 receptor, co-crystalized

with carazolol (pdbid: 2RH1) is visualized with the resi-
dues disrupting ligand binding colored green. The recei-
ver operating characteristic (ROC) curves in Figures 4C
and 4D, plotted with linear and logarithmic x-axis, show
the improved ranking of residues according to ligand
binding likelihood compared to random ranking. The
area under the semi-logarithmic curve (Figure 4D) was
used for further analysis because it puts more emphasis
on correctly predicted ligand binding residues in the
early phase of the recovery curve. It is typically in this
region where performance needs to be outstanding,
since many modeling approaches rely heavily on the
correct assignment of only a limited number of ligand
binding residues.
Table 1 shows that the mean area under the semi-

logarithmic curve of the theoretically optimal ranking
and ss-TEA are both 1.9. ss-TEA has the highest score
in 7 out of 10 cases compared to the theoretically opti-
mal ranking with the 4 highest scores out of 10 cases. A
more realistic example is given by the comparison with
the multi-RELIEF + 3d contacts method, which was
reported to be the best performing method amongst
several state-of-the-art methods [37]. The average pROC
AUC of multi-RELIEF is 1.32 if the 22 reference resi-
dues are top ranked (see Methods section). ss-TEA
gains 0.4 in the pROC AUC compared to multi-Relief in
this situation and 0.5 if all residues are taken into

Figure 3 Heatmap of reference residues sorted on position and
receptor. Ligand binding residues are colored black.

Figure 4 Residue selection for the ADRB2 receptor. A: Plot of the entropy within the ADRB2 receptor subfamily versus outside the subfamily.
Lines are drawn at equal score and residues disrupting ligand binding upon mutation are colored green. B: Crystal structure of ADRB2 co-
crystalized with carazolol (pdbid: 2RH1), residues disrupting ligand binding upon mutation are colored green. C: Receiver Operator Characteristic
(ROC) curve showing the ability of ss-TEA to select ligand binding residues compared to random selection. D: ROC curve with logarithmic x-axis.
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account. It is also noteworthy that ss-TEA outperforms
multi-Relief for all individual reference receptors except
V1AR.
Three distinct receptors (ADRB2, CCR5 and GNRHR)

which use different residue positions to bind ligands
(see Figure 3) have been selected as an example to illus-
trate the advantage of the subfamily specific approach of
ss-TEA.
Figure 5 shows in green the residues involved in

ligand binding to the ADRB2 receptor only. Likewise,
the ligand binding residues for CCR5 and GNRHR are
colored blue and red respectively. Residue 7.39 is impor-
tant for ligand binding in both the ADRB2 and CCR5
receptors and is colored yellow, while position 3.32,
colored maroon is a ligand binding residue for all three
receptors. Figure 5 shows that green residues are mainly
located in the upper left corner of the ADRB2 plot,
while the red and blue residues are positioned more to
the right. Similar distributions are observed for the blue
and red residues in the CCR5 and GNRHR plot respec-
tively, clearly illustrating that the selection of residues
by ss-TEA are subfamily specific.
Analyses of the highest ranked residues for all indivi-

dual human receptors identify subfamily ligand binding
characteristics. Determination of the top 10 scoring resi-
dues for all human receptors visualized in Figure 6 and
colored according to the IUPHAR family definition [36],
shows that there is no generic ligand binding mode for
class A GPCRs since none of the positions is scored
amongst the top 10 for more than 50% of the in total
~300 human receptors. Furthermore it can be seen that
that helix I is rarely important for ligand binding, as also
observed in the available crystal structures. Even so,
some orphan, adenosine and chemokine receptors are
characterized by conservation patterns for residues in
this helix and might bind ligands with residues from this

helix. In addition, the amine receptors can be character-
ized by the importance of helix three in ligand binding.
However the comparison of individual receptors

