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Abstract

google.com/p/my-project-bpredictor/downloads/list.

Background: Antigen-antibody interactions are key events in immune system, which provide important clues to
the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are
directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes
is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most
B-cell epitopes are discontinuous (or conformational), insufficient effort has been put into the conformational
epitope prediction, and the performance of existing methods is far from satisfaction.

Results: In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction
performance, including the impact of interior residues, different contributions of adjacent residues, and the
imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above
issues, we take following strategies. Firstly, a concept of ‘thick surface patch’ instead of ‘surface patch’is introduced to
describe the local spatial context of each surface residue, which considers the impact of interior residue. The
comparison between the thick surface patch and the surface patch shows that interior residues contribute to the
recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope
patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the
unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting
procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to
identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed
feature, and the random forest (RF) algorithm is used as the classification engine. The experiments show that our
method can predict conformational B-cell epitopes with high accuracy. Evaluated by leave-one-out cross validation
(LOOCV), our method achieves the mean AUC value of 0.633 for the benchmark bound dataset, and the mean AUC
value of 0.654 for the benchmark unbound dataset. When compared with the state-of-the-art prediction models in
the independent test, our method demonstrates comparable or better performance.

Conclusions: Our method is demonstrated to be effective for the prediction of conformational epitopes. Based on
the study, we develop a tool to predict the conformational epitopes from 3D structures, available at http://code.

Background

Within an immune system, antigen-antibody (Ag-Ab)
interaction plays a critical role in the immune processes
and responses, and the sites on antigens that are recog-
nized and bound by B cell-produced antibodies are well
known as B-cell epitopes [1]. B-cell epitopes can be used
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to synthesize peptides that elicit the immune response
with specific cross-reacting antibodies [2,3]. For this rea-
son, the identification of B-cell epitopes becomes a criti-
cal component of epitope-based vaccine design. B-cell
epitopes can be categorized into two types: linear (con-
tinuous) epitopes and conformational (discontinuous)
epitopes. Linear epitopes comprise residues that are con-
tinuous in the sequence, while conformational epitopes
consist of residues that are distantly separated in the
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sequence but have spatial proximity. The wet experiment
for the epitope identification is time-consuming, labor-
intensive, and expensive. With increasing availability of
experimentally derived epitopes, it becomes possible to
develop computational methods for epitope prediction
[4], which are faster and more economical.

In the past, researchers had been focusing on the predic-
tion of linear epitopes. The classic way of predicting linear
B-cell epitopes is based on amino acid propensities [5-10].
These commonly used propensities are hydrophilicity
scale, flexibility scale, surface accessibility scale, exposed
residue scale, beta-turn scale, antigenicity scale, polarity
scale and so on. However, these methods are proved to be
marginally better than random models [11]. Subsequently,
various machine learning methods were introduced into
B-cell epitope prediction, such as HMM [12], decision tree
[13], nearest-neighbor method [13], ANN [14] and SVM
[15-17]. The machine learning-based models can well
describe the nonlinear relationship between propensities
and the location of linear epitopes, and thus lead to the
improved performance. However, these linear epitope pre-
diction methods cannot be used to predict conformational
epitopes, which take majority of the epitopes.

A limited number of methods have been proposed for
the conformational epitope prediction. Unlike the linear
epitopes that are usually determined by the linear pep-
tide segments, the conformational epitopes are mostly
influenced by spatial adjacent regions. The locations of
epitopes are often considered to be correlated with
some physicochemical and structural features of spatial
adjacent regions. CEP used the ‘solvent accessibility’ of
amino acids to identify epitopes [18]. DiscoTope com-
bined the surface accessibility, spatial information and
amino acid statistics information to distinguish epitopes
from non-epitope regions [19]. PEPITO was proposed
by combining amino-acid properties and half sphere
exposure values at multiple distances [20]. ElliPro is a
web-tool that is based on Thornton’s method and a resi-
due clustering algorithm [21]. In SEPPA [22], two con-
cepts ‘unit patch of residue triangle’ and ‘clustering
coefficient’ were introduced to describe the local spatial
context and spatial compactness. Moreover, some pro-
tein-protein docking methods such as PatchDock [23]
and ClusPro [24] can be used for the epitope prediction
as well.

