
SOFTWARE Open Access

IQMNMR: Open source software using time-
domain NMR data for automated identification
and quantification of metabolites in batches
Xu Song1,2, Bo-Li Zhang1,3*, Hong-Min Liu2*, Bo-Yang Yu1*, Xiu-Mei Gao3 and Li-Yuan Kang3

Abstract

Background: One of the most promising aspects of metabolomics is metabolic modeling and simulation. Central
to such applications is automated high-throughput identification and quantification of metabolites. NMR
spectroscopy is a reproducible, nondestructive, and nonselective method that has served as the foundation of
metabolomics studies. However, the automated high-throughput identification and quantification of metabolites in
NMR spectroscopy is limited by severe spectral overlap. Although numerous software programs have been
developed for resolving overlapping resonances, as well as for identifying and quantifying metabolites, most of
these programs are frequency-domain methods, considerably influenced by phase shifts and baseline distortions,
and effective only in small-scale studies. Almost all these programs require multiple spectra for each application,
and do not automatically identify and quantify metabolites in batches.

Results: We created IQMNMR, an R package that integrates a relaxation algorithm, digital filter, and similarity
search algorithm. It differs from existing software in that it is a time-domain method; it uses not only frequency to
resolve overlapping resonances but also relaxation time constants; it requires only one NMR spectrum per
application; is uninfluenced by phase shifts and baseline distortions; and most important, yields a batch of
quantified metabolites.

Conclusions: IQMNMR provides a solution that can automatically identify and quantify metabolites by one-
dimensional proton NMR spectroscopy. Its time-domain nature, stability against phase shifts and baseline
distortions, requirement for only one NMR spectrum, and capability to output a batch of quantified metabolites are
of considerable significance to metabolic modeling and simulation.
IQMNMR is available at http://cran.r-project.org/web/packages/IQMNMR/.

Background
Metabolomics, which complements other “omic” tech-
nologies (genomics, transcriptomics, and proteomics), is
a rapidly emerging field of post-genomic research. One
of the promising aspects of this discipline is metabolic
modeling and simulation based on automated high-
throughput identification and quantification of metabo-
lites [1,2]. However, metabolomics does not feature
well-defined methods for automated high-throughput

identification and quantification of metabolites [3]. Until
recently, numerous works on metabolomics have been
restricted to qualitative studies, often the result of statis-
tical model analysis rather than metabolic modeling and
simulation [3,4].
NMR spectroscopy has served as the foundation of

metabolomics studies [3]. The primary advantages of
NMR spectroscopy are high reproducibility, non-
destructiveness, non-selectivity in metabolite detection,
and the ability to simultaneously quantify multiple
classes of metabolites [5]. However, the automated high-
throughput identification and quantification of metabo-
lites in NMR spectroscopy is limited by severe spectral
overlap [5].
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Motivated by the requirement described above,
researchers developed numerous software programs for
automated resolution of overlapping signals, as well as
metabolite identification and quantification; in these
programs, one- or two-dimensional NMR spectra and
databases of metabolite standards are used [6,7]. How-
ever, most of the existing software programs are fre-
quency-domain methods, considerably affected by phase
shifts and baseline distortions [3,5,6,8], and effective
only in small-scale studies [7]. In addition, almost all
these programs constantly require multiple spectra for
each application, and do not automatically identify and
quantify metabolites in batches [3,5,7].
In the current study, we created IQMNMR, an R

package that provides one solution that can automati-
cally identify and quantify metabolites by one-dimen-
sional proton NMR spectroscopy. It differs from existing
software in terms of the following aspects: it is a time-
domain method, uninfluenced by phase shifts and base-
line distortions; it uses not only frequency to resolve
overlapping resonances but also relaxation time con-
stants; and it requires only one NMR spectrum per
application, but outputs a batch of quantified metabo-
lites. These advantages are of considerable significance
to metabolic modeling and simulation.