within a receptor family also reveals interesting differ-
ences in ligand binding behavior. This is illustrated by e.
g. position 3.32, which is well conserved in about 50%
of all subfamilies, including the aminergic receptors and
a subset of the adenosine receptors. For the aminergic
receptors it has been proposed that this aspartate is cru-
cial for ligand binding due to its interaction with the
positively charged nitrogen of the basic amines, a
hypothesis which is confirmed by the crystal structures
of ADRB2 and ADRB1. For other receptors this same
position is thought to be important for ligand binding
involving different amino acids. For example, AA2AR
receptor has a conserved valine at position 3.32. Muta-
tion of this valine to alanine or aspartate disrupts ligand
binding and illustrates the importance of this conserved
valine for this receptor [38]. Position 3.32 ranks at posi-
tion 45 in the AA1R subfamily, while it ranks at position
11 the AA2AR subfamily suggesting a less important
function for the valine in the AA1R receptor, which is
indeed confirmed by site directed mutagenesis [38].
Interestingly, receptors with endogenous ligands which

completely or largely bind to the N-terminus and/or
extracellular loops also demonstrate subfamily specific
conservation of residues at the extracellular side of the
transmembrane helices. It is remarkable, for example,
that 8 of the top 10 ranked residues for the luteinizing
hormone receptor are in fact pocket residues. Also note-
worthy is that Asp2.64, known to interact with the
endogenous ligand [39], is ranked 3rd.

Conclusions
We have introduced an alignment methodology to create a
large multiple sequence alignment of the transmembrane

Table 1 Area under the semi logarithmic receiver operator curve (pROC AUC) of different rankings of residues for
different targets

Target Reference set (Ballosteros & Weinstein
numbering scheme)

Multi-
Relief

ss-
TEA

Theoretically optimal (top-
ranked)

Multi-Relief (top-
ranked)

ss-TEA (top-
ranked)

ADRB2 3.32, 3.33, 5.42, 5.43, 5.46, 6.55, 7.35, 7.39 1.2 1.4 1.9 1.6 1.6

PI2R 2.65, 3.28, 7.39, 7.40 1.0 1.7 1.5 1.4 1.8

CNR2 3.28, 3.31, 4.64, 5.39 0.7 1.5 1.6 1.1 1.8

C5AR 3.28, 3.32, 5.39, 5.42, 5.43, 7.35 1.1 1.5 2.1 1.5 1.7

GNRHR 2.61, 2.64, 2.65, 3.32, 5.39, 6.58 1.4 1.8 1.7 1.7 1.9

V1AR 2.57, 2.61, 3.29, 3.32, 4.60, 5.43, 6.55 1.7 1.3 1.8 1.9 1.5

FFAR1 5.39, 6.55, 7.35 0.9 2.1 2.2 1.3 2.2

CCR5 1.39, 2.60, 3.32, 7.39 1.1 1.5 1.7 1.6 1.9

P2Y11 3.29, 7.39, 6.55 1.5 1.8 1.9 1.8 2.0

P2Y13 6.55, 7.35 1.0 2.1 2.2 1.4 2.2

Average 22 res total 1.2 1.7 1.9 1.5 1.9

Top scoring methods are indicated in bold.
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domains of class A non olfactory GPCRs from multiple
species. We also introduced a new method to identify
ligand binding residues from a MSA, named ss-TEA, and
demonstrated the advantage of this new method in combi-
nation with the new MSA for the selection of ligand bind-
ing residues. The results show the advantage of receptor

specific residue selection compared to receptor class speci-
fic selection, as well as an improved residue selection for 9
of the 10 reference sets in comparison to the state-of-the-
art method Multi-Relief. The large MSA including
sequences of multiple species allows us to compare recep-
tors with high sequence similarities and more identical
ligand binding profiles which results in a better under-
standing of the characteristics of those receptors. If more
sequence data becomes available for more species, larger
alignments can be made, which could possibly even
explain differences between close homologs. Our align-
ment in combination with the residue selection method
described here can be used to quickly identify ligand bind-
ing residues. This can subsequently be used to design site
directed mutagenesis experiments, explain receptor func-
tion and improve modelling. The ss-TEA predictions for
class A GPCRs can be accessed via GPCRDB at http://
www.gpcr.org/7tm/.

