Heine et al. BMC Bioinformatics 2011, 12:37
http://www.biomedcentral.com/1471-2105/12/37

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Statistical learning techniques applied to
epidemiology: a simulated case-control
comparison study with logistic regression

John J Heine'", Walker H Land?, Kathleen M Egan'

Abstract

interpretation of complex exposure/disease relationships.

Background: When investigating covariate interactions and group associations with standard regression analyses,
the relationship between the response variable and exposure may be difficult to characterize. When the
relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical
learning (SL) techniques with kernels are capable of addressing nonlinear problems without making parametric
assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations.

A simulated case-control study was used to contrast the information embedding characteristics and separation
boundaries produced by a specific SL technique with logistic regression (LR) modeling representing a parametric
approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network.
Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the
analogous interpretation and generate odds ratios for comparison.

Results: The SL approach is capable of generating odds ratios for main effects and risk factor interactions that
better capture nonlinear relationships between exposure variables and outcome in comparison with LR.

Conclusions: The integration of SL methods in epidemiology may improve both the understanding and

Background

The objectives of this work are to 1) demonstrate the
benefits of applying statistical learning (SL) concepts to
epidemiologic type problems using simulated data when
nonlinearities are present, and 2) adapt the SL approach
to produce findings relevant for epidemiologic interpre-
tation. Statistical learning effectively describes statistical
estimation with small samples [1]. The approach does
not rely on prior knowledge of the mathematical form
of the exposure/disease relationship, an assumption in
parametric modeling. A more detailed account of SL
theory is provided elsewhere [1,2].

A comparison of a kernel based SL technique with
logistic regression (LR) modeling was developed using
simulated case-control datasets with a focus on the
separation boundary and information embedding char-
acteristics of both approaches. Illustrations were
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developed to demonstrate how the kernel mapping
addresses the nonlinearity without user imposition.
Without loss of generality, a low-dimensional problem
was used to demonstrate the central themes because the
separation boundaries can be observed graphically,
which is not the case for higher-dimensional problems.
The comparison with LR serves three purposes. First,
although LR modeling is widely used for epidemiologic
applications, its separation boundary represents a latent
characteristic that is often not considered directly. Sec-
ondly, the information embedding characteristic of LR is
representative of parametric approaches. The possible
benefits derived from applying a kernel based technique
come with a tradeoff in comparison with parametric
modeling of requiring training data for prospective ana-
lyses. Thirdly, the LR model has an important epidemio-
logic interpretation. Therefore, the SL approach was
modified to conform to the LR model interpretation.
Epidemiologic research makes frequent use of LR mod-
eling for determining relationships between covariates
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and group associations when the outcome is binary. We
will refer to the group association as the binary disease
status and refer to covariates as risk factors or exposures.
Logistic regression has many attractive attributes in this
setting. The model coefficients are related to odds ratios
(ORs) by exponentiation, which convey relevant expo-
sure/disease association relationships. The LR model is a
generalized linear model [3,4]. Various methods have
been investigated to generalize such relationships in epi-
demiologic research. Neural network (NNs) have been
used in studies of immunodeficiency viral infection [5]
and liver disease [6,7]. Other researchers modified the LR
model to include non-parametric functions to study
colon cancer [8]. Generalized models have also been used
in various capacities to model lung function change [9],
blood pressure [10], alcohol consumption [11], and heart
disease [12].

We will consider a dataset assembled from a case-con-
trol study in which each observation contains informa-
tion on the binary disease status and a set of associated
exposures. These exposures can be assembled into one
vector, x, for each observation, which we label as the
input. Hypothetically, there is some relation f(x) that
describes the separation boundary between the case and
control groups to some specified degree, where the
group status is the output. Otherwise, x would not show
association with disease. In a multivariate setting, the
separation, or decision boundary, is a hyper-surface that
reduces to a hyper-plane when x and the disease status
bear a linear relation. Error in predicting group status
may occur from a number of sources including inferior
model specification, complicated relationships between
the exposure distributions and group status, random
error, non-random measurement error, or some combi-
nation of these influences. In practice, decision models
rarely, if ever, produce perfect class-separation when
making predictions.