Implementation
Overview of program flow and critical issues
IQMNMR is the integration of the RELAX algorithm
(relaxation algorithm) [9], digital filter, and similarity
search algorithm. Its program flowchart is presented in
Figure 1.
IQMNMR uses the RELAX algorithm, which was first

proposed by Li and Stoica in 1996 [9], to resolve over-
lapping signals. The algorithm assumes that the FID can
be decomposed into K damped complex sinusoids.

y(n) =
K∑

k=1

αkzk + ξ(n)

=
K∑

k=1

αke
(−dk+iωk)n + ξ(n)

n = 0, 1, . . . ,N − 1,

(1:1)

where ak, dk, and ωk represent the non-zero complex
amplitudes, damping factors (inverse time constants),
and frequencies; zk represents the signal poles; and ξ(n)
denotes the unobservable additive noise.
Let

yk = y(n) −
K∑

j=1,j�=k
α̂j ẑj (1:2)

The frequency and damping factor of the dominant
peak of the FID can be computed by searching the max-

imum of
∥∥zHk yk

∥∥2/
[
zHk zk

]
. Then, complex amplitude ak

can be calculated using
[
zHk zk

]−1
zHk yk.

With the above-mentioned procedures, the RELAX
algorithm can be summarized as follows [10]:
Step 1. Assume that K = 1. Then, α̂1, d̂1, and ω̂1 are

obtained from y.
Step 2. Assume that K = 2. y2 is calculated with Eq.

(1.2) using α̂1, d̂1, and ω̂1 derived in Step 1. α̂2, d̂2, and
ω̂2 are then obtained from y2. Then, y1 is computed
with Eq. (1.2) using α̂2, d̂2, and ω̂2. We then re-deter-
mine α̂1, d̂1, and ω̂1 from y1.
The first two steps are iterated until practical conver-

gence is achieved (refer to the help files of IQMNMR).
Step 3. Assume that K = 3. y3 is computed with Eq.

(1.2) using α̂1, d̂1, ω̂1, α̂2, d̂2, and ω̂2 obtained in Step 2.
Subsequently, α̂3, d̂3, and ω̂3 are derived from y3. Next,
y1 is re-calculated with Eq. (1.2) using α̂2, d̂2, ω̂2, α̂3, d̂3,
and ω̂3. α̂1, d̂1, and ω̂1 are then re-determined from y1.
After which y2 is re-calculated with Eq. (1.2) using α̂1,
ω̂1, ω̂1, α̂3, d̂3, and ω̂3, α̂2, d̂2, and ω̂2 are re-determined
from y2.
The previous steps are iterated until practical conver-

gence is achieved (refer to the help files of IQMNMR).
The procedures are repeated until K is equal to the

desired value (see the help files of IQMNMR).
Simulation examples and practical applications have

demonstrated that the RELAX algorithm is accurate and
robust [10,11]. The algorithm uses not only frequency
to resolve overlapping resonances but also relaxation
time constants [10], and has a resolution superior to
that of FFT when FIDs are strongly damped or trun-
cated [12]. As an iterative algorithm, however, its com-
putational burden increases exponentially with the
number of signals.
With the development of computer processor technol-

ogies, digital filtering has been increasingly used for
NMR raw data processing [13]. A digital filter can sup-
press undesirable frequency ranges and maintain desired
frequency ranges, as well as improve signal-to-noise
ratio and overall sensitivity [13].
To reduce the heavy computational burden of the

RELAX algorithm, a digital filter was integrated into
IQMNMR. The digital filter is a symmetrical finite
impulse response (FIR) bandpass filter. Figure 2 shows
the amplitude response and phase response. The fre-
quencies in the bandwidth of FID are modulated to the
range of the passband before filtering, and then modu-
lated back. Consequently, the input file (FID) is filtered
into sub-bands.
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As the input file (FID) is filtered into sub-bands, the
total number of steps required by the RELAX algorithm
decreases, and the computation could be parallelized.
Parallel computing can be efficiently performed by
cloud computing. An example is Amazon’s Elastic Com-
pute Cloud http://aws.amazon.com/ec2/, which was
used in the field of comparative genomics[14]. In cloud
computing, the time consumed by IQMNMR is substan-
tially reduced. Digital filtering and cloud computing
enable IQMNMR to be a high-throughput method.
After resolving each sub-band into damped sinusoids