Methods
Our approach makes use of different input sources
which are connected via algorithms as outlined in Figure
7. All steps will be outlined and discussed in sequential
order below.

Sequence retrieval
The first step in our approach is to extract GPCR
sequences for different species from available data
sources. To obtain sequences we performed a BLAST
[40] search with 286 manually curated query sequences
from human class A non-olfactory GPCRs against Swis-
sprot, Ensembl and TrEMBL. All query sequences were
blasted against Swissprot 57.13 [41,42], Translated
EMBL (TrEMBL) 40.13 [42,43] and Ensembl Protein 56
[31], using the BLOSUM62 scoring matrix, an expected
cutoff of 10 and word size 3. Furthermore, a gap open-
ing penalty of 11 and a gap extension penalty of 1 were
used. Finally, we selected all sequences with an e-value
< 0.01, subject length identity > 25%, alignment identity
> 40% and a minimal query length of 20 amino acids.

Numbering Scheme and MSA boundaries
The aim of the Multiple sequence alignment (MSA) is
to reflect a structural alignment and therefore the loop
regions and termini of all receptors were omitted, since
these are not structurally conserved. The positions
included in our MSA according to the Ballosteros and
Weinstein numbering scheme [43] are: 1.33-1.56 for
TM1; 2.40-2.65 for TM2; 3.25-3.51 for TM3; 4.43-4.64
for TM4; 5.38-5.63 for TM5; 6.37-6.59 for TM6; and
7.34-7.56 for TM7. The pocket is defined by 28 residues
which are directed towards the intramembrane cavity in
the upper part of the transmembrane domains in the
available crystal structures. The residues defined as

Figure 5 ss-TEA plots of ADRB2, CCR5 and GNRHR respectively.
Ligand binding residues of the ADRB2 receptor are colored green,
CCR5 receptor: blue, GNRHR receptor: red, ADRB2 and CCR5
receptor: yellow and of all three receptors: maroon.
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pocket per transmembrane region are: 1.35, 1.39, 1.42,
1.46 for TM1; 2.57, 2.58, 2.61, 2.65 for TM2; 3.28, 3.29,
3.32, 3.33, 3.36 for TM3; 4.56 for TM4; 5.38, 5.39, 5.42,
5.43, 5.46 for TM5; 6.44, 6.48, 6.51, 6.52, 6.55 for TM6
and 7.35, 7.39, 7.43, 7.45 for TM7.

Alignment
The available GPCR crystal structures have shown that
all helices can be structurally aligned without introdu-
cing gaps in the sequence alignment. For this reason a
manually curated gap-free alignment of the TM
domains of the human class A non-olfactory GPCR
sequences was created and used to construct a Hidden
Markov Model (HMM) for each separate helix, using
HMMbuild (HMMER [44] 2.3.2 (Oct 2003)) with default
settings. Subsequently each hmm model of each helix
was aligned against all extracted sequences from the
previous step, without allowing the introduction of gaps,

using HMMalign (HMMER [44] 2.3.2 (Oct 2003)).
Alignments which had an incorrect helix ordering were
subsequently extracted and subject to realignment on a
smaller part of the sequence. A typical example is the
realignment of one helix on the sequence in between
two correctly aligned neighbor helices (see Figure 8). As
a final filter, all sequences with a low similarity score to
the hmm model for over 4 out of 7 helices were dis-
carded. A threshold of 4 was chosen, since a few anno-
tated human sequences, e.g., the prostanoids, were
shown to have weak patterns for up to 4 helices. The
threshold for the similarity score of each individual helix
was set after the compilation of artificial sequences with
an identical amino acid distribution for each helix as in
the manually curated alignment of human GPCRs.
These artificial sequences were subsequently aligned to
the previously built hmm model of the helix, and the
threshold for the helix was set to the score at which

Figure 6 Distribution of residue positions scoring amongst the top 10 based on ss-TEA for all human receptors. Bars are colored
according to the iuphar family description.
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95% of the artificial sequences fails to pass. Low
sequence quality may cause duplicate entries of the
same receptor and species. To avoid these duplicates, all
but 1 sequence, of all sets of sequences of an individual
species which had less than 10 amino acids difference,
were removed.

