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Discovering biological connections between
experimental conditions based on common
patterns of differential gene expression
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Abstract

Background: Identifying similarities between patterns of differential gene expression provides an opportunity to
identify similarities between the experimental and biological conditions that give rise to these gene expression
alterations. The growing volume of gene expression data in open data repositories such as the NCBI Gene
Expression Omnibus (GEO) presents an opportunity to identify these gene expression similarities on a large scale
across a diverse collection of datasets. We have developed a fast, pattern-based computational approach, named
openSESAME (Search of Expression Signatures Across Many Experiments), that identifies datasets enriched in
samples that display coordinate differential expression of a query signature. Importantly, openSESAME performs this
search without prior knowledge of the phenotypic or experimental groups in the datasets being searched. This
allows openSESAME to identify perturbations of gene expression that are due to phenotypic attributes that may
not have been described in the sample annotation included in the repository.: To demonstrate the utility of
openSESAME, we used gene expression signatures of two biological perturbations to query a set of 75,164 human
expression profiles that were generated using Affymetrix microarrays and deposited in GEO. The first query, using a
signature of estradiol treatment, identified experiments in which estrogen signaling was perturbed and also
identified differences in estrogen signaling between estrogen receptor-positive and -negative breast cancers. The
second query, which used a signature of silencing of the transcription factor p63 (a key regulator of epidermal
differentiation), identified datasets related to stratified squamous epithelia or epidermal diseases such as melanoma.

Conclusions: openSESAME is a tool for leveraging the growing body of publicly available microarray data to
discover relationships between different biological states based on common patterns of differential gene
expression. These relationships may serve to generate hypotheses about the causes and consequences of specific
patterns of observed differential gene expression. To encourage others to explore the utility of this approach, we
have made a website for performing openSESAME queries freely available at http://opensesame.bu.edu.

Background
Genome-wide gene expression microarrays have found
widespread use because of their high throughput and abil-
ity to measure the expression of tens of thousands of
genes simultaneously. This technology has made it possi-
ble to perform genome-wide searches for changes in gene
expression in response to perturbations such as gene
knockouts [1] and treatment with bioactive compounds
[2]. It has also been useful in identifying gene expression

differences associated with histologic subtypes of disease
[3], clinical diagnosis [4], prognosis [5], or the efficacy of
various therapeutic strategies [6]. However, a challenge for
scientists performing genome-wide gene expression
microarray analysis has been using these data to generate
hypotheses about biological processes responsible for the
patterns of differential gene expression associated with a
particular trait or experimental variable.
One approach to this problem is to create sets of genes

with common biological characteristics, such as chromo-
somal location, biochemical function, or observed differ-
ential expression in some experimental condition, and
then to determine whether the genes in these sets are
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coordinately induced or repressed. If a preponderance of
genes in any of these predefined groups of genes (gene
sets) is coordinately differentially expressed, it may be
reasonable to hypothesize that the biological characteris-
tic upon which that gene set was defined is relevant to
the experimental perturbation. Within this broad strat-
egy, two computational approaches are commonly
employed. The first uses tests of proportion to determine
whether a significant fraction of the genes in a gene set
are among those that have been identified as differentially
expressed (for examples, see [7,8]). A second approach
uses tests of distribution to determine whether the mem-
bers of a gene set are overrepresented at either extreme
of the list of all genes ranked by their degree of differen-
tial expression (exemplified by [9]).
The utility of these approaches for gaining insight into

the underlying causes of changes in gene expression
depends on the availability of defined gene sets that
reflect the transcriptional consequences of relevant bio-
logical processes. It would therefore be useful to lever-
age the ever-growing body of transcriptional profiles
that have been deposited in freely accessible data reposi-
tories, as they represent an enticing source of informa-
tion about transcriptional responses to a vast number of
experimental and biological perturbations. For example,
large compendia of gene expression data have been used
to predict the function of uncharacterized genes based
on their co-expression with genes of known function
across diverse experimental conditions (for examples,
see [1,10]). Such compendia can also be leveraged to
identify conditions that give rise to a given pattern of
gene expression.
One way to do this is to collect sets of differentially

expressed genes identified in each of the experiments con-
tained in a compendium and to use them in tests of pro-
portion or distribution in a new experiment as described
above (for an example, see [11]). Another strategy is to
create a catalog of phenotypic or experimental compari-
sons in a repository of microarray data, and to use tests of
proportion or distribution to determine whether any genes
observed to be coordinately differentially expressed in a
given experiment are also coordinately differentially
expressed in any of these comparisons (for examples, see
[2,12-15]). An especially interesting example of this
approach is the Connectivity Map (CMap) [2]. The CMap
consists of a dataset of ranked changes in gene expression
associated with the treatment of various cell lines with a
large number of compounds (relative to vehicle-treated
control samples), and an algorithm for examining the dis-
tribution of query genes within each ranked list. This
approach was used by its original authors to identify gedu-
nin as an inhibitor of Hsp90, and has since been used to
identify the mode of action of natural compounds [16]

and to identify compounds that are candidates for pre-
venting [17] or treating [18] lung cancer.
A fundamental challenge of these approaches is that

they depend on explicit phenotypic comparisons to
define gene sets and/or rank genes according to their dif-
ferential expression. This requires knowledge of all
potentially meaningful comparisons in each dataset and
calculating the degree of differential expression asso-
ciated with each of them. A different approach would be
to use a gene expression signature defined by a phenoty-
pic comparison of interest to identify experiments in
which those genes exhibit similar coordinate differential
expression. An advantage of this approach is that it
would not be dependent on prior knowledge of pheno-
type and would not require an exhaustive catalog of pos-
sible phenotypic comparisons. We have developed a
method named openSESAME (Search of Expression Sig-
natures Across Many Experiments) to explore the utility
of this type of approach.