IQMNMR only keeps damped sinusoids that are within a
specific frequency range. This range is less than the pass-
band range of the sub-band to decrease the influence of
the Gibbs effect, which stems from the digital filter. The
passband range of each sub-band overlaps with that of
adjoining sub-bands to avoid information loss.
Several metabolomic databases have emerged to serve

as bioinformatics resources for identifying common

metabolites from experimental data [15,16]. The Madi-
son Metabolomics Consortium Database [16]http://
mmcd.nmrfam.wisc.edu/, for instance, has collected
information on more than 20,000 metabolites. There-
fore, prior knowledge data sets containing the standard
spectra of targeted metabolites can be created on the
basis of these metabolomic databases.
The results of the RELAX algorithm are amplitudes,

frequencies, and damping constants (the reciprocal of
relaxation time constants). The initial time-domain
amplitude of an NMR resonance is proportional to the
frequency-domain area under the NMR spectral absorp-
tion mode peak. A cosine similarity measure [17] can be
constructed on the basis of amplitudes (which are
located in specific frequency ranges) and prior knowl-
edge data sets. This way, the targeted metabolites are
identified by the similarity search algorithm. The total
number of hydrogen nuclei that generate the resonance
lines of a targeted metabolite is directly proportional to

Figure 1 The program flowchart of IQMNMR. This is the program flowchart of IQMNMR. Relaxation algorithm and similarity search algorithm
are parallelized.
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the sum of integrated signal areas of the targeted meta-
bolite. The targeted metabolites and internal standard
are the components of the same sample, so that both
have the same variation in receiver gain, probe design,
etc. In this manner, the targeted metabolites can be
quantified by comparing the amplitudes of the targeted
metabolites and the internal standard.

Workflow overview
IQMNMR is a fully automated method. Identifying and
quantifying targeted metabolites entails only two steps.

Step one: creating prior knowledge data sets of targeted
metabolites
The prior knowledge data set consists of two tables:
“lists_metabolites” and “space_x.” The “lists_metabo-
lites” table contains information on the molecular con-
stitutions of targeted metabolites and experimental
conditions of standard one-dimensional proton NMR
spectroscopy. The “space_x” table contains information
on the chemical shifts of targeted metabolites and area
ratios of intra-molecular peaks. The variable descrip-
tions of these tables are listed in the help files of
IQMNMR.

We created a prior knowledge data set using the
Madison Metabolomics Consortium Database as basis
[16]. The aforementioned tables can be loaded by typing
“data(lists_metabolites); data(space_x)” in the R com-
mand console. Furthermore, users can collect data and
create prior knowledge data sets according to this
paradigm.

Step two: identifying and quantifying metabolites
The function “identify_quantify” uses the RELAX algo-
rithm, digital filter, and similarity search algorithm to
automatically resolve overlapping signals, as well as
identify and quantify targeted metabolites. Its arguments
are listed in the help files of IQMNMR. This function
outputs a table that presents the names, concentrations,
and cosine similarity measures of targeted metabolites.

Results and Discussion
A simulated one-dimensional proton NMR experiment
was carried out to illustrate the functionality of
IQMNMR. IQMNMR provides four functions: “select_-
metabolites,” “NMR_experiment,” “NMR_spectra,” and
“identify_quantify” for users to select metabolites and
true concentrations, generate simulated FID, present