We will consider a model encompassing two-expo-
sures for each observation [i.e., a two-dimensional input
vector X = (X, X) for each observation] in which the
solutions and covariate relationships can be viewed in a
two-dimensional plane by design. For a linearly separ-
able two-dimensional problem, the input/output separa-
tion boundary is a straight line. When this problem is
nonlinear separable, the input/output separation bound-
ary is a curve (one dimensional) of some form. In prac-
tice, f(x) is rarely known. Interaction terms (or other
functional forms) can be introduced within the LR
model to capture the attributes of f(x), which are dis-
cernable graphically in a two-dimensional problem.
However, in higher dimensional problems, it may not be
clear whether the modified LR model provides a correct
fit of the data. The two-dimensional problem demon-
strated herein is used for illustrative purposes though it
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is representative of higher dimensional problems that
are difficult or impossible to observe and model by
intuition.

Odds ratios and the area under the receiver operator
characteristic (ROC) curve, designated as Az, are used
for comparing group characteristics for different pur-
poses. When model predictive capability is important,
Az is often used as the measure of separation in two-
class problems [13-15]. In epidemiologic research, ORs
are used to gauge the magnitude of association between
exposure and outcome. In contrast with the LR model,
the SL approach does not produce a data representation
that has a useful epidemiologic interpretation. There-
fore, we present non-parametric probabilistic methods
that can be used for converting SL outputs to more
readily interpretable ORs. We also calculated the Az
quantity for each model used in the comparison analysis
because it is measure of how well the models fit the
data. The relationship between ORs and ROC analysis
has been previously described [16].

In this report, a SL technique comprised of the kernel
mapping in combination with a perceptron NN [17] was
compared with the LR modeling. Kernel mappings are
used to capture the non-linear relationship between the
input/output without prior knowledge of the form of
f(x). We simulated data from a case-control study,
which is a study-design employed in our ongoing epide-
miologic research [18,19]. The goals of this ongoing
research are analogous to those of Phase I or Phase II
clinical studies wherein the objective is to determine
whether certain exposures or measurements are more
(or less) likely to be associated with a targeted disorder
[20], where the disorder in our work is breast cancer.
There is no explicit intent to make predictions at the
population level at this time, though our methods could
be adapted for this purpose in the future.

Methods

An overview of the multiple steps used for this analysis
is shown in Figure 1. Briefly, we simulated one training
dataset that was used exclusively to determine all of the
model parameters for both the LR and SL approaches
and perform an initial evaluation. We then evaluated
the fitted models with multiple independent simulated
datasets (validation datasets) to estimate the variation in
the model performance.

Simulated Case-Control Study

A simulated case-control dataset was generated with
m = 200 observations in each of the case and control
groups, which is a relatively small sample size by design.
Both random variables (rvs) and their respective realiza-
tions are denoted by lower case letters, and vectors are
similarly labeled with bold letters. To avoid using
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evaluate the fitted models to eliminate training bias.

Figure 1 Training and evaluation scheme. This figure shows the analysis sequence. One simulated training dataset was used to estimate the
parameters for all models and perform an initial evaluation with the fitted models. Ten independent simulated datasets were then used to

i models

transpose notation, all vectors are defined as row vec-
tors. Each observation (simulated study subject) has two
risk factors denoted by x; and x, expressed as a vector
X = (X1, Xp). We used an activation function to randomly
generate the disease status defined as

2
X1

g(x,) = —x +expl—(agx; —mg)?l |, (1)

Co Xi+(1-x)°

where ag, co, and mg are adjustable constants. This
expression provides a flexible nonlinear boundary. The
left term within the brackets is a sigmoidal function
constructed from a parabola [21] and the right term
gives a scalable spatially adjustable bulge. The disease
status is dependent upon a given observation’s x compo-
sition by this relation: g(x;) > x. When this condition is
met, the given observation is placed in the case group

with its known risk factor vector x = (x;, X,). Otherwise,
the observation is designated as control group member
with the same vector x = (x, Xp). In this example, g(x;)
assumes the position of the unknown function f(x) dis-
cussed above. Equation (1) in combination with the
defined case-control designation rule is an rv transfor-
mation for x; that creates a nonlinear separation bound-
ary stochastically.

Simulated case-control datasets

We generated one case-control dataset for training
(model fitting to determine all parameters) and ten addi-
tional validation datasets for evaluation purposes using
the following prescription (11 datasets in total). To gen-
erate a given case-control dataset, 20,000 observations
of (x1, x») were generated randomly and processed with
g(xy), which created the case-control designation. The
first m observations from each group were used to form
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a given case-control dataset resulting in 2m observations
with equal numbers of cases and controls (m controls
and m cases). The x; observations were uniformly dis-
tributed rvs with unit variance. The x, observations
were generated by adding x; to a normally distributed
rv, designated as z;, with unit variance and mean = 5
giving x,= (x3+2;)/10. The empirical linear correlation
between x; and x, after the g(x;) processing was esti-
mated as R = 0.25.