Results
openSESAME Algorithm
openSESAME (see Figure 1 and Methods) is a method for
rapidly identifying datasets in which the expression of a
given set of genes is coordinately perturbed. The openSE-
SAME algorithm requires two inputs: 1) a query signature
consisting of “up” and “down” gene sets, representing
genes that are coordinately induced or repressed, respec-
tively, in some experimental condition, and 2) a collection
of normalized gene expression profiles (samples), orga-
nized into groups (datasets), within which gene expression
levels have been normalized relative to all samples in each
group. For the current work, we have used a collection of
75,164 human samples profiled on the Affymetrix HG-
U133 family of microarrays and obtained from the Gene
Expression Omnibus (GEO) public microarray repository
for our database of gene expression data. We have chosen
to use this collection of data because it consists of gene
expression measurements from a large and diverse body of
phenotypes and experimental conditions measured with a
common set of oligonucleotide probes using similar tech-
nology. Although comparison of differential gene expres-
sion across more distinct array platforms is possible [19],
we chose to restrict our analysis to data from a single
family of related arrays to avoid challenges in data
comparability.
A signature association (SA) score is calculated for each

sample using a Wilcoxon rank-sum test to compare the
normalized expression levels of the “up” and “down”
genes. The SA score reflects the degree and direction of
coordinate perturbation of the expression of the genes in
the query signature. If the distribution of relative expres-
sion levels of the “up” genes is significantly higher or
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lower than that of the “down” genes, that sample is given
a positive or negative SA score, respectively, and is said
to be positively or negatively associated with the query
signature. Each dataset is then assessed to determine
whether the distribution of SA scores for those samples
differs significantly from that expected by chance. Data-
sets that are enriched in samples that are strongly asso-
ciated with the query signature are hypothesized to
contain an experimental or physiological condition that
is biologically related to that used to define the original
query signature.

openSESAME identifies experiments related to estrogen
signaling in GEO using a signature of E2 treatment
We first identified datasets (termed “series” in the GEO
nomenclature) from experiments with perturbations or

biological phenotypes relevant to estrogen signaling by
querying the normalized GEO data with a gene expression
signature of treatment of MCF7 cells with the estrogen
17-b-estradiol (E2) [20] (Additional File 1). The series with
the most significant enrichment were those in which
MCF7 cells were treated with compounds with estrogenic
activity (Additional File 2). In these series, samples treated
with E2 or other estrogens were positively associated with
the E2 treatment signature while samples treated with
vehicle, non-estrogenic compounds or antiestrogens were
negatively associated with this signature. For example, in
series GSE9936 [21], the E2 treatment signature is posi-
tively associated with MCF7 cells that have been treated
with E2 or with the phytoestrogens genistein or S-Equol,
and negatively associated with treatment with vehicle or
with the estrogen receptor (ER) antagonist fulvestrant
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Figure 1 Identifying association with a gene expression signature using openSESAME. a) Raw CEL files are normalized to obtain gene-level
expression measurements. Here, red and blue indicate genes with high or low levels of absolute expression, respectively. b) Within each experiment,
expression measurements for each gene are z-score normalized to produce relative expression levels. Here, red and blue indicate high or low
expression relative to the other samples in the experiment. c) For each sample in each experiment, a Wilcoxon test is performed between the relative
expression values of the “up” and “down” gene sets defined by the query signature, yielding a signature association (SA) score that varies from positive
(yellow) to negative (magenta). d) A Kolmogorov-Smirnov (top) or Fisher’s exact (bottom) test is performed to determine whether the distribution of
SA scores in each experiment is significantly different from the distribution of SA scores across all samples in the repository.

Gower et al. BMC Bioinformatics 2011, 12:381
http://www.biomedcentral.com/1471-2105/12/381

Page 3 of 15



(Figure 2). Furthermore, the SA scores of genistein-treated
samples varied with treatment dose and time, and were
markedly higher in cells overexpressing ER-b, the pre-
ferred receptor for genistein.
More importantly, this query also identified experiments
in which estrogen signaling was perturbed in a manner
other than the direct addition of ER ligands. For example,
in series GSE10911 [22], samples of the aromatase-overex-
pressing cell line MCF7aro treated with testosterone
(which is converted to E2 by aromatase) were positively
associated with the E2 treatment signature relative to
untreated controls. Beyond identifying experiments using
MCF7 cells, several of the series identified by openSE-
SAME were comprised of samples of primary breast
tumors or breast cancer cell lines. In these series, ER-

positive samples had significantly higher SA scores than
ER-negative samples (Figure 3) suggesting that ER-positive
tumors and cell lines have higher levels of ER-pathway
activation. Finally, openSESAME identified two series in
which gene expression was profiled in human endometrial
tissue. In series GSE6364 [23] and GSE4888 [24], samples
obtained during the proliferative phase of the menstrual
cycle had significantly higher SA scores than those
obtained during the mid secretory phase.