Database
Incomplete sequencing of the genomes of many species
causes bias towards certain receptor subfamilies. To
prohibit such bias, all sequences of species with less
than 100 amino acid sequences of GPCRs were removed
from the MSA. All GPCR sequences of species of which
at least 100 different sequences were obtained, were
stored in a database and used in all analysis discussed
below. To enable querying on a higher level than the
individual sequences, a hierarchical tree of the phyloge-
netic distance matrix calculated from the alignment of
all 7 TMs of all receptors was created, using the neigh-
bor joining algorithm as implemented in clustalW [45]
2.0.11 with a 100 fold bootstrap. The sequences which
group together at a node in this tree, a so called sub-
family, can be queried for their properties.

Residue selection
To perform knowledge based residue selections which
reflect the likelihood of residues being involved in ligand
binding, we added two Shannon entropy scores for each
alignment position of each receptor to the database.
One entropy value reflects the conservation of a position
inside the subfamily (Ein) while the other entropy
reflects the conservation of this same position in all
sequences which do not belong to this subfamily (Eout).
The Shannon entropy itself is given by:

Ei = −
∑20

a=1
Fia ln Fia (1)

With

Fia = Numberia/m (2)

Numberia is the number of sequences with residue
type a at alignment position i. Others have already sug-
gested that ligand binding residues can be obtained
from both calculated entropy values [33,34]. Therefore
we introduce one score which combines both calculated
entropies.

Si =
√(

Eini
)2

+
(
ln (20) − Eouti

)2 (3)

A final score for each residue position was calculated
after evaluation of the score at multiple branches of the
hierarchical tree using:

Fi = min
(
Si, cuttree

(
j
))

for all j ∈ [50, 300] (4)

where j reflects the number of sequences selected in
the branch. To validate the performance we finally
ranked all residues according to the score with the mini-
mum scoring residue at rank 1.

Figure 7 Schematic flowchart of the methodology to create
the alignment, score the residues and evaluate the
performance of the residue selection method. Publicly available
data sources are indicated with a bold border style, in-house data
with dashed a border style and methods with a normal border
style. The numbers indicate the number of sequences which is used
at each step.

Figure 8 Schematic representation of the alignment procedure.
First a HMM model is calculated for each TM domain from a
manually curated alignment of the 7TM domains of 286 human
GPCRs. Each HMM model is subsequently aligned to each GPCR
sequence after which the ordering of the aligned helices is checked.
In case of an incorrect ordering realignment is performed on
smaller parts of the sequence. Finally the significance of each
aligned helix is checked.
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Reference Set
Site directed mutagenesis data is available for many
GPCRs with different levels of detail depending on the
research question. In this paper ten well studied and
evolutionary diverse Class A GPCRs are used for which
extensive site directed mutagenesis data exists as well as
a binding model based on these data. For each of the
receptors a reference set of residues crucial for ligand
binding was compiled using the mutation data described
in GPCRdb [5] and literature models of the binding
mode. The choice of receptors from different branches
of the sequence tree was made to emphasize the advan-
tage of a method able to identify different ligand binding
residues for different receptors and to show that the
method does not have a bias towards certain subfami-
lies. The receptors in the reference set are; beta-2 adre-
nergic receptor (ADRB2) [27,46]; Prostacyclin receptor
(PI2R) [47]; C5a anaphylatoxin chemotactic receptor
(C5AR) [48]; Cannabinoid receptor 2 (CNR2) [49,50];
Gonadotropin-releasing hormone receptor (GNRHR)
[51]; Vasopressin V1a receptor (V1AR) [24]; Free fatty
acid receptor1 (FFAR1) [52]; C-C Chemokine receptor
type 5 (CCR5) [53]; P2Y purinoceptor 11 [54] and 13
[55] (P2Y11, P2Y13). Residues that were not part of the
pocket [56] were neglected as well as mutations which
are debatable because of different effects using different
ligands or because results were not consistent in differ-
ent measurements. The final selection only includes
residues with substantial effect on ligand binding. The
A2A adenosine receptor was deliberately not used as a
reference set in this study, since site directed mutagen-
esis data and the crystal structure suggest that there is
no general, family conserved receptor binding pocket for
the A2A adenosine receptor [29,38].