Decision Models

The model construction, training methods, evalua-
tion, and separation boundary analysis are described
below in detail. Simulated case-control datasets were
modeled with two LR models and three SL variants.
Training (in which we estimate the model para-
meters) and model evaluations were performed with
independent datasets to eliminate fitting bias in the
comparison analysis. In the model comparison analy-
sis, both predictive capability (i.e., Az) and ORs were
compared. The training and evaluation sequences are
shown in Figure 1.

Statistical learning overview

First, the kernel mapping was applied to the input vec-
tors. The kernel-transformed data was then processed by
a perceptron [17] using an algorithm described pre-
viously [22]. The perceptron can be used to solve a sys-
tem of linear equations where each equation is of the
form y = r-w+b. In this expression, w is arbitrary weight
vector, r is an arbitrary risk factor vector similar to x
above, b is a constant, and y is a two-class binary variable
representing the disease/no-disease status (i.e., y = 1, or
y = -1). Hereafter, we refer to the kernel mapping and
perceptron combination as the SL approach. The percep-
tron weight determination will converge when the pro-
blem is well approximated a linear-separable.

Kernel mapping

We will use a kernel mapping to express the input such
that it is suitable for the perceptron processing. Under
general circumstances, the researcher will find it diffi-
cult, if not impossible, to specify the mapping function
that provides for a linear separation boundary. The ker-
nel operates on the risk factor vectors and eliminates
the need to determine the general mapping function
denoted by ¢(x). We use ¢(x) for the mapping function,
which is the transformation that renders the input/out-
put relationship linear if chosen properly, because it
conforms with the standard notation used in SL devel-
opments. As defined above, each observation has an
associated risk factor vector, where x; = (xyj, Xp;) desig-
nates the jth training sample’s vector, and x = (x, Xp) is
used specifically to designate an arbitrary prospective
observation’s vector (not a training sample). Reprodu-
cing Kernel Hilbert Space theory states that a suitable
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kernel can be defined as the inner product of the
mapping functions [23] expressed as

k(x,x;) = (9(x), 6(x;)), @

where x is a prospective observation (random) vector,
with the same dimensionality as xj, and (.,-) is the inner
product operation. The challenge changes from finding
the mapping function to finding a valid kernel (there are
many) as described previously [24]. The right side of
Eq. (2) allows for the use of the left side without know-
ing the form of the right side. To define the specific ker-
nel used here, we first define the distance measure
between the vectors x and x; given by

2
D(X’Xi)z\/sl(xl_xlj) +

s$2(x, _ij)z. 3)

of o3

The extension to higher dimensional vectors follows
the same form by extending the sum within the radical
to include more component terms. Each vector compo-
nent difference has its own sigma-weight (c; and o5,)
that was determined with training methods discussed
below. These sigma-weights must be estimated properly
because they impact the decision performance. We used
three variations of Eq. (3). The s; and s, are for identifi-
cations purposes in this report only. Equation (3) was
used with both component terms (s; = s, =1) as above
and with the individual component differences in isola-
tion with (s; = 1, s, = 0) when the focus was on x; and
(s; = 0, s, = 1) when the focus was on x,. The kernel is
then defined as

k(x, x;) = ¢, xexp[-D(x, x;)], (4)

where ¢, is a normalization constant. Equation (4)
with Eq. (3) is from a class of universal kernels [25].
The kernel operation represents both a mapping of the
input vectors [23] and also forms the basis for estimat-
ing probability density functions [26,27].

To determine the parameters for the SL approach, we
used each individual training observation as a substitute
for the prospective observation by cycling through the
kernel processing. More specifically, each x; training
sample is processed with every other x; training sample
using Egs. (3-4) to determine both the sigma-weights
and the perceptron weight vector (i.e., x takes on all x;
for i = 0 through 2m). The i™ row of K results from the
kernel operation of the i sample with each of the other
2m samples (including itself) indexed by j = 1 through
2m. The resulting kernel elements form 2m x 2m
matrix, K, with elements k(x;, x;) = k;. A given row in
the K matrix can be considered as new feature set (or
row vector) for the respective observation (patient),
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which is the dimensionality expansion characteristic of
the SL approach. The decision rule using the trained
model (determined sigma-weights and perceprton
weights) to make prospective predictions on the obser-
vation x is given by

y=¢(x)-W+Db, (5)

where y is the estimate of the binary disease status, b is
an arbitrary (bias) constant, and w is generic weight vec-
tor. Expanding w in terms of the mapping function gives