Recently, the spatial context of an antigen residue is
usually described by a concept of ‘surface patch’, which
consists of some spatially nearest surface residues and the
considered residue itself (named ‘central residue’ of the
patch). The patches can be classified into two types, the
non-epitope patch and the epitope patch, according to the
states of the central residues (non-epitope or epitope).
Thus, the epitope prediction can be formulated as a binary
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classification problem (or regression in some methods). By
using the surface patch, some machine learning methods
have been applied to the conformational epitope predic-
tion. EPITOPIA used several structural and physicochem-
ical features to represent the surface patch [25,26], and
adopted the naive Bayes classifier to make predictions.
EPCES [27] introduced a consensus scoring method based
on different structural and physicochemical terms. By
using similar features, EPSVR [28] adopted the SVM
regression to make predictions. EPMeta [28] is a meta
model that ensembles the results from several existing pre-
diction servers. Liu used the logistic regression to predict
the conformational epitopes based on the structural infor-
mation [29]. In addition to the structure-based methods, a
sequence-based method is recently proposed to predict
the conformational epitopes [30].

Although several methods were proposed for conforma-
tional epitope prediction, the reported performance is far
from satisfaction. There are some possible points concern-
ing the epitope prediction performance: (1) for antigens,
there are much more non-epitope residues than epitope
residues; (2) the spatial characteristics of the epitopes is
usually described by the surface patch, which consists of
adjacent surface residues, but interior residues are not
included in the patch or evaluated; (3) the residues in a
patch may make different contributions to the location of
epitopes, and the different contributions should be quanti-
tatively represented.

In order to design the optimal model, we take following
strategies. Firstly, we propose a novel concept named
‘thick surface patch’ to describe the spatial characteristics
of antigen residues, which include adjacent surface resi-
dues as well as interior residues. The study demonstrates
the thick surface patch can yield better results than the
surface patch, and indicates that adjacent interior residues
indeed contribute to the recognition of conformational
epitopes. Secondly, we observe the statistical significance
of the distance distribution difference between epitope
patches and non-epitope patches. Consequently, a dis-
tance-based adjacent residue distance feature (ARD) is
proposed to differentiate the contributions of residues in a
patch. Thirdly, a sophisticated bootstrapping and voting
procedure is introduced to deal with the imbalanced data-
set. Here, random forest [31] is used as the classification
engine. Random forest algorithm has gained popularity in
the bioinformatics community in recent years, successfully
solving lots of similar problems, such as protein-protein
binding site prediction and protein-DNA binding site pre-
diction [32-36]. Based on above strategies, we develop a
novel method for predicting B-cell conformational epi-
topes by using the random forest (RF) algorithm with the
combination of the adjacent residue distance feature and
several conventional features.
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Methods

Datasets

Datasets used in the studies are relevant to their goals
and scopes. Some conformational epitope prediction
models are constructed on the bound structures, while
others are built on the unbound structures. Therefore,
we use both bound and unbound dataset to evaluate
and compare models.

We use the dataset published by Rubinstein as the
benchmark bound dataset [26]. The bound dataset con-
sists of 66 non-redundant Ag-Ab structures, available at:
http://epitopia.tau.ac.il/trainData/.

We use the Liang’s dataset as the benchmark unbound
dataset [28]. Liang’s dataset is compiled as follows: (1) 22
antigen-antibody complexes and their unbound struc-
tures were sourced from protein docking Benchmark 2.0
[37]; 59 representative antigen-antibody complexes were
provided by [38]; 17 antigen-antibody complex structures
were collected from [27]; (2) these structures were
merged, and the complexes without available unbound
structure were removed. Finally, a total of 48 complexes
and their unbound structures were retained as the bench-
mark unbound dataset, available at: http://sysbio.unl.edu/
services/.

In addition, the independent test set compiled from
entries of the Conformational Epitope Database (CED)
[39] is used, which contains 19 antigen structures with
annotated epitopes. This dataset is available at: http://
sysbio.unl.edu/services/.