openSESAME identifies experiments related to stratified
squamous epithelia in GEO using a signature of p63
silencing
The transcription factor p63 is required for the differen-
tiation and maintenance of stratified epithelium.
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Figure 2 A gene expression signature of E2 treatment is associated with phytoestrogen treatment in MCF7 cells. GEO series GSE9936
was identified by openSESAME as significantly enriched in samples associated with the E2 treatment signature. veh, vehicle; E2, 6 nM 17-b-
estradiol; EQ, 300 nM S-Equol; IE, 300 nM S-Equol + 3 μM fulvestrant; HG, 300 nM genistein; LG, 6 nM genistein; IG, 300 nM genistein + 3 μM
fulvestrant.
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Homozygous p63 knockout mice are born with pro-
found developmental defects, including a lack of epider-
mal stratification and the absence of all squamous
epithelia [25,26], and mutations in p63 are associated
with several ectodermal dysplastic syndromes in humans
[27]. We used a signature of genes that are differentially
expressed following the silencing of p63 in squamous
and keratinocytic cell lines [28] (Additional File 3) to
identify other conditions in which p63 activity might be
modulated (Additional File 4).
In many of the series with significant enrichment, the

genes in the p63-silencing signature were coordinately
differentially expressed between stratified squamous
epithelia and other tissue types. For example, in GSE7307
and GSE3526 [29], two series in which dozens of distinct

tissue types were transcriptionally profiled, the p63-silen-
cing signature was positively associated with samples of
non-stratified epithelia (e.g., endometrium) or non-
epithelial tissues (e.g., brain) relative to samples of strati-
fied squamous epithelium (e.g., skin). This was also true
in the tumor collection series GSE2109, in which the
p63-silencing signature was positively associated with pri-
mary tumors of non-stratified epithelial tissues (e.g.,
breast) relative to tumors arising from stratified squa-
mous epithelium (e.g., esophagus) or squamous cell car-
cinoma of the lung. Perhaps the most striking example of
tissue-specific association with this signature, however, is
series GSE2665 [30] (Figure 4). In this series, lymph node
samples had a strong positive association with the p63-
silencing signature relative to samples from tonsils,
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which, although comprised of lymphoid tissue, are cov-
ered by a layer of stratified squamous epithelium.
This query also identified several series pertaining to

diseases of stratified epithelial tissue. For example, in
series GSE8401 [31] and GSE7553 [32], the gene expres-
sion pattern of p63 silencing was reflected in metastatic
melanomas, and this pattern was reversed in primary
melanoma (Figure 5). In accordance with this apparent
decrease in p63 activity in metastatic melanoma, we
found that there was a significant decrease in the tran-
scription of the TP63 gene itself in these samples (p =
2.2 × 10-10 and 4.1 × 10-3 for GSE8401 and GSE7553,
respectively, by Student’s t test; metastatic vs. primary
melanoma only).

Performance of the openSESAME algorithm
We performed several sets of experiments to evaluate
the performance of the openSESAME algorithm. We
first sought to evaluate the sensitivity and specificity of
the Wilcoxon rank-sum test used to compute the SA
scores. To do this, we used the original 189-Affymetrix-
probeset signature of E2 treatment [2,20] and the pub-
licly available set of ranked fold changes observed
between compound-treated MCF7 breast cancer cells
and vehicle-treated controls in the Connectivity Map
(CMap) [2]. This dataset contains 19 instances of MCF7

cells grown in complete medium treated with E2 (which
we considered true positives) and 3076 instances of
MCF7 cells grown in complete medium treated with
other compounds (which we considered true negatives).
We calculated SA scores using the E2 treatment signa-
ture for each of these samples and found that the area
under the Receiver Operating Characteristics (ROC)
curve for distinguishing E2-treated from non-E2-treated
samples was 0.981 (Additional File 5 orange curve). For
comparison, we used the same E2 treatment signature
to calculate S scores (the K-S-test-based statistic used
by Lamb et al. [2]) across the same dataset using the
Connectivity Map website, and obtained an area under
the ROC curve of 0.971 (Additional File 5 purple curve).
These results suggest that the openSESAME SA score
has similar performance to the CMap S score for distin-
guishing E2-treated samples from samples treated with
other compounds.
We next sought to address how sample size and signa-

ture size impact the sensitivity and specificity of the
openSESAME algorithm to identify significantly enriched
datasets. In these analyses we additionally compared the
relative performance of Fisher’s exact test and the K-S
test to identify significant SA score distributions. For
these analyses we chose two GEO series: GSE2225 [33] (a
dataset of 18 samples in which MCF7 cells overexpres-
sing aromatase were treated with estrogen, the E2 pre-
cursor testosterone, or vehicle) as an example of a
dataset that strongly reflects the effects of estrogen recep-
tor pathway activation (Fisher q = 3.67 × 10-6; K-S q =
0.00766), and GSE21653 [34] (a dataset of 266 primary
breast tumors) as an example of a dataset that more
weakly reflects the effects of estrogen receptor pathway
activation (Fisher q = 0.319; K-S q = 0.198).
To assess the sensitivity of the Fisher and K-S tests as

a function of sample size, we randomly selected subsets
of samples from each dataset (Additional File 6). As the
subset size increased, the power to detect coordinate
differential expression of the E2 signature increased.
However, the sensitivity achieved using Fisher’s exact
test with series GSE2225 was considerably higher than
that achieved using the K-S test, whereas the sensitivity
of the K-S test was moderately higher than that of Fish-
er’s exact test in series GSE21653, suggesting that the
K-S test may have utility in identifying weaker patterns
of coordinate differential expression. Using either ran-
domly permuted data or normally distributed random
data we found that the false positive (Type I) error rate
of both methods was well controlled. The specificity of
both methods decreased as the sample size increased,
and was higher with Fisher’s exact test, but the fre-
quency of Type I errors remained below or close to the
specified Type I error threshold at all sample sizes (see
tables in Additional File 6).
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Figure 4 A gene expression signature of p63 silencing
discriminates between lymph nodes and tonsils. In GEO series
GSE2665, openSESAME identified that samples of lymph nodes and
tonsillar tissue are positively and negatively associated with the p63-
silencing signature, respectively, suggesting that p63 is important
for maintenance of the stratified squamous epithelium that is
present in tonsils but is absent from lymph nodes.
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To explore how the performance of openSESAME var-
ies with different types of query signatures, we tested the
effect of varying the size or composition of the E2 treat-
ment signature upon its ability to detect the estrogen
receptor pathway activation reflected in GSE2225 and
GSE21653. The E2 treatment signature contains 111
genes, of which 34 (31%) are up-regulated by E2 treat-
ment. We first examined the effect of varying the size of
the signature while maintaining the original proportion
of up- and down-regulated genes (Additional File 7). We
found that the ability of the openSESAME algorithm to
detect perturbation of estrogen signaling increased with
the size of the signature. The specificity of the algorithm
also varied according to the dataset and the test used,
with the greatest deviation from the expected Type I