2m
w= Y og(x;). ©6)
=1

Using Eq. (5) in Eq. (6) and performing the inner
product gives

2m 2m
y={0(x). Y 0p(x))+b=Y akxx)+b, (7)

j=1 j=1

which follows from the kernel inner product relation
[23]. Equation (7) allows for the use of the kernel rather
than the mapping function. For training, we let x = x; in
Eq. (7) giving

2m
Yi =2ajk(xiij)+b' (8)
=1

where o are the components of the new weight vector
o.. The components of o are the preceptron weights that
were determined with the training dataset using this lin-
ear combination to predict the i training observation’s
known case-control status designated by y;.
Perceptron processing
We employed bootstrap methods [28] with the perceptron
algorithm during the training analysis to estimate o in
Eq. (8). In the perceptron algorithm used here, the bias
term, b, is not affected by the inputs [the kernel elements
in Eq. (8)] but is an externally applied value (b = 1), left
unchanged during the determination of the weight vector
that fixes the position of the separation boundary (but
does not affect the boundary orientation). When proces-
sing a prospective sample from a given validation dataset,
the prospective observation’s vector, X, is processed with
the case-control training dataset consisting of 2m known
risk factor vectors. The prospective observation’s esti-
mated output score, y., was generated using the Eq. (8)
relationship from above

2m
Ve = D, 0k(x,x;)+b )

j=1
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with the previously determined o and b. Equation (9)
demonstrates the information embedding characteristic
of the kernel operation and illustrates how the mapping
captures the underlying probability densities. A given
kernel element (elements of K) can be interpreted as
either 1) similarity measure between the prospective
observation’s vector x with the j* training sample’s vec-
tor x;j, or 2) as one element of a multivariate kernel
probability density estimation for x. Each new score (for
the prospective x) is determined by making comparisons
with the entire training set.

Each of the 2m validation observation scores for a
given dataset (one of 10 datasets) was generated with
the above equation by letting their risk factor vectors
take the position of x. The dimensionality of the pro-
blem was fixed by the training methods. The number of
observations in a given validation dataset is irrelevant
for the mechanics of the processing. In addition to
using both risk factors simultaneously, the perceptron
was also trained using x; and x, separately with the
same procedure without regenerating the sigma-weights,
which created two additional SL variants used in the
comparison. To standardize the associations for the
three SL models, the y.q scores derived from Eq. (9) for
a given model output were treated as single unit (both
cases and control scores) and linearly mapped between
[0-1]; we labeled these normalized output scores as z.
Logistic Regression
The LR model is expressed as

Pr(class =1|x) = p(x)
_ exp(Bo + Byxy +Box, +Bsxix,)
L+exp(Bo +Bixy +Box, +B3x:x,)

(10)

where Pr indicates probability. This model was used
with x; and x5 without interaction (referred to as the
standard model with B3 = 0) and with x; x x, interac-
tion (referred to as the interaction model). The respec-
tive parameter vectors (Bo, B1, B2) and (Bo, B1, B2, B3) for
each model were determined with the training dataset.
We note, this model embeds information in the coeffi-
cients (on the order of the dimensionality) regardless of
the number of observations on hand and is representa-
tive of parametric approaches.
Training and evaluation methods
Both the SL approach and LR model required training to
estimate the various parameters. These models were
trained with the same training dataset consisting of 2m
observations. Figure 1 shows the training and evaluation
flow schematic. The LR models were fitted with SAS (SAS
Institute, NC) software. The SL approach required more
involved training with bootstrap re-sampling [28]. Because
the sigma-weights impact the performance of the percep-
tron output, the perceptron training was embedded within
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the sigma- weight estimation. Perceptron weights were
determined by drawing row vectors from the K (training)
matrix at random with replacement. The Az was used as a
guide for convergence. Because there are only two sigma-
weights, a constrained search was used by varying both
weights over a range of values. For each sigma-weight
combination, the perceptron weights were determined,
and the Az value was estimated resulting in an experimen-
tal set of values: {01, 54;, Az} for the i combination. The
sigma-weights were determined by the position of the
maximum Az value (Azn,y): 61 = 61; and 64 = Go; where
Az; = Az, Once the sigma-weights were established, the
perceptron weights were regenerated (fine-tuned) by
incrementally increasing the Az convergence criterion
using a feedback loop. The perceptron weights that gave
the highest Az before non-convergence were used in the
validation processing along with {6}, 55}. When using x;
and x, individually [s; = 0 or s, = 0 in Eq. (3)], we
retrained the perceptron with the same Az criterion using
the respective sigma-weights (determined above). In sum,
the sigma-weight pair in combination with the perceptron
weights that gave the highest Az for given SL variant were
used in the model evaluation comparison.

