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Abstract

Background: A novel method of microarray preprocessing - Frozen Robust Multi-array Analysis (fRMA) - has
recently been developed. This algorithm allows the user to preprocess arrays individually while retaining the
advantages of multi-array preprocessing methods. The frozen parameter estimates required by this algorithm are
generated using a large database of publicly available arrays. Curation of such a database and creation of the
frozen parameter estimates is time-consuming; therefore, fRMA has only been implemented on the most widely
used Affymetrix platforms.

Results: We present an R package, frmaTools, that allows the user to quickly create his or her own frozen
parameter vectors. We describe how this package fits into a preprocessing workflow and explore the size of the
training dataset needed to generate reliable frozen parameter estimates. This is followed by a discussion of specific
situations in which one might wish to create one’s own fRMA implementation. For a few specific scenarios, we
demonstrate that fRMA performs well even when a large database of arrays in unavailable.

Conclusions: By allowing the user to easily create his or her own fRMA implementation, the frmaTools package
greatly increases the applicability of the fRMA algorithm. The frmaTools package is freely available as part of the
Bioconductor project.

1 Background
In microarray data analysis, the process of converting
probe-level flourescent intensities from a scanner to
gene-level expression estimates is commonly referred to
as preprocessing. The vast majority of preprocessing
algorithms require multiple arrays to be analyzed simul-
taneously, and in general such multi-array preprocessing
algorithms outperform single-array algorithms [1].
Therefore, it is not surprising that four of the most
widely used preprocessing algorithms - RMA [2],
gcRMA [3], MBEI [4], and PLIER [5] - are multi-array.
However, multi-array preprocessing algorithms restrict

scientific inquiry because it is necessary to analyze all
arrays simultaneously. Because data preprocessed sepa-
rately cannot be combined without introducing artifacts
[6-10], the total number of arrays one can compare is
limited by computer memory, restricting large meta-
analyses; furthermore, datasets that grow incrementally

need to be preprocessed each time an array is added.
Lastly, for microarrays to aid in clinical diagnosis and
treatment, one needs to obtain information based on a
single sample hybridized to a single microarray.
Recent work by McCall et al. (2010) provided a

method of single-array preprocessing, Frozen Robust
Multiarray Analysis (fRMA), that retains the advantages
of multi-array preprocessing. The fundamental idea
behind fRMA is a simple but powerful one - parameter
estimates are precomputed based on a large biologically
diverse database of microarrays and then frozen. These
frozen parameter estimates can then be used to prepro-
cess new array(s). In addition to allowing arrays to be
preprocessed individually or in small batches and com-
bined for subsequent analysis, fRMA resulted in
improved performance when analyzing microarray data
in the typical multi-array setting, especially when the
new data consisted of arrays from different batches [10].
It should be noted that fRMA allows the user to easily

combine Affymetrix microarrays from different batches;
however, these arrays must all be from the same plat-
form. For example, fRMA cannot be used to preprocess

* Correspondence: mccallm@gmail.com
1Department of Biostatistics and Computational Biology, University of
Rochester Medical Center, Rochester, NY, USA
Full list of author information is available at the end of the article

McCall and Irizarry BMC Bioinformatics 2011, 12:369
http://www.biomedcentral.com/1471-2105/12/369

© 2011 McCall and Irizarry; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:mccallm@gmail.com
http://creativecommons.org/licenses/by/2.0


Affymetrix Human Genome U133A and U133 Plus 2.0
arrays together. To combine different platforms, one
would need to first preprocess the data from each plat-
form separately using fRMA and then combine the data
using an additional batch correction algorithm such as
ComBat [11] or Surrogate Variable Analysis (SVA) [12].
The primary limitation of fRMA is that it requires a

curated database of microarrays to generate the frozen
parameter vectors. As such, fRMA has currently been
implemented for only the three most widely used Affy-
metrix microarray platforms - Human Genome U133
Plus 2.0, Human Genome U133A, and Mouse Genome
430 2.0. Efforts are underway to implement fRMA on
two more platforms - Arabidopsis ATH1 Genome and
Rat Genome 230 2.0.
To address this limitation, we have created an R pack-

age, frmaTools, designed to allow the user to easily cre-
ate the frozen parameter vectors necessary to run
fRMA. By decentralizing fRMA implementation, each
group can contribute a database and parameter esti-
mates specific to their area of research. We begin by
describing the frmaTools package itself and how it inter-
faces with the standard frma package. Next we examine
the size and scope of data necessary for a platform-wide
implementation of fRMA. We then turn our attention
to situations in which one might want to generate cus-
tom parameter vectors for a specific experiment.