Figure 2 The amplitude response and phase response of the digital filter. This figure shows the amplitude response and phase response of
the digital filter.
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NMR spectrum, and identify and quantify targeted
metabolites. Figure 3 shows the simulated NMR fre-
quency spectrum. Table 1 shows the true concentra-
tions, measured concentrations, and related errors. The
relative error is defined as follows:

relative error =
|m − r|

r
× 100 (1:3)

where “m“ and “r“ are the measured and real concen-
trations of targeted metabolites, respectively. The identi-
fication rate is defined as the number of identified
metabolites divided by the total number of targeted
metabolites. A metabolite is identified if its true and
measured concentrations are higher than zero, or if its
true and measured concentrations equal zero.
Figure 3 shows clear phase shifts and baseline distor-

tions. As a time-domain method, IQMNMR is stable
against phase shifts and baseline distortions. Table 1
presents the result of IQMNMR. The mean of related
errors is 29.52%; the standard deviation of related errors
is 23.70%; and the identification rate is 96.36%. Given
that FID is filtered into sub-bands and the computation
is parallelized, cloud computing [14] can substantially
reduce the time consumed by IQMNMR. On the basis
of these results, we conclude that IQMNMR provides
one solution that can automatically identify and quantify
metabolites in batches.
Quantification in metabolomics is generally performed

by either absolute or relative quantification. Absolute
quantification uses an internal standard to determine
the absolute concentration. The metabolites and internal
standard are the components of the same sample.
Hence, changes in receiver gain, probe design, etc. are
the same for the metabolites and internal standard. The
signal intensities in an NMR spectrum only depend on
the molar concentrations of the sample [18]. Conse-
quently, the absolute concentrations of metabolites can
be easily obtained after using RELAX and similarity
search algorithms by comparing the amplitudes of the

targeted metabolites and the internal standard. In rela-
tive quantification, the metabolite signal intensity is nor-
malized to that of a specific metabolite, which is the
component of the same sample. In principle, absolute
quantification encompasses relative quantification. If the
absolute concentrations of the metabolites are known,
their relative ratios can be easily calculated. Additionally,
for relative quantification, an accurate determination of
the internal standard concentration is unnecessary.
The quantitative error is affected by color noise, white

noise, the Gibbs effect of a digital filter, and signal over-
lapping. The RELAX algorithm performs well in the
presence of colored noise, white noise, and signal over-
lapping [10,11]. However, this algorithm is unable to
deal with the quantitative error caused by the Gibbs
effect. Oversampling technique had been used in mod-
ern NMR spectrometry [13,19,20]. Oversampling can
ensure a higher filter order, and consequently decrease
the ripple and proportion of the overshoot range in the
passband range. Therefore, oversampling can effectively
deal with the influence of the Gibbs effect. However, the
final FID generated by modern NMR spectrometry is
reduced in order to avoid a large data set. For example,
in 20-fold oversampling, the number of data points also
increases by a factor of 20 [13]. For an FID size of 64
000 data points, 20-fold oversampling results in 1.3 mil-
lion data points [13].
Presently, IQMNMR only uses information on ampli-

tude ratios and peak locations. In future editions, infor-
mation on coupling will be used. We believe that
coupling information decreases identification and quan-
tification errors.
To highlight the resolution of the RELAX algorithm,

the magnetic field strengths of the simulated FID cited
above were set to 400 MHz. Some metabolomics studies
were carried out at low magnetic field strengths (<600
MHz) [21], but a higher magnetic field leads to
increased signals resolution, thereby improving the per-
formance of the RELAX algorithm. We suggest that

Figure 3 The spectrum of simulated NMR experiment. This is the spectrum of simulated NMR experiment. The magnetic field strength was
set to 400 MHz. The internal standard is DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid). The solvent is water.
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Table 1 The results of identification and quantification

Name Measured
Concentration

(mM)

True
Concentration (mM)