We compile a benchmark dataset of 83 antigen
sequences from Rubinstein’s structure dataset, available
at http://code.google.com/p/my-project-bpredictor/
downloads/list. Hence, we can fairly compare the
sequence-based models with structure-based models.

Epitope definition

There are several definitions ever used for the epitopes
inferred from the X-ray structures of Ag-Ab complexes,
such as the accessible surface area loss upon antibody
binding or the distance between antigen residues and anti-
body residues. However, the study in [38] indicated that
different epitope definitions are likely to give out similar
results. Hence, we follow the commonly used distance-
based definition. Specifically, an antigen residue separated
from any antibody residue by a distance less than 4A is
defined as an epitope residue, and the distance between
two residues is measured by the minimal Euclidean dis-
tance between the centers of any of their non-hydrogen
atoms.

Thick surface patch

A residue is defined as the surface residue, if its relative
accessible surface area (RASA) calculated by DSSP pro-
gram [40] is more than 5%. When using the surface
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patch to describe the spatial characteristics of antigen
residues, the epitope residues and non-epitope residues
are considered to be distinct with respect to their sur-
face patches. We notice that the surface patch only
include the surface residues, therefore this raises a ques-
tion: are the adjacent interior residues unimportant or
unnecessary for the representation of spatial context?
Clearly, the interior residues cannot be epitope residues,
but it does not mean that they cannot influence surface
residues, and the interior residues may contribute to the
formation of epitope sites. In order to address the issue,
the impact of interior residues cannot be neglected and
should be investigated. In this study, we propose a new
concept ‘thick surface patch’. Formally, the thick surface
patch of a surface residue is defined as a set of # nearest
adjacent residues, including interior neighbors as well as
surface neighbors. For simplicity, the thick surface patch
and the surface patch are generally named ‘residue
patch’ in the following sections.

Adjacent residue distance feature

The residue patch is critical for the conformational epi-
tope prediction. However, contributions of residues in a
patch may be distinct and depend on their distances to
the central residue. Since existing methods usually used
the patch of 20 residues, the analysis is implemented on
the patch of this size.

To test whether the distances between adjacent resi-
dues and the central residue have impact on the state of
the central residue, we calculate the average distance
between adjacent residues and the central residue, and
the average distance is compared between epitope
patches and non-epitope patches for each central resi-
due type. The results reveal that non-epitope patches
have significantly less average distance than epitope
patches (P = 1.59 x 10'° by paired t-test for the bound
dataset, see Figure 1).

For further test, we compare the distance between kth
nearest adjacent residues (k = 1, 2... 20) and the central
residue in epitope patches versus non-epitope patches.
The results show that the distance distribution in epi-
tope patches is significantly different from that of non-
epitope patches (P = 1.20 x 107 by paired t-test for the
bound dataset, see Figure 2).

According to the statistical analysis on the bound
dataset, it is observed that the average distance of the
patch and the distance distribution of the patch may
help to distinguish the epitope patches from non-epi-
tope patches. The similar conclusion can be drawn for
the unbound dataset (data not shown).

Based on the above study, we propose an adjacent
residue distance feature based on the distance between
the adjacent residue and the central residue, which is
defined as follows:
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Figure 1 Average distance (A) between adjacent residues and
the central residue in epitope patches versus non-epitope
patches (for the bound dataset). X axis means the central amino
acid type in the patch, and Y axis means average distance between
adjacent residues and the central residue.
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Figure 2 Distance (A) distribution in epitope patches versus
non-epitope patches (for the bound dataset). X axis means Kth

nearest residues for a central residue (k = 1, 2, .., 20). Y axis means
average distance between Kth nearest residues and the central
residue.
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Descriptors for residue patch

While constructing prediction models, each patch
should be represented as a feature vector by using phy-
sicochemical and structural features. In addition to the
adjacent residue distance feature, several popular physi-
cochemical and structural features are used.