2 Implementation
The computational tools described here are written in
the open-source statistical language R and are available
as part of the Bioconductor project [13], a collaborative
effort to produce computational tools for biological
data. As previously described in [10], we have imple-
mented the primary tools necessary to preprocess and
analyzed data from a single microarray hybridization in
the R package, frma. This package provides the funda-
mental framework for single array preprocessing and
analysis; however, it requires precomputed frozen para-
meter vectors. For platforms on which fRMA has been
already implemented these frozen parameter vectors are
contained in Bioconductor data packages of the form
<platform>frmavecs and are automatically used by frma.
To extend the fRMA algorithm to a new platform, one
need only create a data package or supply ones own fro-
zen parameter vectors directly to frma.
To preprocess single arrays using fRMA, one needs 5

frozen parameter vectors: (1) the reference normaliza-
tion distribution, (2) the probe effect estimates, (3) the
within batch residual variance, (4) the between batch
residual variance, and (5) the within probeset average
standard deviation. Optionally, a sixth vector of median
standard errors is necessary to compute a measure of
array quality. By default, the frma function attempts to

load the appropriate data package for the AffyBatch
object given as input. However, it is possible for the
user to supply some or all of the frozen parameter vec-
tors allowing the user to preprocess data using their
own fRMA implementation.
The frmaTools package was developed to allow users

to easily create their own frozen parameter vectors for
use with frma. It contains two primary functions -
makeVectorsAffyBatch and makeVectorPackage. The
former is used to create the frozen parameter vectors
used by frma; the latter both creates the vectors and
builds a R data package for them. By creating a data
package, one can share frozen parameter vectors with
other researchers and track changes over time. The
interface between the affy, frma, and frmaTools
packages can best be understood by examining a typical
workflow (Figure 1).

3 Results and Discussion
3.1 Training Data
The frozen parameter vectors used in the fRMA algo-
rithm are generated using a training dataset comprised
of a balanced sample from multiple batches. For exam-
ple, in the three current implementations of fRMA, 5
arrays from each of 200 different batches are used. In
this case, batch is defined as a unique combination of
tissue type and experiment id (e.g. normal liver from
GSE2004). Here the between batch variability in probe
effects captures all the potential differences between
experiments - different labs, different technicians, differ-
ent environmental conditions, etc. - as well as differ-
ences due to the hybridized tissue type.
One of the fundamental assumptions underlying

fRMA is that the training data is both large enough and
diverse enough that the vast majority of probes that dif-
fer in performance across batches can be detected as
such in the training data. Some probes may only per-
form poorly in a small handful of tissues or laboratory
conditions, so it is advantageous to include as many

Figure 1 Diagram of a typical workflow. A typical workflow using
the affy, frma, and frmaTools packages to obtain fRMA gene
expression estimates in the form of an ExpressionSet or
frmaExpressionSet object. Above each arrow is the function used to
transform one object into the next. The dashed lines divide the
figure by the package used.
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different tissues and experiments as possible to maxi-
mize our chance of detecting unreliable probes. When
implementing fRMA on widely used platforms for which
there is a plethora of publicly available data, it is advisa-
ble to use as many arrays as possible. This allows one to
obtain the most information about the behavoir of
probes across a wide variety of tissues and experiments.
In these situations, the size of the training dataset
should only be constrained by computer memory.
For a fixed amount of memory corresponding to a