Relative
error

Acetic acid 0 1.91

Adonitol 0 0

Agmatine 23.94 27.76 13.76

Alanine 0 0

beta-Alanine 8.34 14.08 40.77

alpha-Ketoglutaric acid 1.83 1.81 1.27

Methyl 4-aminobutyrate 8.70 10.95 20.50

4-(2-Aminoethyl)morpholine 0 0

Anthranilic acid 0 0

L-Arginine 0 0

L-Ascorbate 0 0

L-Asparagine 17.39 21.83 20.34

Benzoate 0 0

trans-Cinnamic acid 7.22 5.086 42.03

Citrate 3.57 2.92 22.15

Ethanol 0 0

D-Galactono-1,4-lactone 0 24.73

L-Glutamic acid 0 0

L-Histidine 0 0

Homogentisic acid 0 0

O-Succinyl-L-homoserine 0 0

Imidazole 0 0

Inosine 5’-monophosphate 0 0

L-Isoleucine 20.35 21.03 3.25

L-Kynurenine 8.048 5.48 46.76

Malic acid 22.10 27.65 20.10

N-Acetyl-D-mannosamine 10.56 17.90 41.02

L-Methionine methylsulfonium iodide 9.60 8.84 8.64

3-Methyl-2-oxobutanoic acid 0 0

Nicotinic acid 0 0

Nicotine 12.20 8.10 35.75

4-Nitrocatechol 15.70 12.02 30.65

N(alpha)-Acetyl-DL-ornithine 0 0

Phenol 0 0

Phenylacetic acid 0 0

L-Phenylalanine 10.85 21.75 50.10

DL-Pipecolic acid 0 0

Polygalacturonic acid 0 0

L-Proline 0 0

trans-4-Hydroxy-L-proline 0 0

Pyridoxal-5-phosphate 41.34 19.61 110.78

Quinolinic acid 16.69 16.51 1.04

D-Ribulose 5-phosphate 0 0

Sarcosine 0 0

L-Serine 0 0
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higher magnetic fields be used to generate FIDs for the
application of IQMNMR.
Different NMR spectrometers must use different prior

knowledge data sets acquired at the same magnetic field
strengths as the NMR spectrometer settings. Before
using this package, users must create a prior knowledge
data set that matches the magnetic field strength of
their NMR spectrometer.
Some unknown metabolites will inevitably exist in the

sample. IQMNMR assumes that FID is modeled as the
sum of sinusoidal, autoregressive noise, and white gaus-
sian noise signals. Whether these signals are known, the
digital filter separates FID into sub-bands, the RELAX
algorithm decomposes these sub-bands into their consti-
tuent signals, and the similarity search algorithm identi-
fies the signal combinations that match the prior
knowledge data set and quantifies them. Future editions
will involve the generation of resultant NMR data that
contain only the remaining sinusoidal and noise signals,
so that further analysis can be performed by users.
IQMNMR reduces spectral data to a batch of quanti-

fied metabolites that is more beneficial than spectral
binning. The batch of metabolites can be directly used
as input variables in principal component analysis or
metabolic modeling and simulation.
Although IQMNMR provides for metabolomics identi-

fication and quantification, validation via application to
real samples (i.e., complex multicomponent systems)
should be a prerequisite for practicality. Metabolomics
reflects a paradigm shift from reductionism to holism
[22]. The key to its success is multi-disciplinary colla-
boration [22].

Conclusions
Metabolite identification is the foundation of metabolo-
mics. The quantification of metabolites is a state-of-the-
art approach. IQMNMR provides one solution that can
automatically identify and quantify metabolites in
batches by one-dimensional proton NMR spectroscopy.
It is a time-domain method that features stability against
phase shifts and baseline distortions. It uses not only

frequency to resolve overlapping resonances but also
relaxation time constants. It requires only one NMR
spectrum per application, and produces a batch of quan-
tified metabolites. These features are of considerable sig-
nificance to metabolic modeling and simulation.

Availability and requirements
Project name: IQMNMR
Project home page: http://cran.r-project.org/web/

packages/IQMNMR/
Operating systems: UNIX or MAC
Programming language: R
Other requirements: None
License: GNU GPL
Any restrictions on use by non-academics: None

List of abbreviations
NMR: nuclear magnetic resonance; FID: free induction decay; RELAX
algorithm: relaxation algorithm; FFT: fast Fourier transform
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