Performance measure (Area Under the Log Curve)
The performance of our residue ranking method is
assessed using the Area under the semi-logarithmic
receiver operating characteristic (ROC) curve [57]. This
method favors true ligand binding residues early in the
recovery curve and is calculated using:

pROCAUC =
1
n

n∑
i

log10

(
1
βi

)
, (5)

Where n is the number of true ligand binding residues
and bi is the false positive frequency corresponding to
the point at which the ith true residue is found. bi is
typically calculated as the fraction of false positives
which is ranked higher than the ith true positive. The
score of the pROC AUC corresponding to a random
selection is 0.434 and is unbounded on the high side. A
perfect ordering of ligand binding residues amongst 100
non ligand binding residues will for example score 2.0.

Benchmark
To illustrate the advantage of subfamily specific ranking
over generic ranking we compiled a theoretically optimal
generic ranking of ligand binding residues. This ranking
is created by ordering the residues of ten different
receptors according to the number of receptors which
use these positions for ligand binding. The ranking of
positions used by the same number of receptors is arbi-
trary, potentially altering the results, although it is
expected to have only a minor effect. Because the theo-
retically compiled optimal ranking includes information
about the location of the pocket we also included this
information in the ss-TEA and Multi-Relief method and
scored the 22 residues included in the theoretically com-
piled optimal ranking prior to all other residues. The
rankings which include this information will be indi-
cated in this paper as top ranked. As a benchmark we
compared our top ranking to both the theoretically
compiled optimal ranking and Multi-Relief + 3d con-
tacts top ranking [37] (Additional file 1, Appendix 1).
Briefly, Multi-Relief takes a multiple sequence alignment
and predefined subfamily ontology as input, then itera-
tively selects 2 subfamilies and optimizes a weight vector
able to optimally separate the sequences from both [37].
The optimization of a single weight vector in the itera-
tive process results in one vector able to discrimate
between all provided classes. The weight of a residue in
the Multi-Relief + 3d contacts method can be altered
towards its local environment as obtained from recent
crystal structures.

Additional material

Additional file 1: Theoretically compiled optimal ranking and Multi-
RELIEF ranking of the residues included. Percentage of helix overlap
between the generated alignment and predicted helix locations in
swissprot. Phylogenetic tree of the species included in our sequence
alignment.

Acknowledgements
The authors thank Sander B. Nabuurs, Peter Groenen and Ross McGuire for
critical reading the manuscript and Top Institute Pharma (project number
D1-105) for funding.

Author details
1Computational Drug Discovery Group, Radboud University Nijmegen
Medical Centre, Geert Grooteplein, Nijmegen, The Netherlands. 2Department
of Molecular Design and Informatics, MSD, Molenweg, Oss, The Netherlands.

Authors’ contributions
WF and SV retrieved possible class A GPCR sequences from the described
data sources. SvdB and SV created the multiple sequence alignment. MS
developed the residue selection method and was responsible for the draft
of the manuscript. JK, JdV and WA supervised the project and helped to
draft the manuscript. All authors read and approved the final manuscript.

Received: 12 October 2010 Accepted: 10 August 2011
Published: 10 August 2011

Sanders et al. BMC Bioinformatics 2011, 12:332
http://www.biomedcentral.com/1471-2105/12/332

Page 10 of 12

http://www.biomedcentral.com/content/supplementary/1471-2105-12-332-S1.DOC


References
1. Klabunde T, Hessler G: Drug design strategies for targeting G-protein-

coupled receptors. ChemBioChem 2002, 3(10):928-944.
2. Hopkins AL, Groom CR: The druggable genome. Nat Rev Drug Discov 2002,

1(9):727-730.
3. Attwood TK, Findlay JB: Fingerprinting G-protein-coupled receptors.