fixed number of arrays in the training dataset, the pri-
mary question is whether it is better to include a greater
number of batches (and thereby fewer arrays per batch)
or a greater number of arrays per batch (and thereby
fewer batches). To address this question, we examined a
variety of training datasets of varying number of batches
and batch size. For each combination we repeated the
random sampling used to select the training arrays 100
times. For each set of parameter vectors, we prepro-
cessed a single average-quality array (GSM282373) and
computed the median absolute deviation (MAD) across
the 100 replicates for each probeset. To assess the con-
sistency of fRMA for a variety of training datasets, we
report the median and inter-quartile range (IQR) of the
within-gene MADs (Table 1).
As one would expect, increasing the number of

batches while holding batch size constent, typically
improves the consistency of the results. However,
increasing batch size while holding the number of
batches constant appears to result in increased consis-
tency in general, but this increase is far less reliable
than increasing the number of batches. Specifically,
increasing the batch size from 3 to 5 is just as likely to
decrease consistency as increase it. However, increasing
batch size from 5 to 10 or 10 to 15 yields increased con-
sistency more often than not, and increasing batch size

from 15 to 20, results in increased consistency for all
batch sizes examined. This suggests that consistency is
driven primarily by the ability to detect probes whose
behavior differs between batches rather than detection
of probes that are highly variable within batches and
that detection of highly variable probes within batches
requires a sizable investment in terms of the number of
arrays per batch. Finally, the improvements in consis-
tency due to adding additional batches, seem to dimin-
ish as the number of batches increases. Taken together
these findings suggest that, one should first seek to
increase the number of batches and then the number of
samples per batch.
However, for future fRMA implementations, computer

memory may not be the limiting factor. For newer micro-
array platforms, it is often the case that a relatively small
number of labs have conducted one or more large experi-
ments possibly involving a wide variety of tissues. As
Table 1 suggests, this is not the ideal situation and train-
ing fRMA on such data may not capture the behavior of
a number of probes. In such a situation, it may be more
appropriate to consider a custom fRMA implementation
for either a single large dataset or a single lab. Such an
implementation will be described in Section 3.4.

3.2 Alternative CDF
Affymetrix microarray platforms by default use probe
target definitions based on the knowledge available
when they were created. Since then, our understanding
of the human and mouse transcriptomes has greatly
improved. Multiple studies have demonstrated that
using updated probe annotations can significantly
improve gene expression estimates and detection of dif-
ferential expression [14-16].
While the original implementation of fRMA was based

on the default Affymetrix probe annotation, the latest

Table 1 Training data size affects fRMA reproducibility

Batch Size

3 5 10 15 20

Number of Batches 5 0.7585 (0.1574) 0.7573 (0.1437) 0.8515 (0.1435) 0.5812 (0.1231) 0.4439 (0.0916)

10 0.6795 (0.0799) 0.7173 (0.0858) 0.6563 (0.0641) 0.4506 (0.1073) 0.3878 (0.0901)

20 0.5696 (0.0654) 0.4691 (0.0523) 0.5180 (0.0506) 0.4551 (0.0561) 0.3299 (0.0629)

30 0.4429 (0.0491) 0.3884 (0.0482) 0.3387 (0.0380) 0.3697 (0.0537) 0.3036 (0.0440)

40 0.3290 (0.0450) 0.3700 (0.0488) 0.2598 (0.0368) 0.2642 (0.0303)

50 0.3093 (0.0424) 0.3107 (0.0339) 0.2307 (0.0291)

60 0.2661 (0.0374) 0.2454 (0.0322) 0.1955 (0.0261)

70 0.2529 (0.0322) 0.2286 (0.0295) 0.2089 (0.0261)

80 0.2256 (0.0281) 0.2098 (0.0285) 0.1616 (0.0259)

90 0.1922 (0.0274) 0.2058 (0.0248) 0.1566 (0.0163)

100 0.1891 (0.0277) 0.1976 (0.0261) 0.1128 (0.0167)

Median and IQR of the across-replicate median absolute deviations (MAD) for different batch sizes (columns) and number of batches (rows) used to train the
fRMA algorithm. The median provides an estimate of the typical MAD; the IQR provides an estimate of the variability seen in MADs across replicates.
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version of the frma package gives one the option to use
the version 13 Entrez Gene probe annotation [14]. How-
ever, there are numerous other probe annotations that
might be of interest (e.g. RefSeq, Ensembl, etc.). The
frmaTools package allows one to choose any of the
alternative annotations to create one ’s own fRMA
implementation.