error rate observed in series GSE21653 when the K-S test
was used. However, the specificity was very high in both
datasets when Fisher’s exact test was used.
We next examined how the relative proportion of up-

and down-regulated genes in the signature affects the
performance of openSESAME (Additional File 8). We
used subsets of the E2 treatment signature that contained
a total of 68 genes but which varied in the proportion of
E2-upregulated genes (from 2-34 genes, or 3% to 50%).
The sensitivity was strongly dependent on the relative
proportion of up- and down-regulated genes and was
highest when the signature was most balanced, i.e., when
the number of “up” and “down” genes was equal. Specifi-
city was well maintained regardless of the relative pro-
portion of up- and down-regulated genes.
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Comparison of openSESAME with existing approaches
To further examine the performance of openSESAME,
we compared the results of the openSESAME queries
performed with the E2 and p63 signatures with the
results of similar queries performed using GeneChaser
[12] and MARQ [14], two web-based applications that
identify experimental comparisons that are relevant to
an expression signature of interest. We first translated
the expression signatures into gene symbols and
attempted to use them in a GeneChaser query. How-
ever, although the application correctly recognized these
symbols, no results were returned. This appears to be
due to a strict requirement of GeneChaser that the
expression of all up- or down–regulated genes changes
in the same direction between two experimental groups.
We next used the Entrez Gene identifiers of the genes

in each expression signature to initiate MARQ queries
and compared the results with those of the correspond-
ing openSESAME queries (Additional Files 9 and 10).
There were 208 unique GEO datasets that overlapped
between the openSESAME and MARQ analyses. Of these
datasets, MARQ identified 45 phenotypic comparisons
(from 23 unique datasets) that result in a pattern of dif-
ferential expression of the E2 signature genes that is sig-
nificantly similar to the E2 signature (FDR-corrected p <
0.05) (Additional File 9). Of these 23 datasets, openSE-
SAME recovered four (GSE11352, GSE2225, GSE6364,
and GSE4888) and assigned nominal significance to a
fifth (GSE7765; Fisher p = 0.033, Fisher q = 0.84) (Addi-
tional File 9). However, it is unclear whether any of the
remaining 18 datasets identified by MARQ are also biolo-
gically relevant to estrogen signaling (i.e., true positives),
and it is therefore challenging to use the overlap between
the MARQ and openSESAME results to determine the
sensitivity and specificity of openSESAME.
MARQ identified 52 phenotypic comparisons (from 23

unique datasets) that result in a pattern of differential
expression of the p63 silencing signature that is signifi-
cantly similar to the p63 signature (FDR-corrected p <
0.05) (Additional File 10). Of these 23 datasets, 9
(GSE2665, GSE6932, GSE1420, GSE3524, GSE7216,
GSE6475, GSE2144, GSE6281, and GSE10433) appeared
to be directly related to tissues, diseases, or a phenotype of
squamous stratified epithelia, but only three of these data-
sets were also recovered by openSESAME (Additional File
10). The failure of openSESAME to identify six of the nine
datasets identified by MARQ where differences in p63 sig-
naling seem biologically plausible suggests that methods
like MARQ which leverage phenotypic data for identifying
patterns of coordinate differential gene expression may
generally be more powerful than phenotype-naïve
approaches such as openSESAME, at the cost of requiring
that all potentially biologically important phenotypic com-
parisons are pre-specified.

However, openSESAME was able to detect significant
coordinate differential expression of the p63 signature in
two series that were both missed by MARQ. For example,
GSE6710 [35], a dataset that compared gene expression
in psoriatic lesions with normal skin, was assigned a sig-
nificant q value by openSESAME (q = 0.0109 by Fisher’s
exact test), but received only a moderately significant
FDR-corrected p value (0.0775) from MARQ. openSE-
SAME also assigned high significance (Fisher q =
0.000452) to GSE2280 [36], which was not assigned a sig-
nificant p value by MARQ. Within this series, metastatic
and non-metastatic oral squamous carcinomas were pro-
filed, and metastatic and non-metastatic samples were
usually assigned positive and negative SA scores, respec-
tively. However, it appears that because there was signifi-
cant heterogeneity between samples from different
patients, the comparison performed by MARQ between
these two phenotypes did not receive a significant p value
(FDR-corrected p = 0.41). This suggests that openSE-
SAME may be more powerful than methods such as
MARQ in detecting coordinate differential expression of
a signature in datasets with high variability, such as those
comprised of clinical samples.