Protein Eng 1994, 7(2):195-203.
4. Kolakowski LF Jr: GCRDb: a G-protein-coupled receptor database.

Receptors Channels 1994, 2(1):1-7.
5. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G: GPCRDB

information system for G protein-coupled receptors. Nucleic Acids Res
2003, 31(1):294-297.

6. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K: The 7 TM G-protein-
coupled receptor target family. ChemMedChem 2006, 1(8):761-782.

7. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP,
Spedding M, Harmar AJ: International Union of Pharmacology. XLVI. G
protein-coupled receptor list. Pharmacol Rev 2005, 57(2):279-288.

8. Kenakin T: Efficacy at G-protein-coupled receptors. Nat Rev Drug Discov
2002, 1(2):103-110.

9. Christopoulos A: Allosteric binding sites on cell-surface receptors: novel
targets for drug discovery. Nat Rev Drug Discov 2002, 1(3):198-210.

10. Perez DM, Karnik SS: Multiple signaling states of G-protein-coupled
receptors. Pharmacol Rev 2005, 57(2):147-161.

11. Maudsley S, Martin B, Luttrell LM: The origins of diversity and specificity in
g protein-coupled receptor signaling. J Pharmacol Exp Ther 2005,
314(2):485-494.

12. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H,
Javitch JA, Roth BL, Christopoulos A, Sexton PM, et al: Functional selectivity
and classical concepts of quantitative pharmacology. J Pharmacol Exp
Ther 2007, 320(1):1-13.

13. Okada T, Ernst OP, Palczewski K, Hofmann KP: Activation of rhodopsin:
new insights from structural and biochemical studies. Trends Biochem Sci
2001, 26(5):318-324.

14. Vernier P, Cardinaud B, Valdenaire O, Philippe H, Vincent JD: An
evolutionary view of drug-receptor interaction: the bioamine receptor
family. Trends Pharmacol Sci 1995, 16(11):375-381.

15. Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J: International Union of
Pharmacology. XXV. Nomenclature and classification of adenosine
receptors. Pharmacol Rev 2001, 53(4):527-552.

16. Janecka A, Fichna J, Janecki T: Opioid receptors and their ligands. Curr Top
Med Chem 2004, 4(1):1-17.

17. Horuk R: Chemokine receptors. Cytokine Growth Factor Rev 2001,
12(4):313-335.

18. Brown AJ, Jupe S, Briscoe CP: A family of fatty acid binding receptors.
DNA Cell Biol 2005, 24(1):54-61.

19. Chun J, Goetzl EJ, Hla T, Igarashi Y, Lynch KR, Moolenaar W, Pyne S, Tigyi G:
International Union of Pharmacology. XXXIV. Lysophospholipid receptor
nomenclature. Pharmacol Rev 2002, 54(2):265-269.

20. Brink C, Dahlen SE, Drazen J, Evans JF, Hay DW, Rovati GE, Serhan CN,
Shimizu T, Yokomizo T: International Union of Pharmacology XLIV.
Nomenclature for the oxoeicosanoid receptor. Pharmacol Rev 2004,
56(1):149-157.

21. Kostenis E: A glance at G-protein-coupled receptors for lipid mediators: a
growing receptor family with remarkably diverse ligands. Pharmacol Ther
2004, 102(3):243-257.

22. Klabunde T: Chemogenomic approaches to drug discovery: similar
receptors bind similar ligands. Br J Pharmacol 2007, 152(1):5-7.

23. van Koppen CJ, Zaman GJ, Timmers CM, Kelder J, Mosselman S, van de
Lagemaat R, Smit MJ, Hanssen RG: A signaling-selective, nanomolar
potent allosteric low molecular weight agonist for the human luteinizing
hormone receptor. Naunyn Schmiedebergs Arch Pharmacol 2008,
378(5):503-514.