3.3 New Platform
Although we strive to implement fRMA on all Affyme-
trix microarray platforms for which there is a sufficient
amount of publicly available data, fRMA may not cur-
rently be implemented on a platform of interest. If there
is enough data publicly available, one has the option of
creating one’s own implementation by following the
recommendations outlined in Section 3.1 and using the
frmaTools package described in Section 2. However, for
a relatively new microarray platform, there may not be
enough publicly available data. In this case, one might
consider creating a custom fRMA implementation. We
describe this option in the following section.

3.4 Custom implementations of fRMA
The fRMA preprocessing algorithm typically requires a
large diverse dataset to estimate the frozen parameters.
The dataset is required to span a large number of
batches in order to capture the variability in probe beha-
vior, so that when preprocessing a new array, one can
appropriately down-weight probes known to have either
large between- or within-batch variance. While it is
always possible that a probe that appears reliable in the
training data performs poorly on a new array, the
chance of this occurring can be minimized by training
on a large diverse dataset.
However, a large diverse dataset is not always available

either because the microarray platform is relatively new
or because the data being analyzed differs from the pub-
licly available data in some fundamental manner (e.g. a
non-standard lab protocol or non-human RNA hybri-
dized to a human array). In these cases, one might con-
sider creating one’s own custom fRMA implementation
that is specific to a certain dataset, lab, or experiment.
3.4.1 RMA-like implementation
If it is infeasible (due to lack of data) or undesireable (due
to properties of the data) to use a standard fRMA imple-
mentation to analyze one’s data, it could be beneficial to
implement fRMA in a manner that mimics RMA. While
the primary advantage of fRMA over RMA is the ability
to preprocess a single microarray, the fRMA algorithm
also improved the RMA model by recognizing that some
probes within a probe set were more variable than others
and down-weighting such probes [10]. For this reason,
one might be interested in applying fRMA within a large
dataset in the same manner one would apply RMA.

Such an implementation can easily be accomplished
using the frmaTools package. To illustrate the ability of
fRMA to mimic RMA when analyzing a single dataset,
we compared the expression values generated by RMA
to those generated by 3 different fRMA implementa-
tions:

1. the default fRMA implementation trained on a
large diverse sample of arrays,
2. fRMA trained on a balanced random sample from
the experiment being analyzed,
3. same as (2) but using all the arrays to form the
reference normalization distribution.

As one would expect, the differences in expression
values are much greater between the default fRMA
implementation and RMA than between the two custom
fRMA implementations and RMA (Figure 2). It is
important to assess whether the observed differences
between the custom fRMA implementation and RMA
are due differences in performance. To assess this, we
used a large pseudo-simulated spike-in dataset generated
by extending the Affymetrix Human Genome U133A
spike-in dataset. Specifically, we replicated each of the
original arrays 3 times to create 9 batches of 14 arrays,
each with a latin square spike-in design. We then added
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Figure 2 fRMA can mimic RMA . Distribution of difference in
expression estimates for 22283 probesets across 200 breast tumor
arrays (GSE11121) between 3 different fRMA implementations and
RMA. The 3 fRMA implementations are as follows: (1) the default
fRMA implementation (dotted line), (2) fRMA trained on a balanced
random sample from the arrays being analyzed (dashed line), and
(3) fRMA trained on a balanced random sample from the arrays
being analyzed and using the same reference distribution for
quantile normalization as RMA.