Relative accessible surface area: it is an important fac-
tor influencing the antigen-antibody binding, and the
greater relative area of a surface residue means the
greater probability of being an epitope residue. The rela-
tive accessible surface area of a residue is calculated by
dividing its accessible surface area with the accessible
surface area of fully exposed amino acid. The accessible
surface areas of surface residues are calculated by using
DSSP program [40], and the fully exposed amino acid
area can be obtain from [41].

Evolutionary conservation: Generally speaking, func-
tional regions on protein surfaces are usually more evo-
lutionarily conserved than other regions, but the study
on antigen crystal structures draws opposite conclusion.
Statistical test reveals that evolutionary conservation can
significantly distinguish epitopes from non-epitope
region [42]. In order to calculate conservation scores,
the primary sequence of the antigen chain we want to
predict is aligned to the non-redundant protein database
by using BLAST program (round of iteration is set to
3), and a position specific scoring matrix (PSSM) is
returned. Then, the conservation score of the residue at
the sequence position i is calculated by following func-
tion:

[Mjr — Byl lf M — By <0

Score = { 0 else

Here, M;, is the value of residue type r at the
sequence position i, according to the PSSM, and B,, is
the diagonal element of BLOSUMG62 for residue type r.
The same function is used in [28].

Secondary structure: secondary structures are proved
as important factors for the Ag-Ab interaction, and epi-
topes are likely to have specific secondary structure ele-
ments versus non-epitope surfaces [42]. Here, we use
DSSP to calculate the secondary structures of surface
residues, and each secondary structure (helix, sheet or
coil) is represented as a three-bit string, such as (1, 0,
0), (0, 1, 0) and (0, 0, 1), respectively.

Amino acid composition: amino acid composition is
widely used in protein function analysis and classification.
In the Ag-Ab interaction, some amino acid types are sig-
nificantly overrepresented in epitopes, and others are
underrepresented, thus the amino acid composition can
be used to differentiate epitope patches from non-epitope
patches [42]. For a patch, the percentage of each amino
acid type is calculated as the amino acid composition.
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With respect to these physicochemical and structural
features, each residue in a residue patch can be repre-
sented as a feature vector of 7 dimensions (1 for relative
accessible surface area, evolutionary conservation, the
adjacent residue distance, and amino acid composition,
respectively, 3 for secondary structure). As a result, a
patch of n residues is represented by a 7 x n -dimen-
sional feature vector.

The strategy for the imbalanced dataset

In fact, a great number of real datasets are imbalanced, in
which the instances from one class take majority of the
data. The common machine learning methods cannot well
handle the imbalanced dataset, and they are usually com-
bined with some strategies to solve the problem. There are
two common approaches to deal with the imbalanced
datasets. One approach is assigning a high cost to the mis-
classification of minority class and redesigning the classi-
fier by minimizing the error rate. The other is downsizing
the majority class or upsizing the minority class.

An approach based on data bootstrapping and voting
is used here to deal with the imbalanced data, summar-
ized as follows,

1. Let A be the training set, A” be the set of negative
instances and A" be the set of positive instances, and
there are much more negative instances than positive
instances;

2. Random data sampling is implemented n times on
the set A™ to obtain n data subset A; whose size is equal
to the size of A%, i =1, 2, ...,

3. Combined each A; and A" to generate # different
training sets, i = 1, 2, ..., #, and a random forest model
can be built on one training set. Totally, # models can
be obtained;

4. Given a new instance, # random forest models (sub-
classifier) will make 7 decision values (binary value), and
the voting strategy is utilized to make the final decision.

Random forest and data bootstrapping are implemen-
ted by Weka package [43], and default parameters are
adopted.

Performance evaluation metrics

The performance of the models is evaluated by LOOCV
and the independent test. In the study, LOOCV proce-
dure is slightly different. For a dataset of n structures,
each time, n-1 structures are used to train the model,
and one structure is used to test the model. In the inde-
pendent test, the prediction models are trained on the
training set, and then they are tested by the independent
test structures.