Discussion
Databases of genome-wide gene expression data repre-
sent a rich source of detailed information about patterns
of gene expression that result from experimental pertur-
bations and disease states. An important use of such
storehouses is to understand the similarities and differ-
ences between various biological perturbations. Current
approaches for querying these gene expression databases
limit the analysis to comparisons of gene expression dif-
ferences between pre-determined experimental groups.
In contrast, openSESAME searches for instances of coor-
dinate differential gene expression of a query signature
without using phenotypic data.
The phenotype-naïve approach of openSESAME is

similar in some regards to a strategy developed by West
and colleagues [37,38]. In this approach, the major prin-
cipal components of a gene expression signature identi-
fied in the query dataset are used to train a binary
regression model to serve as a predictor of signature
“activation”. This model can then be used to predict sig-
nature activation in other datasets and to examine the
potential association between signature activation prob-
abilities and phenotypes within these target datasets. For
example, probabilities for a gene expression signature
reflecting the response to lactic acidosis is associated
with better survival in breast cancer patients, consistent
with the hypothesis that tumors in these patients may
repress glycolysis via inhibition of the Akt pathway [39].
Such signature activation probabilities are thus an alter-
native to the SA scores calculated by openSESAME in
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that both can be calculated per sample without regard to
phenotypic comparisons. However, we are not aware of
work to assess the significance of observed signature acti-
vation probabilities across datasets other than by associa-
tion with phenotypic variables. The aim of this work is to
demonstrate the ability of a phenotype-naïve method to
identify datasets that are biologically related to each
other.
The openSESAME algorithm consists of two compo-

nents: a signature association (SA) score that reflects the
similarity of a sample’s pattern of relative gene expression
to a query signature, and a test to determine whether the
distribution of SA scores of all samples in a dataset repre-
sents a significant pattern of coordinate differential expres-
sion of the query signature. The SA score is a normalized
Wilcoxon rank-sum statistic that compares the expression
levels of the up- and down-regulated genes in the query
signature. We chose this statistic over parametric methods
such as a Pearson correlation to the query signature vector
or Student’s t test to compare the expression levels of the
“up” and “down” genes because we could not assume that
the normalized expression values would be normally dis-
tributed in the absence of significant coordinate differen-
tial expression. Using a signature of E2 treatment and a
dataset of MCF7 cells treated with various compounds,
including E2, we have validated that this SA score is a sen-
sitive and specific method for detecting differential expres-
sion of a query signature.
We have explored two approaches to determine

whether the SA scores for all samples in a dataset repre-
sents significant coordinate differential expression of a
query signature. One method first establishes the signifi-
cance of each SA score using threshold values and then
uses Fisher’s exact test to determine whether the propor-
tion of samples exceeding these thresholds in each data-
set is significantly different from the proportion of
samples exceeding these thresholds across all samples in
the compendium. The threshold values are determined
based on the FDR corrected p value (q value) of the SA
scores. The second method uses a Kolmogorov-Smirnov
(K-S) test to determine whether the distribution of SA
scores in each dataset is significantly different from the
distribution of all SA scores across all samples in the
compendium. The specificity of Fisher’s exact test
appears to be superior to that of the K-S test, presumably
because the categorical assignment of significance to SA
scores acts as a “band-pass filter” to remove noise from
moderately skewed distributions of SA scores. However,
the relative sensitivity of the Fisher’s exact and K-S tests
seems to be dependent on the strength of the coordinate
differential signature expression signal, the former being
more sensitive when the signal is strong and the latter
being more sensitive when the signal is weaker.

To explore how openSESAME might perform with
other query signatures, we examined how the perfor-
mance of openSESAME depends on the size of the
query signature and the relative proportion of up- and
down-regulated genes. To do this, we sampled genes
from the E2 treatment signature and tested the ability of
these derivative queries to detect significant estrogen
pathway activation in two datasets: one in which the
gene expression signal of estrogen pathway activation
was strong (GSE2225 [33]) and another in which the
signal is more difficult to detect (GSE21653 [34]). These
analyses indicate that the performance of openSESAME
increases as both the size of the query signature
increases and the relative proportion of up- and down-
regulated genes becomes more balanced, although the
absolute performance of openSESAME is strongly
dependent upon the strength of the signal of coordinate
differential expression. For example, when using Fisher’s
exact test, openSESAME achieves > 90% sensitivity to
detect the estrogen pathway activation in GSE2225 at a
p value threshold of 0.001 when the signature contains
at least 80 genes and 30% of the signature is composed
of upregulated genes. Similar performance is achieved
with a 68-gene signature containing 47% upregulated
genes. However, in GSE21653, which has a weaker sig-
nal of estrogen pathway activation, the overall effect of
signature size and composition upon performance
remains similar, but openSESAME has only 11% sensi-
tivity to detect the activation of the estrogen pathway at
p < 0.001 using Fisher’s exact test (although sensitivity
increases 23% using the K-S test). These analyses sug-
gest the potential utility of openSESAME to identify
coordinate differential expression signals with a wide
range of signature sizes of varying composition.
We used a similar approach to explore how the size of

a target dataset affects the ability of openSESAME to
detect coordinate differential expression of a query sig-
nature within that dataset. The power of openSESAME
to detect coordinate differential expression of a query
signature generally increased with the size of the target
dataset, but the absolute performance of the algorithm
was again highly dependent upon the strength of the
signal of coordinate differential expression. In series
GSE2225, which has a strong estrogen pathway activa-
tion signal, openSESAME achieves > 90% sensitivity to
detect this signal in subsets of GSE2225 as small as 12
samples (67% of the full-size dataset) at a p value
threshold of 0.001 using Fisher’s exact test. However, in
GSE21653, which has a weaker signal of estrogen path-
way activation, openSESAME only achieves > 90% sensi-
tivity to detect this signal in subsets of GSE21653
containing between 225 and 250 samples (85-94% of the
full-size dataset) at a p value threshold of 0.01 using the
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K-S test. With approximately the same number of sam-
ples, Fisher’s exact test only achieves 36% sensitivity to
detect the pathway activation signal at the same p value
threshold. These analyses suggest the potential for open-
SESAME to detect strong signals of coordinate differen-
tial gene expression in small datasets and the potential
importance of the K-S approach and larger datasets to
powerfully detect weaker signals of coordinate differen-
tial gene expression.
We used openSESAME to identify experiments related