24. Mouillac B, Chini B, Balestre MN, Elands J, Trumpp-Kallmeyer S, Hoflack J,
Hibert M, Jard S, Barberis C: The binding site of neuropeptide vasopressin
V1a receptor. Evidence for a major localization within transmembrane
regions. J Biol Chem 1995, 270(43):25771-25777.

25. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le
Trong I, Teller DC, Okada T, Stenkamp RE, et al: Crystal structure of
rhodopsin: A G protein-coupled receptor. Science 2000,
289(5480):739-745.

26. Murakami M, Kouyama T: Crystal structure of squid rhodopsin. Nature
2008, 453(7193):363-367.

27. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS,
Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, et al: High-resolution
crystal structure of an engineered human beta2-adrenergic G protein-
coupled receptor. Science 2007, 318(5854):1258-1265.

28. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC,
Henderson R, Leslie AG, Tate CG, Schertler GF: Structure of a beta1-
adrenergic G-protein-coupled receptor. Nature 2008, 454(7203):486-491.

29. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR,
Ijzerman AP, Stevens RC: The 2.6 angstrom crystal structure of a human
A2A adenosine receptor bound to an antagonist. Science 2008,
322(5905):1211-1217.

30. Cavasotto CN, Phatak SS: Homology modeling in drug discovery: current
trends and applications. Drug Discov Today 2009, 14:(13-14):676-683.

31. Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y,
Clapham P, Clarke L, et al: Ensembl 2009. Nucleic Acids Res 2009, , 37
Database: D690-697.

32. Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O:
Evolutionary trace of G protein-coupled receptors reveals clusters of
residues that determine global and class-specific functions. J Biol Chem
2004, 279(14660595):8126-8132.

33. Oliveira L, Paiva PB, Paiva AC, Vriend G: Sequence analysis reveals how G
protein-coupled receptors transduce the signal to the G protein. Proteins
2003, 52(4):553-560.

34. Ye K, Lameijer EW, Beukers MW, Ijzerman AP: A two-entropies analysis to
identify functional positions in the transmembrane region of class A G
protein-coupled receptors. Proteins 2006, 63(4):1018-1030.

35. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R,
Schioth HB: Comprehensive repertoire and phylogenetic analysis of the
G protein-coupled receptors in human and mouse. Genomics 2006,
88(3):263-273.

36. Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR,
Greenhill SD, Hale VA, Sharman JL, Bonner TI, et al: IUPHAR-DB: the
IUPHAR database of G protein-coupled receptors and ion channels.
Nucleic Acids Res 2009, , 37 Database: D680-685.

37. Ye K, Feenstra KA, Heringa J, Ijzerman AP, Marchiori E: Multi-RELIEF: a
method to recognize specificity determining residues from multiple
sequence alignments using a Machine-Learning approach for feature
weighting. Bioinformatics 2008, 24(1):18-25.

38. Kim SK, Gao ZG, Van Rompaey P, Gross AS, Chen A, Van Calenbergh S,
Jacobson KA: Modeling the adenosine receptors: comparison of the
binding domains of A2A agonists and antagonists. J Med Chem 2003,
46(23):4847-4859.

39. Ji I, Zeng H, Ji TH: Receptor activation of and signal generation by the
lutropin/choriogonadotropin receptor. Cooperation of Asp397 of the
receptor and alpha Lys91 of the hormone. J Biol Chem 1993,
268(31):22971-22974.

40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

41. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010,
, 38 Database: D142-148.

42. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ,
McGarvey P, Gasteiger E: Infrastructure for the life sciences: design and
implementation of the UniProt website. BMC Bioinformatics 2009, 10:136.

43. Ballesteros JA, W H: Integrated methods for the construction of three-
dimensional models and computational probing of structure-function
relations in G protein coupled receptors. Methods Neurosci 1995,
25:366-428.

44. HMMER: Profile hidden Markov models for biological sequence analysis.
[http://hmmer.janelia.org].

45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and
Clustal × version 2.0. Bioinformatics 2007, 23(21):2947-2948.

46. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS,
Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, et al: GPCR engineering
yields high-resolution structural insights into beta2-adrenergic receptor
function. Science 2007, 318(5854):1266-1273.