McCall and Irizarry BMC Bioinformatics 2011, 12:369
http://www.biomedcentral.com/1471-2105/12/369

Page 4 of 7



both random noise and random batch effects to each
probe based on that probe’s observed behavior in a large
biologically diverse dataset. This resulted in a dataset
with probe-specific noise and batch effects comparable
to a typical large dataset.
We used this extended spike-in dataset to assess the

performance of RMA and fRMA trained on only these
data. Specifically, we assessed the accuracy, precision,
and overall performance of both methods in three
expression strata using the methodology proposed in
[17]. We assessed accuracy by computing the signal
detection slope, the slope from regressing observed
expression on nominal concentration in the log2 scale.
The signal detect slope is the expected difference in
observed expression when the true difference is a fold
change of 2, with the optimal result being a slope of one.
We assessed precision by computing the standard devia-
tion and 99.5th percentile of the null log-ratios, log-ratios
from transcripts which were not spiked in and therefore
should not be differentially expressed. The standard
deviation is an estimate of the variability in log-ratios for
non-differentially expressed genes; the 99.5th percentile
assesses outliers - 0.5% of non-differentially expressed
genes are expected to exceed this value. Finally, we report
the signal-to-noise ratio (SNR) and the probability of a
gene with a true log2 fold change of 2 being in a list of
the 100 genes with the highest fold change (POT).
In all three strata, fRMA outperformed RMA with

regard to precision and overall performance (Table 2).
In the low and medium strata, fRMA also had better
accuracy than RMA; however, in the high strata, RMA
and fRMA had comparable accuracy with RMA per-
forming slightly better. The primary difference between
the two preprocessing methods is that fRMA does not
treat all probes as equally reliable - it down-weights
probes that have high within- or between-batch var-
iance. These results suggest that when preprocessing a
fairly large dataset, it is potentially beneficial to use a
custom fRMA implementation if a standard fRMA
implementation is not available.

3.4.2 Incrementally growing, large dataset
Another reason one might wish to create a custom
fRMA implementation is to analyze a dataset in which
samples are added in small batches over a period of
time and intermediate analysis would be beneficial. For
example, suppose researchers are interested in investi-
gating a gene signature for breast cancer prognosis
when treated with a novel chemotheraputic drug. At the
start of treatment, a biopsy of each patient’s breast
tumor is hybridized to a single microarray. As the
results begin to trickle in, the researchers are able to
train the fRMA model based on the currently available
data and use that model to predict the response of
patients currently undergoing treatment.
In contrast, most multi-array preprocessing methods

would require the entire dataset to be preprocessed each
time a new array was added. This poses several potential
problems. First, although preprocessing hundreds of
arrays with RMA requires relatively little computational
time, other multi-array preprocessing methods take sig-
nificantly longer. Second, while RMA requires little
computational time, it does require large amounts of
memory - preprocessing 200 arrays requires over 11GB
of RAM; for 500 arrays, this increases to over 30GB.
Third, once an array has been preprocessed with fRMA,
it’s gene expression estimates will remain the same
regardless of any additional arrays that are added to the
data. The same cannot be said of multi-array preproces-
sing methods, which would provide different expression
estimates for a given array each time an additional array
is added and the data are preprocessed again.
To assess the applicability of the fRMA algorithm in

such a situation, we consider a dataset of 200 breast
tumor samples (GSE11121) collected from patients over
477 days from Jan 29th, 2004 to March 20th, 2005. The
arrays were grouped in 13 batches by the date on which
the array was scanned. We defined a batch as consecu-
tive dates over which at least 5 arrays were hybridized.
Only 16 out of the 200 arrays did not fall into a batch.
First, we trained the fRMA algorithm using 5 arrays

randomly selected from each of the 13 batches and
stored the resulting parameter vectors. We then trained
the fRMA algorithm using only the first N batches
where we let N vary from 3 to 9. We then used each of
these sets of parameter vectors to preprocess all 200
arrays. Finally, we subtracted the expression estimates
based on all 13 batches from the expression estimates
based on each of the other subsets. As one would
expect, the distributions of these differences are cen-
tered close to zero and their spread decreases as the
number of training batches increases (Figure 3). The
bias, deviation of the center of the distribution from
zero, can be explained primarily by the quantile normal-
ization reference distribution. In fact, if we quantile