The training dataset was used to evaluate the fitted
models initially by generating 10 repetitions of 150 boot-
strap datasets [28]. Each bootstrap dataset was processed
by each of the models. For a given repetition, the distribu-
tion mean (Az,5p) and standard deviation (c,59) were cal-
culated for each model. Averages of the Az;59 and 6159
quantities were used to estimate the respective average
performances and standard errors (SEs). For independent
evaluation, 10 additional datasets were processed by each
fitted model to estimate the average performance and SEs.
Separation boundary analysis
To compare the specific separation boundaries produced
by the various models, it was necessary to apply a
threshold to each model’s output and estimate its per-
formance. For consistency and to avoid user imposition,
the same method was used to set the threshold for each
model. In two class prediction problems (disease/no dis-
ease) used to assign class status, an operating point
(decision threshold) must be selected from the model
output, often derived from the ROC curve. This operat-
ing point represents a tradeoff between making two
errors [13,14]. These are 1) the error of classifying cases
as controls, defined in summary as the false negative
fraction (FN), which is equivalent to 1-sensativty, where
the sensitivity is the correctly identified proportion of
cases, which is often referred to as the true positive frac-
tion (TP), and 2) the error of classifying controls as
cases denoted as the false positive fraction (FP) in sum-
mary. Plotting the ordered pairs, (FP, TP), for each
threshold, which is a latent variable, approximates the
continuous ROC curve. Choosing a threshold fixes the
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separation boundary. For the LR model, all samples with
p(x) scores > p, were classified as case group members,
otherwise they were classified as control group mem-
bers, where p; is a fixed threshold. To determine the
separation boundaries, the operating point for a given
model was selected by choosing the sensitivity equiva-
lent to its Az value. Because the FP variable is defined
over this range [0-1], the Az value may also be inter-
preted as the model’s mean (average) sensitivity (i.e., the
value of the area under the ROC curve is also the mean
value of the ROC function). For an arbitrary threshold
value, p;, the separation boundary for the standard LR
model was found by solving Eq. (10) for x,, giving

"6 B b

1-p;
P
Including the LR interaction term gives

with 7, =In(—=), which is a linear boundary.

X, __To+Bo+Bixy , (12)
By +Bsx,

We will find the value of p, that gives a sensitivity
equivalent to the Az (or the mean sensitivity) for the
respective LR models to determine the separating
boundaries and estimate the corresponding FP for com-
parison purposes. The same approach was applied to
the SL output. This method used to set the thresholds
eliminated user input because there are an unlimited
number of thresholds to choose from, each representing
a different tradeoff as described above. Our objective is
to show the form of the various separation boundaries,
therefore the method used to set the threshold is not
important to the central demonstration.

Odds Ratio Transformation

The SL technique output [the perceptron output defined
in Eq. (9)] was modified to conform to the LR model
interpretation and generate ORs. Specifically, we esti-
mated the empirical conditional probability function p,
= Pr(class = 1|z) as the reference, where z is the SL
method normalized output score We then estimated p,
= Pr(class = 1|z+Az) in the same manner, where Az is
in positive increment in the respective z score. The ORs
were calculated using this definition

OR—Lxﬂ.

= (13)
l_pl Pr

Equation (13) can be applied by using all of the risk
factors in the model or any subset. When using more
than one risk factor, it can be considered as multivariate
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OR. In the Eq. (13) representation, p, has the analogous
interpretation as the LR model in Eq. (10), although it
was derived numerically. Equation (13) was generated
for each of the SL variants for one of the evaluation
datasets. We note that using Eq. (13) with these specific
definitions for p, and p; parallels the development used
to derive the interpretation for the LR model coefficients
for continuous independent variables [29].