to estrogen receptor (ER) pathway activation in a collec-
tion of approximately 75,000 human samples profiled on
Affymetrix microarrays that have been deposited in the
Gene Expression Omnibus (GEO) data repository. Our
success in identifying numerous datasets representing
differential ER pathway activation is due not only to the
size of the gene expression compendium we searched,
but also the relatively high frequency with which the ER
pathway is modulated in the experimental and clinical
datasets contained within this repository due to its bio-
logical and clinical importance. We identified experi-
ments related to ER pathway activation using a
signature of genes that are differentially expressed in
response to E2 treatment in MCF7 cells. openSESAME
identified experiments in which MCF7 cells were per-
turbed with E2, phytoestrogens such as genistein, or the
E2 precursor testosterone (in cells overexpressing
aromatase).
In addition to these results, we identified significant

enrichment of the estrogen pathway activation signature
in several series of primary breast tumors or breast can-
cer cell lines and found that ER-positive tumors and cell
lines had significantly higher association with the E2
treatment signature than did ER-negative samples. These
results likely reflect increases in steady-state ER pathway
activation in response to available estrogen in ER-positive
tumors and cell lines. Similarly, openSESAME identified
two series of human endometrial tissue samples in which
the E2 treatment signature was positively associated with
the proliferative phase of the menstrual cycle and nega-
tively associated with the mid secretory phase. These two
phases correspond to higher and lower serum estrogen
levels, respectively, suggesting that the perturbation of
the E2 treatment signature in these datasets reflects a
response to changing levels of available estrogen.
We also explored conditions related to the differentia-

tion and maintenance of stratified squamous epithelia
using a gene expression signature of the consequences of
p63 downregulation. In two independent experiments,
the pattern of gene expression associated with p63 silen-
cing was evident in samples of metastatic melanomas
relative to primary melanomas. Subsequent analysis of
these datasets confirmed that the expression of TP63 is
down regulated in metastatic melanoma. This confirms

previously published observations in which p63 staining
was absent from greater than 90% of malignant melano-
mas [40-44] and may offer a mechanistic explanation as
to why genes involved in stratified epithelial differentia-
tion are markedly downregulated in such tumors [32].
Taken together, the results of this openSESAME query
implicate p63 as a regulator of the differentiation, main-
tenance and proliferation of stratified epithelium, high-
lighting the utility of openSESAME for the elucidation of
gene function.
Finally, we chose to compare openSESAME with two

other methods that relate gene expression differences in
GEO-deposited data to a query signature. One of the key
differences between openSESAME and both GeneChaser
[12] and MARQ [14] is that, unlike openSESAME, these
methods precompute the degree of differential expression
associated with phenotypic comparisons gleaned from
sample annotation information that has been deposited
together with the gene expression data. We found that
GeneChaser was not useful if any of the genes in the “up”
or “down” sets were not differentially expressed in the
same direction as the others in each set. This highlights
one of the strengths of openSESAME, which is that it can
identify experiments that are relevant to a signature of
interest even if a subset of genes in a signature are not dif-
ferentially expressed in the same direction in two different
experiments.
Using the E2 treatment signature, MARQ identified per-

turbations of estrogen signaling in four of the series
detected by openSESAME. Similarly, when using the p63
silencing signature, MARQ identified phenotypic compari-
sons related to stratified squamous cell type or differentia-
tion within three of the series detected by openSESAME.
MARQ also identified phenotypic comparisons within a
number of series that were not detected by openSESAME.
For example, MARQ identified E2 signaling as downregu-
lated in MCF7 cells treated with dioxin, which is a
well-known antiestrogenic agent [45], and identified p63
signaling as being upregulated in acne lesions compared
with normal skin and in the bronchial epithelium of smo-
kers compared with that of nonsmokers (both of which
may reflect squamous repair mechanisms in injured or
inflamed tissue). The failure of openSESAME to identify
datasets identified by MARQ suggests that methods like
MARQ that leverage phenotypic data to identify patterns
of coordinate differential gene expression may generally be
more sensitive than phenotype-naïve approaches such as
openSESAME, as they incorporate additional sources of
information.
However, there were a number of datasets that were

identified by openSESAME that were not identified by
MARQ, and these point to potential advantages of a
phenotype-naïve approach. For example, openSESAME
detected significant perturbation of the p63 silencing
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signature in GSE2280 [36], in which p63 silencing is
positively associated with metastatic squamous cancer
samples, consistent with the loss of p63 expression
observed in the metastatic melanoma samples described
earlier. MARQ did not assign a significant p value to
this comparison, however, because there was substantial
heterogeneity among these samples. Taken together,
these results suggest that methods such as MARQ may
generally be more specific in identifying interesting bio-
logical perturbations, given the directed nature of its
queries, but openSESAME is more robust to variability
within prespecified comparisons. There were also a
number of examples of significant coordinate differential
expression of the E2 and p63 query signatures that were
detected by openSESAME but were not detected by
MARQ (Additional Files 2 and 4), including the phy-
toestrogen and melanoma datasets, because these data-
sets were not included in the curated data from which
MARQ calculated phenotype-associated differential
expression. The perturbations that are detected uniquely
by openSESAME highlight the key advantage of openSE-
SAME in that it is able to detect coordinate differential
expression of a query signature without regard to expli-
cit annotation-driven comparisons between defined
experimental groups.
In this work, we have shown that openSESAME can

identify datasets with similar patterns of coordinate dif-
ferential gene expression using an approach that does
not require identification of phenotype-associated differ-
ential expression and that these gene expression simila-
rities can be used to identify conditions that are
biologically related to each other. We therefore believe
that openSESAME will be a broadly useful approach to
leverage the increasing body of available genome-wide
gene expression profiling experiments to generate
hypotheses about the causes and consequences of
observed patterns of differential gene expression. To
further explore the potential of this approach, we have
created a publicly accessible implementation of openSE-
SAME (http://opensesame.bu.edu) for the scientific
community to test with their own gene expression
signatures.