The performance of models is scored by several
metrics, i.e. sensitivity (SN), specificity (SP), F-measure
(F), accuracy (ACC) and the area under ROC curve
(AUC).
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Where TP, TN, FP and FN are the number of true posi-
tives, the number of true negatives, the number of false
positives and the number of false negatives. Here, AUC is
used as the primary evaluation metric. In order to calcu-
late AUC, we use a voting cutoff to make final prediction,
and then change the cutoff to obtain different SN and SP.
The scores of SN, SP, ACC and F in the following tables
are calculated at the cutoff that half the number of all
sub-classifiers give out the positive decision.

Results and discussions

Performance of models based on the surface patch and
thick surface patch

In order to evaluate the impact of interior residues, the
surface patch-based prediction models and the thick
surface patch-based models are built by combining con-
ventional features (amino acid composition, secondary
structure, conservation, and relative accessibility area).
Evaluated by LOOCYV, the performance of models on
the bound dataset and the unbound dataset are pre-
sented in Table 1 and Table 2 respectively.

In Table 1, the models based on the surface patch
achieve the mean AUC value of 0.611 for the patches of
different sizes (from 12 to 20 residues). The models based
on the thick surface patch achieve the mean AUC value of
0.619. For different patch sizes, the thick surface patch
yields consistently better results than the surface patch. As
shown in Table 2, the performance enhancement can be
observed on the unbound dataset, regardless of the patch
size. The results indicate that the thick surface patch is
likely to contain more useful information for distinguish-
ing epitope residues from non-epitope residues.

The usefulness of interior residues in the thick surface
patch is further analyzed. Figure 3 shows the relative
occurrence of the 20-residue thick surface patches with
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Table 1 Performance of the models on the bound dataset, evaluated by LOOCV

Surface patch Thick surface patch
Patch size AUC F ACC SN SP AUC F ACC SN SP
12 0.609 0.217 0.712 0412 0.748 0618 0.220 0.713 0407 0.750
14 0610 0.213 0.707 0407 0.743 0616 0216 0.712 0403 0.748
16 0614 0.218 0.720 0410 0.759 0.620 0219 0.722 0404 0.765
18 0611 0.218 0.720 0408 0.760 0619 0.225 0.724 0405 0.764
20 0612 0.220 0.729 0.398 0.771 0621 0.226 0.731 0403 0.774
Mean 0611 0.217 0.718 0407 0.756 0619 0.221 0.720 0404 0.760

different number of interior residues. It is observed that
most of the thick surface patches include 4, 5, 6 or 7
interior residues. The surface residues are thought to
make more contribution to the epitope prediction, given
the much larger number of surface residues than inter-
ior residues in the patches.

Performance of models using feature combination
In the section, we investigate the predictive power of the
adjacent residue distance feature (ARD). In the following
content, the size of patch is set to 20, for the patch size is
widely used in the epitope prediction. Based on the thick
surface patch, models based on individual features and
their combination are built and evaluated. Table 3 pre-
sents the performance of individual features and their
combination on the benchmark bound dataset and
benchmark unbound dataset, evaluated by LOOCV.

According to Table 3, the relative accessible area is
most important for the epitope prediction among the
conventional features, with the mean AUC values of
0.570 on the bound dataset and 0.618 on the unbound
dataset. ARD is a useful feature that produces the mean
AUC values of 0.589 on the bound dataset and 0.627 on
the unbound dataset. Moreover, the combination of con-
ventional features and ARD yields the better results than
using only conventional features, with the mean AUC
scores of 0.633 and 0.654 for the bound dataset and
unbound dataset, respectively.

The contact number is a feature used by some existing
methods. The contact number for a given residue is the
number of alpha carbon atoms within a certain distance

threshold (e.g. 10A). Since the alpha carbons of the bur-
ied residues are calculated as well, the effect of interior
residue is more or less considered in the contact number.
The model using this individual feature can produce the
mean AUC values of 0.565 and 0.619 on the bound data-
set and unbound dataset, respectively. However, the con-
tact number assigns an equal weight to every adjacent
residue regardless of the distance to the central residue.
The experiments are further carried out to evaluate the
advantage of the thick surface patch and the adjacent
residue distance feature over the contact number. As
shown in Table 4, the thick surface patch-based models
that combine ARD and conventional features produce
better performance than the surface patch-based models
that combine the contact number and conventional fea-
tures. Moreover, incorporating the contact number into
our model cannot make further improvement, which
may be attributed to the redundant information between
the contact number and the thick surface patch.