The components (p; and p,) in Eq. (13) were con-
structed as approximations for continuous functions
using non-parametric techniques. To estimate p; and p,,
first the histograms of normalized output scores for the
m cases and m controls were analyzed separately. A ker-
nel density estimation technique [27] was used to gener-
ate the empirical probability densities from the output
score histograms using a Gaussian kernel. The kernel
density technique is a non-parametric method used to
estimate the underlying probability density function
given samples drawn from a given population without
assumption that generalizes the respective histogram
(similar to the kernel mapping). This is a particularly
useful technique when the dataset is sample-limited
with missing bins in the histogram because it is essen-
tially a sifting mechanism that can eliminate discontinu-
ities. The estimated densities for the cases and controls
are denoted by h; and hy, respectively, giving p, = h;/
(hy+hg), which is a function of z. The p; function was
estimated similarly by shifting p, by Az.

Results

Model Training

Model parameters were determined and each model was
assessed with the training dataset. The coefficients for
the standard LR model using x;, and x, simultaneously
without interaction and with x; x X, interaction were:
(Bos B, B2) = (-7.251, -1.743, 14.33) and (Bo, B1, B2, B3 )
= (-13.73, 9.66, 26.03, -20.12), respectively. These coeffi-
cients are presented as log(ORs) [i.e, In(OR)] per unit
increase in the respective variables. These large values
are due to the unit increase because both x; and x,
span less than one unit. For the standard model, x; pro-
vides a shielding effect with respect to the disease status
(e.g., the coefficient remains negative, implying an
inverse association of the factor with disease status),
whereas x, shows a relatively stronger positive magni-
tude of association in comparison with x;. In contrast,
in the interaction model, the x; and x, terms both show
a positive association with the outcome while the inter-
action term has a negative coefficient. For this initial Az
assessment, averages, standard deviations, and SEs
derived with bootstrap methods [28] are given in
Table 1. The Az quantities for the training x; and x,
sample distributions were also generated for compari-
son purposes; these Az quantities were estimated by
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Table 1 Training area under the receiver operator
characteristic curve quantities

Method Az c SE

LR 0.791 0.028 0.008
LRint 0814 0.027 0.008

k 0958 0.013 0.004

Kyt 0.867 0.023 0.007
ko 0.728 0.031 0.009

X1 0490 0.035 0.011

X 0.772 0.029 0.009

This table gives the area under the receiver operator characteristic curve (Az)
quantities derived from the training dataset for the standard logistic
regression model with x; and x, (LR), the logistic regression model with x,
and x; with x; X X, interaction (LR;y,), the statistical learning (SL) techniques
using a kernel mapping with x; and x, simultaneously (k), and partial
SL-kernel models using X; (ky;) and x, (k,) individually. This also gives the Az
quantities for the x; and x, case-control training distribution samples
estimated without using model processing. Az and o are the respective
means and standard deviations summarized from the bootstrap trials. SE is
the standard error in Az.

comparing the respective distributions without model-
processing. The sigma-weight pair in combination with
the perceptron weights that gave the highest Az were
used in the comparison evaluation: (61, o, ) = (3.88,
2.47). The trained model Az findings are given in
Table 1 for the three SL models.

Model Evaluation

The two trained LR models and the three trained SL
variants were used to process the 10 validation case-
control datasets (Figure 1). Summarized Az findings
for all model outputs are listed in Table 2, which mir-
ror those in Table 1. The SL approach provided the
best performance. The predictive capacity of the LR
model is captured in the x, term by noting its coeffi-
cient. The LR model gained marginal predictive capa-
city by adding the interaction term as indicated by the
increased Az value. In contrast, the univariate SL var-
iants show that x; in isolation contains considerable

Table 2 Evaluation area under the receiver operator
characteristic curve quantities

Method Az c SE
LR 0.781 0.029 0.009
LRint 0.798 0.029 0.009
k 0.947 0.015 0.004
Kyt 0.852 0018 0.005
Ko 0.734 0.023 0.008