Conclusions
We have shown that openSESAME can identify datasets
with similar patterns of coordinate differential gene
expression in the absence of explicit phenotypic com-
parisons and that these similarities can be used to iden-
tify conditions that are biologically related to each other.
openSESAME represents a novel approach to leverage
the increasing body of available genome-wide gene
expression profiling experiments to generate hypotheses
about the causes and consequences of observed patterns

of differential gene expression. To encourage the com-
munity to explore the potential utility of this approach,
we have created a publicly accessible implementation of
openSESAME (http://opensesame.bu.edu) for the scien-
tific community to test with their own gene expression
signatures.

Methods
Software and Hardware
All computations were performed in the R programming
environment (version 2.11.1). The R packages affy [46]
and limma [47] were obtained from Bioconductor
(http://www.bioconductor.org) and the package multtest
[48] was obtained from the Comprehensive R Archive
Network (CRAN) (http://cran.r-project.org). Entrez Gene
ID-specific probeset mappings for Affymetrix arrays (ver-
sion 13.0.0) [49] were obtained from the Molecular and
Behavioral Neuroscience Institute at the University of
Michigan (http://brainarray.mbni.med.umich.edu/Brai-
narray/Database/CustomCDF). All computations were
performed using the Linux cluster for Genetic Analysis
(LinGA) at the Boston University Medical Campus.

Gene Expression Omnibus (GEO) dataset acquisition and
normalization
All publicly available CEL files from the Gene Expres-
sion Omnibus data repository [50] as of September 23,
2010 in which RNA had been profiled on an HG-U133
generation (HG-U133A, HG-U133B, HT-HG-U133A,
HG-U133A 2.0, or HG-U133 Plus 2.0) Affymetrix Gene-
Chip were downloaded. This represented 2183 submis-
sions to GEO of 75164 samples in total. Expression
estimates for each sample within each series were
derived using the Robust Multichip Average (RMA) [51]
(Figure 1a) using version 13.0.0 BrainArray Entrez Gene
ID-specific CDFs. These data were then z-score normal-
ized (to a mean of zero and standard deviation of one)
(Figure 1b) by microarray platform within each GEO
“series” submission (a collection of array samples that
have been deposited as a group, often in connection
with a manuscript) (Figure 1c).

Computing signature association (SA) scores between
microarray samples and an expression signature
For each sample, the relative expression values of the
signature genes (calculated relative to the mean of the
samples in the dataset) are ranked and a Wilcoxon
rank-sum test is then performed to determine whether
the ranked expression levels of the genes from the “up”
and “down” sets are equally distributed (Figure 1d). The
Wilcoxon rank-sum test computes a W statistic from
the ranks rup of the “up” genes and from the sizes of the
“up” and “down” gene sets (nup and ndown, respectively):
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W =
∑

rup −
nup(nup + 1)

2

The W statistic is then normalized to the mean μ and
standard deviation s of the null distribution of W to
generate a statistic termed a signature association (SA)
score:

μ =
(nup · ndown)

2

σ =
(nup · ndown)(nup + ndown + 1)

12

SA =
(W − μ)

σ

The distribution of the SA score approximates a t dis-
tribution with (nup+ndown-2) degrees of freedom. Positive
SA scores indicate that the relative expression values of
the “up” genes in the signature are ranked more highly
than the “down” genes in that sample, whereas negative
SA scores indicate that the “down” genes are ranked
more highly than the “up” genes. SA scores close to
zero indicate that in that sample the signature genes are
not coordinately induced or repressed in the same pat-
tern as defined by the signature.

Identifying datasets that are significantly enriched in
samples associated with an expression signature
In the setting of expression levels that are determined
relative to the mean expression across a group of related
samples (e.g., a GEO series), the sign of each sample’s
SA score indicates whether the “up” and “down” genes
in the signature are coordinately induced or repressed
in that sample relative to the mean of all samples in
that group. To determine whether the distribution of SA
scores in a particular dataset represents significant coor-
dinate perturbation of the expression of the signature
genes, a two-sided Kolmogorov-Smirnov (K-S) test is
performed to determine whether the observed distribu-
tion of SA scores differs from the distribution of SA
scores across all samples in all datasets (Figure 1e,
upper panels). Alternately, the significance of each sam-
ple’s SA score is evaluated using an FDR-corrected p
value (q value) cutoff of 0.1, and Fisher’s exact test is
used to determine whether the categorical distribution
of SA scores in a given dataset (significantly positive,
significantly negative, or not significantly changed) is
significantly different from the categorical distribution of
SA scores across all samples in all datasets (Figure 1e,
lower panels). In addition, the p value of the Fisher’s
exact test for any dataset with a greater proportion of
non-significant SA scores than the background

distribution is set to 1. Correction for multiple hypoth-
esis testing was accomplished using the Benjamini-
Hochberg false discovery rate (FDR) [52].