Comparing random forest with SVM and ANN

In addition to the random forest (RF), SVM and ANN are
two popular machine learning methods in bioinformatics.
For the purpose of comparison, SVM and ANN are used
to construct the prediction models (implemented by
Weka), and the default parameters are adopted. All mod-
els are construed based on the thick surface patch by
combining four conventional features and ARD. As
shown in Table 5, ANN-based models and SVM-based
models can’t yield better results than RF-based models.
SVM is a state-of-the-art machine learning method, but

Table 2 Performance of the models on the unbound dataset, evaluated by LOOCV

Surface patch

Thick surface patch

Patch size AUC F ACC SN SP AUC F ACC SN SP
12 0633 0.243 0.651 0.524 0.671 0.639 0.245 0.662 0497 0.684
14 0.631 0.230 0.658 0477 0.684 0.640 0.247 0.671 0497 0.696
16 0635 0.248 0.667 0497 0.690 0.643 0.253 0.667 0518 0.687
18 0636 0.235 0.657 0466 0.683 0.644 0.246 0.658 0.505 0.680
20 0637 0.230 0.655 0478 0679 0.645 0.237 0.655 0495 0678
Mean 0634 0.237 0.658 0488 0.681 0.642 0.246 0.663 0.502 0.685
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its performance is sensitive to different values of para-
meters. The structure of ANN is even more complex
than SVM. The parameter optimization of ANN and
SVM is extremely time-consuming in the study. Since RF
runs much faster than SVM and ANN (more than ten
times faster in Weka) and demonstrates better perfor-
mance with the default parameters, RF is used as a classi-
fication engine in the study.

Comparison with other methods
In recent years, several methods have been proposed to
predict conformational epitopes, such as CEP [18], Disco-
Tope [19], PEPITO [20], ElliPro [21], SEPPA [22], Epito-
pia [25,26], EPCES [27], EPSVR [28] and EPMeta [28].
According to the datasets for model training, these meth-
ods can be classified into two types, methods trained on
the unbound structure and methods trained on the
bound structure. Generally speaking, CEP, ElliPro,
SEPPA, PEPITO, DiscoTope and Epitopia are designed
to predict epitopes from bound structures, while EPCES,
EPSVR and EPMeta are constructed to predict epitopes
from unbound structures.

First of all, we compare our method with the bound
dataset-based prediction tools on the benchmark bound
dataset. According to Rubinstein’s work [25], CEP,

DiscoTope, ElliPro and Epitopia produce the mean AUC
values of 0.53, 0.62 and 0.59 and 0.6 on the benchmark
bound dataset. By using the same dataset, our method
produces the mean AUC value of 0.633. The results of
CEP, DiscoTope, ElliPro are obtained by their servers.
We notice that part of the bound dataset has been used
to build these online servers; therefore some structures
may be included in both training set and test set.
Obviously, the results produced by the servers of CEP,
DiscoTope, and ElliPro overestimated the actual perfor-
mance of these methods. The results of Epitopia and
our method are produced on the same dataset by the
same LOOCYV procedure, and the direct comparison
demonstrates the superior performance of our method.
Generally, our method produces better results than
these benchmark methods on the bound dataset.
Further, we compare our method with the unbound
dataset-based methods on the benchmark unbound data-
set. Evaluated by LOOCYV, our model achieves the mean
AUC value of 0.654 on the benchmark dataset. As
reported in [26], EPSVR and EPCES give out the mean
AUC values of 0.670 and 0.644, respectively, by using the
same dataset and exactly the same assessment measures.
The superior performance of our method and EPSVR is
attributed to the utilization of machine learning methods.