This table gives the area under the receiver operator characteristic curve (Az)
quantities for the standard logistic regression model using x; and x; (LR), the
logistic regression model using x; and x, with x; X x; interaction (LR;,,), the
statistical learning (SL) model using a kernel mapping with x; and x,
simultaneously (k), and partial SL-kernel models using x; (ke;) and x; (k)
individually. Az, and o are the respective means and standard deviations
derived from processing the 10 validation datasets with the trained models.
SE is the standard error in Az.
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information content in comparison with x,. Figure 2
shows the linear separation boundary for the standard
LR model plotted with the case-control data points.
The solid line is the LR separation boundary derived
from Eq. (11) with Az = 0.78, which gave FP = 0. 42
with p. =~ 0.42. The other curve (dashed line) in Figure
2 represents the ideal boundary that was derived with
Eq. (1). Figure 3 shows the separation boundary for
the LR interaction model (same format) derived from
Eq. (12) with Az =~ 0.80, which gave FP = 0.40 with
pt = 0.41. Figure 4 shows the SL plot derived with Az
~ 0.95, which gave FP = 0.33 with z = 0.49 (the solid
line separation boundary). In this plot, samples were
ordered along the horizontal axis according to the
observation index. The first 200 points correspond to
controls and the next 200 points correspond to the
cases. The respective normalized output scores are
plotted on the vertical axis with the control scores
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denoted by multiplication signs and the case scores by
diamonds. These examples illustrate the information
embedding characteristics of the kernel mapping.

Once the model parameters were determined for the
LR models, the functional form of their separation
boundaries were fixed. For example, changing the
thresholds for either of the LR models will shift the
boundaries (Figure 2 and Figure 3) and provide different
decision performance (i.e., different sensitivity and FP)
but will not alter the boundary forms. The boundary in
Figure 4 illustrates that the kernel mapping transformed
the input/output relation from the separation boundary
shown in Figure 2 or Figure 3 to the separation shown
in Figure 4.

Odds Ratio Transformation
Odds ratios were calculated using x; and x, simulta-
neously, as well as individually, by applying Eq. (13) to

1.0

0.2—

0.0 \ \

0.0 0.2 0.4

Figure 2 The x;-x, scatter plot and logistic regression boundary. This figure shows the two risk factor scatter plot for cases (diamonds) and
controls (multiplication signs). Each point represents a given sample’s (x;, x,) risk vector plotted in component form. The solid line is the
standard logistic regression (no-covariate interaction) model linear separation boundary for a fixed threshold and the curved dashed line is the
Eqg. (1) (ideal) separation boundary. The sensitivity = 0.78 and false positive fraction = 0.42.
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Figure 3 The x;-x, scatter plot and the logistic regression with interaction boundary. This figure shows the two risk factor scatter plot for the
cases (diamonds) and controls (multiplication signs) for the LR model with x; X x, interaction. Each point represents a given sample’s (x;, x,) risk vector
plotted in component. The solid line is the LR model separation boundary (solid) and the curved dashed line is the Eq. (1) (ideal) separation boundary. In
comparison with Figure 2, there is a slight curvature in the boundary on the right side. The sensitivity = 0.80 and false positive fraction = 0.40.
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Figure 4 Statistical learning (SL) output and boundary. This figure shows the SL output separation boundary. Ordered samples are plotted
along the horizontal-axis with the 200 control observations plotted first (multiplication signs on the left side) followed by the 200 case
observations (diamonds on the right side). The SL output normalized z-scores for each sample are plotted on the vertical-axis. The separation
boundary that gave 0.95 sensitivity is z = 049 (solid line) with a false positive fraction = 0.33.
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each of the SL model’s normalized output scores. For SL
approach with both variables, the numerical estimate of
pr = Pr(class = 1|z) is shown in Figure 5 [same interpre-
tation as Eq. (10)]. The ORs were then derived by letting
p1 = Pr(class = 1|z+Az) with Az = 0.10 (output-score
increment units). The corresponding continuous log(OR)
plot is shown in Figure 6, which can be considered as a
multivariate OR showing the influence of both factors
simultaneously. Similarly, the log(OR) plots for x; and
Xp, individually, are shown in Figure 7 and Figure 8,
respectively. In practice, the ORs can be rescaled.
Because the problem was simulated, rescaling has little
relevance. The focus of the analysis is the OR nonlinear-
ity. These plots show the functional dependence of the
ORs in comparison with the LR coefficients that are
constants. When the log(ORs) derived from the SL out-
puts are constant, the Eq. (13) relations would approxi-
mate constant valued functions similar to the LR model
coefficients, which are essentially average effects under
the linear assumption.
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Discussion