47. Stitham J, Stojanovic A, Merenick BL, O’Hara KA, Hwa J: The unique ligand-
binding pocket for the human prostacyclin receptor. Site-directed

Sanders et al. BMC Bioinformatics 2011, 12:332
http://www.biomedcentral.com/1471-2105/12/332

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/12362358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12362358?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12209152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8170923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8081729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16902930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16902930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12120091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12120504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12120504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15805429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15805429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16803859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16803859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11343925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11343925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8578606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8578606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8578606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11734617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11734617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11734617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14754373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11544102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15684720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17533415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17533415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18551279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18551279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18551279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7592759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7592759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7592759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10926528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18480818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14660595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14660595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12910455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12910455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16532452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16753280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16753280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18024975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14584936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14584936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8226810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8226810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8226810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426475?dopt=Abstract
http://hmmer.janelia.org
http://www.ncbi.nlm.nih.gov/pubmed/17846036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12446735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12446735?dopt=Abstract


mutagenesis and molecular modeling. J Biol Chem 2003,
278(6):4250-4257.

48. Gerber BO, Meng EC, Dotsch V, Baranski TJ, Bourne HR: An activation
switch in the ligand binding pocket of the C5a receptor. J Biol Chem
2001, 276(5):3394-3400.

49. Poso A, Huffman JW: Targeting the cannabinoid CB2 receptor: modelling
and structural determinants of CB2 selective ligands. Br J Pharmacol
2008, 153(2):335-346.

50. Raitio KH, Salo OM, Nevalainen T, Poso A, Jarvinen T: Targeting the
cannabinoid CB2 receptor: mutations, modeling and development of
CB2 selective ligands. Curr Med Chem 2005, 12(10):1217-1237.

51. Millar RP, Lu ZL, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR:
Gonadotropin-releasing hormone receptors. Endocr Rev 2004,
25(2):235-275.

52. Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S,
Gershengorn MC: Identification of residues important for agonist
recognition and activation in GPR40. J Biol Chem 2007,
282(40):29248-29255.

53. Paterlini MG: Structure modeling of the chemokine receptor CCR5:
implications for ligand binding and selectivity. Biophys J 2002,
83(6):3012-3031.

54. Costanzi S, Mamedova L, Gao ZG, Jacobson KA: Architecture of P2Y
nucleotide receptors: structural comparison based on sequence analysis,
mutagenesis, and homology modeling. J Med Chem 2004,
47(22):5393-5404.

55. Ivanov AA, Costanzi S, Jacobson KA: Defining the nucleotide binding sites
of P2Y receptors using rhodopsin-based homology modeling. J Comput
Aided Mol Des 2006, 20:(7-8):417-426.

56. Gloriam DE, Foord SM, Blaney FE, Garland SL: Definition of the G protein-
coupled receptor transmembrane bundle binding pocket and
calculation of receptor similarities for drug design. J Med Chem 2009,
52(14):4429-4442.

57. Clark RD, Webster-Clark DJ: Managing bias in ROC curves. J Comput Aided
Mol Des 2008, 22(3-4):141-146.

doi:10.1186/1471-2105-12-332
Cite this article as: Sanders et al.: ss-TEA: Entropy based identification of
receptor specific ligand binding residues from a multiple sequence
alignment of class A GPCRs. BMC Bioinformatics 2011 12:332.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Sanders et al. BMC Bioinformatics 2011, 12:332
http://www.biomedcentral.com/1471-2105/12/332

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/12446735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11062244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11062244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17982473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17982473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15082521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17699519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17699519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12496074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12496074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15481977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15481977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15481977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19537715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19537715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19537715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18256892?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results & Discussion
	Sequence retrieval & Alignment
	Subfamily definition
	Reference set
	Ligand binding residue prediction

	Conclusions
	Methods
	Sequence retrieval
	Numbering Scheme and MSA boundaries
	Alignment
	Database
	Residue selection
	Reference Set
	Performance measure (Area Under the Log Curve)
	Benchmark

	Acknowledgements
	Author details
	Authors' contributions
	References