Expression signatures
A list of genes whose expression was induced or
repressed greater than 2.5-fold in MCF7 cells treated for
8 or 48 hours with 10 nM 17-b-estradiol (E2) (relative
to vehicle-treated controls) was previously reported [20].
The Entrez Gene identifiers that correspond to these
gene symbols were identified, and 34 upregulated and
77 downregulated identifiers were used as a signature of
differential gene expression in response to E2 treatment
(Additional File 1). Another report [28] contained a list
of genes whose expression was induced or repressed
greater than 2-fold in at least three of five cell lines (two
keratinocytic lines and three squamous carcinoma lines)
transformed with a vector expressing a p63-specific
shRNA (relative to the same cell lines transformed with
a control vector expressing an shRNA targeting GFP).
This list was used to derive a p63-silencing signature of
51 upregulated and 26 downregulated Entrez Gene iden-
tifiers (Additional File 4).

Additional material

Additional file 1: A gene expression signature of E2 treatment. The
expression of these 111 genes was previously reported to be increased
or decreased > 2.5-fold by the treatment of MCF7 cells with 10 nM 17-b-
estradiol (E2) for either 8 or 48 hours (or both) relative to treatment with
vehicle[20].

Additional file 2: Results of openSESAME query using E2 treatment
signature. In an openSESAME query using the signature of E2 treatment,
these 56 GEO series were assigned an FDR q < 0.25 with either the K-S
or Fisher’s exact tests. Series are sorted in ascending order by K-S q
value.

Additional file 3: A gene expression signature of p63 silencing. The
expression of these 77 genes was previously reported to be increased or
decreased > 2-fold in at least three of five cell lines treated with an
shRNA targeting p63, relative to the same cell lines treated with an
shRNA targeting GFP[28].

Additional file 4: Results of openSESAME query using p63 silencing
signature. In an openSESAME query using the signature of p63 silencing,
these 123 GEO series were assigned an FDR q < 0.25 with either the K-S
or Fisher’s exact tests. Series are sorted in ascending order by K-S q
value.

Additional file 5: Receiver Operating Curves (ROCs) using E2
treatment signature in Connectivity Map (CMap) MCF7 dataset. An
openSESAME query was performed using the original 189-Affymetrix-
probeset E2 treatment signature on the ranked fold changes from all
instances of treatment of MCF7 cells in the CMap build 2.0 dataset. A
ROC was constructed (orange) in which instances of treatment of MCF7
with 17-b-estradiol (E2) were considered true positives. Another ROC was
constructed (purple) using the S scores from a web query of the
Connectivity Map using the same signature.

Additional file 6: Variation of openSESAME p values with sample
size in GEO series GSE2225 and GSE21653. A, B. For each sample size,
1000 subsets of each GEO series were obtained by permutation and SA
scores were computed. Fisher’s exact test or a two-sided Kolmogorov-
Smirnov (K-S) test were used to compute p values for each permutation.
C, D. The expression values of each gene were shuffled independently
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100 times, and for each shuffled dataset, 10 subsets were obtained for
each sample size and SA scores and p values were computed. E, F. A
total of 100 simulated datasets were obtained by generating random
values from a standard normal distribution and z-normalizing each row
("gene”) across all columns ("samples”). For each simulated dataset, 10
subsets were obtained for each sample size and SA scores and p values
were computed. Below all panels, the fraction of permutations with p
values below each threshold is shown.

Additional file 7: Variation of openSESAME p values with signature
size in GEO series GSE2225 and GSE21653. A, B. For each subset size,
1000 subsets of the signature genes were obtained by permutation,
maintaining the same proportion of up- and down-regulated genes in
the original signature, and SA scores were computed using each GEO
series. Fisher’s exact test or a two-sided Kolmogorov-Smirnov (K-S) test
were used to compute p values for each permutation. C, D. The
expression values of each gene were shuffled independently 100 times,
and for each shuffled dataset, 10 subsets of the signature genes were
obtained for each subset size, and SA scores and p values were
computed. E, F. A total of 100 simulated datasets were obtained by
generating random values from a standard normal distribution and z-
normalizing each row ("gene”) across all columns ("samples”). For each
simulated dataset, 10 subsets of the signature genes were obtained for
each subset size and SA scores and p values were computed.

Additional file 8: Variation of openSESAME p values with signature
composition in GEO series GSE2225 and GSE21653. A, B. For each
subset size, 1000 subsets of the up-and down-regulated genes in the
signature were obtained by permutation, maintaining a constant
signature size, and SA scores were computed using each GEO series.
Fisher’s exact test or a two-sided Kolmogorov-Smirnov (K-S) test were
used to compute p values for each permutation. C, D. The expression
values of each gene were shuffled independently 100 times, and for
each shuffled dataset, 10 subsets of the up- and down-regulated genes
were obtained for each subset size and SA scores and p values were
computed. E, F. A total of 100 simulated datasets were obtained by
generating random values from a standard normal distribution and z-
normalizing each row ("gene”) across all columns ("samples”). For each
simulated dataset, 10 subsets of the up- and down-regulated genes were
obtained for each subset size and SA scores and p values were
computed.

Additional file 9: Comparison of MARQ and openSESAME query
results using the E2 treatment signature. In queries using the E2
treatment signature, these GEO series were assigned an FDR q < 0.05 by
openSESAME with either the K-S or Fisher’s exact tests or contained an
experimental comparison to which MARQ assigned an FDR-corrected p <
0.05. Series are sorted in ascending order by Fisher q value.

Additional file 10: Comparison of MARQ and openSESAME query
results using the p63 silencing signature. In queries using the p63
silencing signature, these GEO series were assigned an FDR q < 0.05 by
openSESAME with either the K-S or Fisher’s exact tests or contained an
experimental comparison to which MARQ assigned an FDR-corrected p <
0.05. Series are sorted in ascending order by Fisher q value.
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