Table 2 Comparison of RMA and fRMA based on bias,
precision, and overall performance

Preprocessing Slope
(SD)

Null
SD

Null
99.5%

SNR POT

Low RMA 0.14 (0.54) 0.47 1.46 0.30 0.01

fRMA 0.20 (0.48) 0.40 1.24 0.50 0.02

Medium RMA 0.69 (0.55) 0.39 1.26 1.77 0.15

fRMA 0.75 (0.49) 0.34 1.11 2.21 0.23

High RMA 0.61 (0.42) 0.33 0.99 1.85 0.18

fRMA 0.60 (0.36) 0.28 0.86 2.14 0.23

Comparison of RMA and fRMA trained on the modified spike-in data. For
three intensity strata, we report assessments of accuracy (column 1), precision
(columns 2 & 3), and overall performance (columns 4 & 5).
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normalize to a fixed reference distribution, all of the dis-
tributions are centered roughly at zero (Figure 4). On
the other hand, the spread of the distribution is primar-
ily due to the summarization step, in particular, the

probe effect estimation. From this example, we can also
gain insight into the number of batches one should
include in the training data for a custom fRMA imple-
mentation. While training on the first 3 batches pro-
duced expression estimates that differed the most from
training on the full dataset, the differences were actually
remarkably small - 1.6% of the absolute differences
exceeded 1, and 9.4% exceeded 0.5, with the median
absolute difference equal to 0.15. If instead one were to
train on roughly the first half of the data (the first 7
batches), only 0.2% of the absolute differences exceeded
1, and 2% exceeded 0.5, with the median absolute differ-
ence equal to 0.08. This suggests that training on just
the first 3 batches would allow one to detect moderate
to large changes in gene expression and that training on
the first half of the data, perhaps from an initial pilot
study, would be enough to detect relatively small
changes in gene expression.
3.4.3 A different definition of batch
In the current implementations of fRMA, batch is
defined as the combination of tissue and experiment.
However, there are certainly batch effects present within
many experiments [18]; therefore, it could be advanta-
geous to define batch in a different way. For example, in
Section 3.4.2 we defined batch based on the date on
which an array was scanned. There are many other
potential sources of variation in an experiment any of
which could be used to investigate batch effects. The
frmaTools package allows the user the flexibility to
define batch in any way he or she desires.
In fact, even if the user eventually plans to use a pre-

processing method other than fRMA, examining the fro-
zen parameter vectors generated by frmaTools may
provide insights in to batch effects present in the data
that need to be addressed in some manner. Specifically,
we can compute an F-statistic for each probe, defined as
the ratio of between-batch and within-batch variance, to
assess whether that probe displays a batch effect in a
given data set. To illustrate this, we computed these
ratios for the data presented in Section 3.4.1 and the
data presented in Section 3.4.2. In the former case,
20.3% of probes show a statistically significant batch
effect, while in the latter case, only 1.8% of probes show
a batch effect. Thus by simply comparing the within-
and between-batch probe variances produced by frma-
Tools, we can assess the extent of batch effects within a
given dataset.

4 Conclusions
We have described a novel R package, frmaTools, that
allows the user to easily create his or her own fRMA
implementation. We have described how this new pack-
age fits into a standard analysis workflow and the size
and scope of data necessary to make use of it. This
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package will allow researchers to use fRMA on a much
wider range of datasets and annotations. Furthermore,
we have described several situations in which a dataset-
specific custom fRMA implementation might be advan-
tageous. The frmaTools package makes such custom
implemenations straightforward. The frmaTools package
is freely available as part of the Bioconductor project
and as Additional File 1.

Availability and requirements
• Project name: frmaTools
• Project home page: http://www.bioconductor.org/
packages/release/bioc/html/frmaTools.html
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: R >= 2.10
• License: GNU GPL
• Any restrictions to use by non-academics: None

Additional material

Additional file 1: frmaTools package. The R/Bioconductor package
frmaTools (version 1.4.0), providing tools for advanced use of the frma
package.
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