A two-dimensional problem was simulated to illustrate
some advantages of applying SL techniques to epidemio-
logical type datasets. Comparisons of the Az quantities
among the various models (Table 2) demonstrates the
capacity of the SL approach when addressing nonlinear
problems in contrast with the LR results. The SL output
scores were transformed into ORs using a kernel density
estimation technique. This transformation provided the
essential link between the SL output and the epidemio-
logic interpretation for both the multivariate OR rela-
tion, which is the combined disease/risk factor
association for both (all) the covariates simultaneously
including their interactions, as well as the individual risk
factor associations. As demonstrated, the ORs exhibit
(see figures 6-8) a nonlinear functional dependence with
respect to the output score. When the input/output
relationship is nonlinear, the LR coefficient does not
describe the association properly due to the LR model
linear separation boundary. We note that the LR output

1.5

=1[2)
o
o1
\

Pr(class

-1.0L \ \

0.0 0.2 0.4

Figure 5 Empirical conditional probability function estimation. This figure demonstrates the numerical estimate of Pr(class = 1|z), where z is
the statistical learning method output score using both risk factors and Pr denotes probability. The predictive capacity of the SL method is

indicated by the rapid approach to Pr = 1 with increasing z (z = 0.82).
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Figure 6 Multivariate logarithm of the odds ratio for the two-risk factor statistical learning method output. This figure demonstrates the
log (odds ratio) [i.e, In(odds ratio)] plot derived from the two-risk factor statistical learning method output, z, using the formulism illustrated in

Figure 5 [s; = 1 and s; = 1in Eq. (3)1.
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could be manipulated in the same fashion, but the rela-
tionship would not capture the correct interaction
because of the linear model form.

Other researchers incorporated kernel density estima-
tions in epidemiologic research for different applications
[30-32]. Similar kernel density estimations techniques
were used earlier to derive relative risks [31]. Duh et al
[6] provided an epidemiologic interpretation of the NN
weights when using an LR type activation function. In
contrast with this related work using kernel density esti-
mations, we applied the kernel density estimation to the
SL model output after the kernel mapping. This approach
used the decision model outputs as new risk factor quan-
tities that captured the inherent nonlinearities.

The kernel mapping expands the dimensionality of
the problem and uses the entire training dataset for
prospective analysis. This expansion enables the SL sys-
tem to learn the input/output relationship, which is
captured in the kernel elements and the perceptron
weight vector. Each kernel element in the Eq. (9) linear

combination represents a similarity measure between
the respective training sample and the prospective
observation. This is in contrast with parametric model-
ing techniques that use relatively few model coefficients
to summarize the training dataset attributes. The ability
of the SL approach to learn the input pattern in
exemplified by the Az result for x; when processed in
isolation. The relatively large Az value resulting from
the SL technique when including both exposure
variables indicates the kernel mapping captured the
nonlinear information content and transformed the ori-
ginal representation to a nearly linear separable repre-
sentation. Generally, SL methods require more involved
training than that of parametric modeling, an inevitable
trade-off required to capture the nonlinearity. For
higher-dimensional problems more sophisticated opti-
mization techniques are required, such as those derived
from differential evolution principles [33], to ensure the
proper optimization is achieved and derived in an
acceptable lengths of time.
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Figure 7 Logarithm of the odds ratio for the statistical learning method output for the first risk factor. This figure demonstrates the log
(odds ratio) [i.e, In(odds ratio)] plot derived from the statistical learning method output, z, using X; [s; = 1 and s, = 0 in Eq. (3)].
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Figure 8 Logarithm of the odds ratio for the statistical learning method output for the second risk factor. This figure demonstrates the
log (odds ratio) [i.e, In(odds ratio)] plot derived from the statistical learning model output, z, using x5 [s; = 0 and s, = 1 in Eq. (3)].
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These simulations involved two risk factors and one
outcome. However, we recognize that this scenario is
seldom observed in real epidemiologic practice, in which
more typically there are multiple covariates that may
predict the outcome. Nevertheless, the simulations illu-
strated how SL techniques can potentially improve upon
common methods currently applied in epidemiologic
research when nonlinearities are present. The linear
separation produced by the LR model was exemplified
with a low-dimensional problem that contained all of
the features of higher dimensional problems. The kernel
mapping transformed the original relationship to a fea-
ture space where linear techniques are applicable with-
out assuming interaction forms, although a valid kernel
must be determined.

Conclusions

The work demonstrated the potential benefits derived
from applying SL techniques to nonlinear epidemiologic
type problems. Integrating SL techniques with epide-
miologic research may aid researchers in defining com-
plex exposure/disease relationships. These applications
will require validation in population-based studies and
further rigorous comparisons with existing methods.
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