Table 3 Performance of based models using individual feature and their combination, evaluated by LOOCV

Bound dataset

Unbound dataset

Feature AUC F ACC SN SP AUC F ACC SN SP
Conservation 0.554 0.186 0634 0418 0.660 0.558 0.188 0.604 0445 0634
Composition 0.563 0.163 0.747 0.275 0.801 0.566 0.147 0.708 0.244 0.774

Secondary structure 0.510 0.161 0627 0.297 0.733 0.531 0.167 0.642 0372 0.690
Accessible area 0.570 0.192 0.593 0470 0.605 0618 0.241 0.562 0616 0.548
ARD 0.589 0.206 0620 0487 0633 0627 0.243 0.585 0.578 0.588
Combination 0633 0.227 0672 0490 0.692 0.654 0.256 0.608 0.601 0.606
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Table 4 The performance of our model and the model using the contact number
Bound dataset Unbound dataset
Model AUC F ACC SN SP AUC F ACC SN SP
Contact Number 0.565 0.188 0.621 0468 0.638 0619 0.241 0.573 0.601 0.558
ARD 0.589 0.206 0.620 0487 0.633 0.627 0.243 0.585 0578 0.588
CF+CN 0618 0.212 0.670 0444 0.695 0.649 0.259 0631 0.572 0.634
CF+ARD 0.633 0.227 0.672 0.490 0.692 0.654 0.256 0.608 0.601 0.606
CF+ARD+CN 0.623 0.215 0.654 0481 06717 0.646 0.243 0.593 0.587 0.589

Contact Number and ARD mean the models using the contact number and ARD. CF+CN represents the model based on the surface patch by combining the
conventional features and contact number; CF+ARD represents our model based on the thick surface patch by combining the conventional features and ARD. CF
+ARD+CN means the altered edition of our method that incorporates the contact number.

Although EPSVR gives out the better result than our
method, the announced result is actually the best result
that EPSVR can achieve, for EPSVR adopts the SVM
parameters that give out the best result of LOOCV.
Therefore, our model that adopts the default parameters
produces the comparable performance.

In addition, an independent test set of 19 structures
are used to compare different tools and models. The
mean AUC values of DiscoTope, PEPITO, SEPPA, EPI-
TOPIA, EPCES and EPSVR calculated by their servers
are 0.567, 0.570, 0.576, 0.579, 0.586 and 0.597. Our
models are trained on the benchmark bound dataset
and unbound dataset, respectively, and then these mod-
els are evaluated by the independent test set. The bound
dataset-based model produces the mean AUC value of
0.589 for 19 structures; while the unbound dataset-
based model gives out the mean AUC value of 0.598. By
trained on the same bound dataset, our model produces
the better result (AUC: 0.589) than EPITOPIA (AUC:
0.579) for 19 structures. By trained on the same
unbound dataset, our model produces better result than
EPCES (0.598 versus 0.586), and slightly better than
EPSVR. EPMeta is a meta server that ensembles the
results of DiscoTope, PEPITO, SEPPA, EPITOPIA,
EPCES and EPSVR, and it gives out the mean AUC
value of 0.638. Nevertheless, our method is better than
or comparable to any independent method in the inde-
pendent test. The general tendency of the prediction
precision of all methods is shown in Figure 4.

We further use the paired t-test to test differences
between different methods, in which the predicted AUC
scores of the test structures are used. Since the statisti-
cal analysis usually requires a great number of samples,

the limited number of structures in the study leads to
no statistical significance (p-value > 0.05).

It is observed that the results in the independent test
are significantly poorer (AUC < 0.6) than the results in
the LOOCV (AUC > 0.62 for the unbound data and
AUC > 0.65 for the bound data). It is not difficult to
explain the performance disparity between the indepen-
dent test and LOOCV. 19 independent test structures
with annotated epitope sites are collected from the CED
dataset [39]. In CED, the annotated epitopes sites are
actually functional epitopes determined by the wet
experiment. However, computational methods for the
epitope prediction focus on the structural epitopes,
which are determined by the distance between antigens
and antibodies (or accessible surface area loss upon anti-
body binding). Therefore, all methods produce the rela-
tively poor results in independent test.

Besides structure-based prediction methods, Raghava
recently proposed a method to predict conformational
epitopes from antigen sequences [30]. In the method,
physicochemical features (PPP), sparse encoding scheme
(BPP) and amino acid composition (CCP) are used to
encode the overlapping segments from antigen
sequences, and prediction models are constructed by
using SVM. The model based on CCP gives out the best
result; therefore, it is tested and evaluated on the bench-
mark sequence dataset. As shown in Figure 5, all AUC
values produced by the model are less than 0.6, when
the window size varies from 3 residues to 15 residues.
For the corresponding structure dataset, our method
produces the AUC value of 0.633.

As mentioned in the introduction, PatchDock and
ClusPro can be used to predict the conformational

Table 5 The performance of different machine learning methods

Bound dataset

Unbound dataset

Method AUC F ACC SN SP AUC F ACC SN SP
ANN 0.588 0.213 0.557 0.5832 0.548 0627 0.245 0.532 0.668 0.505
SVM 0.595 0.213 0.543 0.606 0.533 0637 0.253 0.541 0.688 0.523

RF 0.633 0.227 0672 0.490 0.692 0.654 0.256 0.608 0.601 0.606
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Figure 4 Prediction precision of epitopes (the X axis means the

percentage of surface residues that are predicted as epitopes,
the prediction precision is averaged by the 19 test structures).

epitopes. Differing from the methods specially designed
for the conformational epitope prediction, PatchDock
and ClusPro focus on the protein-protein binding site
prediction. Although PatchDock and ClusPro may pro-
duce the high-accuracy performance on some bound
structures [38], their power for the epitope prediction is
limited by some drawbacks. Firstly, we should empha-
size that, due to the different prediction purposes,
PatchDock and ClusPro have to use the antibodies as
well as antigens while our method is identifying the
potential binding sites on the antigens when antibodies
are unknown. Technically, in the conformational epitope
prediction, the complexes including antigens and antibo-
dies are used to determine the binding sites on the anti-
gens for the purpose of labelling instances. After the

0.56

&

0.54

AUC (ROC area)

0.53
0.52
0.51

05

3 5 7 9 1" 13 15
window size

Figure 5 The performance of sequence-based models with
different window sizes, evaluated by LOOCV. The accurate AUC
scores in the figure are 0.574, 0.572, 0.576, 0.583, 0.572, and 0.567

for the window size from 3 residues to 15 residues.
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binding sites are labelled on the antigens, only the
antigen structures can be used to train and test the
prediction models because the introduction of prior
knowledge about antibodies will lead to over-estimated
performance. More importantly, for these docking meth-
ods, the performance on unbound structures is quite
unsatisfactory in comparison to the performance on
bound structures [38]. However, the unbound structure-
based prediction has more practical value. Since the pro-
posed method only requires antigen structures to make
perditions and produces satisfying results on the
unbound dataset, it has superiority over the docking
methods in the epitope prediction.

In general, our method demonstrates overall higher
prediction accuracy on the benchmark bound dataset as
well as the benchmark unbound dataset.

Conclusions

Mining the spatial context about Ag-Ab interaction and
predicting B-cell conformational epitopes are essential
for understanding the immune response and vaccine
design. In this study, we make a systematic investigation
into the basic knowledge about epitope recognition, and
aim to improve the performance of the existing meth-
ods. We develop a novel method to predict conforma-
tional epitopes based on the ‘thick surface patch’ by
combining conventional features and the ‘adjacent resi-
due distance’ feature. The experiments show that our
method yields the mean AUC value of 0.633 for the
benchmark bound dataset, and the mean AUC value of
0.654 for the benchmark unbound dataset, when evalu-
ated by LOOCYV. In the independent test, the bound
dataset-based model and unbound dataset-based model
produce the mean AUC values of 0.589 and 0.598 for 19
independent test structures, respectively. Compared with
the state-of-the-art methods, our methods show com-
parable or better performance on the independent test
set. Our study also provides biological insights into the
spatial context of residues as well as the roles of con-
ventional features in antigen-antibody interactions. The
standalone tool based on the study is available at http://
code.google.com/p/my-project-bpredictor/downloads/
list.
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