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Abstract

Background: To investigate how patterns of cell differentiation are related to underlying intra- and inter-cellular
signalling pathways, we use a stochastic individual-based model to simulate pattern formation when stem cells
and their progeny are cultured as a monolayer. We assume that the fate of an individual cell is regulated by the
signals it receives from neighbouring cells via either diffusive or juxtacrine signalling. We analyse simulated patterns
using two different spatial statistical measures that are suited to planar multicellular systems: pair correlation
functions (PCFs) and quadrat histograms (QHs).

Results: With a diffusive signalling mechanism, pattern size (revealed by PCFs) is determined by both morphogen
decay rate and a sensitivity parameter that determines the degree to which morphogen biases differentiation; high
sensitivity and slow decay give rise to large-scale patterns. In contrast, with juxtacrine signalling, high sensitivity
produces well-defined patterns over shorter lengthscales. QHs are simpler to compute than PCFs and allow us to
distinguish between random differentiation at low sensitivities and patterned states generated at higher
sensitivities.

Conclusions: PCFs and QHs together provide an effective means of characterising emergent patterns of
differentiation in planar multicellular aggregates.

Background
Embryonic stem cells (ESCs) hold great promise as a
source of cells for regenerative medicine, as they are, in
principle, capable of being expanded indefinitely in vitro
and have the potential to differentiate into any adult cell
type. Whilst small molecules (such as dexamethasone,
vitamin C and retinoic acid [1]), or growth factors (such
as bone morphogenesis proteins (BMPs) and transform-
ing growth factor b (TGF-b) [2]) can be used to increase
the proportion of cells of a desired type, the population
typically consists of multiple cell types, often organised
into distinct patches (as illustrated in Figure 1). Cultur-
ing cells for extended periods of time in vitro is expen-
sive and stem cells are generally in short supply. There
is therefore value in using mechanistic theoretical mod-
els of the differentiation of cultured cells to investigate
the relationship between the processes determining the

fate of individual cells and tissue-scale patterns. Such
models can be used to develop optimised protocols for
the production of specific cell types and for the develop-
ment of relevant analytical techniques. In this paper, we
present a computational model of a population of stem
cells, forming a relatively dense confluent monolayer, in
which juxtacrine or diffusive cell signalling biases differ-
entiation of individual cells into two possible cell types.
We demonstrate how statistical tools (pair correlation
functions and quadrat histograms) can be used to char-
acterise the emergent patterns of differentiation arising
from these distinct signalling mechanisms.
In the context of stem-cell differentiation, theoretical

models have successfully described for instance the
OCT4-SOX2-NANOG system [3], lineage determination
between trophectoderm and endoderm [4] and the later
differentiation of cells into one of three mesenchymal
lineages under the regulation of the master transcription
factors RUNX2, SOX9 and PPAR-g [5]. However inter-
actions between multiple pathways remain poorly char-
acterised [5] and many of the key processes involved in
cell differentiation remain to be identified. More
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abstract theoretical models for cellular differentiation
are based on the identification of cell fates with distinct
attractors of an underlying dynamical system [6]. This
idea is embodied in the concept of the ‘epigenetic land-
scape’ [7], whereby a ball rolling down a slope into a
branching network of valleys is analogous to a differen-
tiating cell choosing between distinct fates. Such ideas
have been revisited [8,9] in the light of recent observa-
tions of differentiating stem cells. Subsequent work has
sought to identify explicitly some of the attractors in the
dynamical system generated by the cell’s internal regula-
tory networks [10,11].
The development of mechanistic models to describe

pattern formation is a cornerstone of mathematical biol-
ogy. Substantial attention has focused on systems which
exhibit Turing instabilities, involving competition
between short-range inhibitors and long-range activators
[12]. Such models have been used to describe pattern
formation in populations of differentiating cells; for
example Garfinkel et al. [13] examined the formation of
swirls and ridges in populations of mesenchymal cells. A
range of alternative mechanisms have also been investi-
gated, in the context of stem-cell differentiation, invol-
ving for example the combination of hapotaxis and cell-
cell adhesion in mesenchymal condensations leading to
the formation of patches of cartilage [14], hapotaxis and
activator-inhibitor dynamics combined with a discrete
model for cell motion [15] and static activator-inhibitor
models [16,17]. As these diverse studies suggest, there
are a number of mechanisms by which patches of

different cell types could be generated. For example,
cells with a similar clonal history are likely to be found
near each other, and inherited transcription factors and
epigenetic changes may predispose their differentiation
into similar types. Alternatively, cells could first differ-
entiate and subsequently organise (or ‘sort’) themselves
into patches through spatial rearrangement [18,19]. The
distribution of mechanical forces in the culture environ-
ment, or the spatial distribution of chemicals, could
favour differentiation into particular cell fates in specific
regions of the culture system; and cells may influence
the differentiation of their neighbours, by auto/paracrine
signalling through diffusive signalling molecules, or by
juxtacrine signalling between adjacent cells (possibly
mediated by local mechanical effects) [20]. The above
list is certainly not exhaustive and it is likely that multi-
ple mechanisms act in combination.
In this paper, we focus on two candidate mechanisms

that may be responsible for pattern formation in popu-
lations of stem cells and their progeny, considering pat-
terns which are formed by the transmission of
information between cells through either diffusible mor-
phogens or juxtacrine signalling, biasing differentiation
pathways. Candidate diffusible morphogens might
include TGF-b and BMP-2, as reviewed in [21], see also
[22-24]. We neglect details relating to diffusive trans-
port [25] such as transcytosis [26] or binding of mor-
phogens to cell surfaces or the extracellular matrix. The
juxtacrine case could model lateral induction through
Notch signalling, which is known to be involved in reg-
ulating differentiation and has been found to stimulate
the differentiation of embryonic stem cells (ESCs) into
neurons [27] and epithelial stem cells into the function-
ing cells of the intestinal crypt [28]. Alternatively, this
case could represent the effects of signalling mediated
by cell-cell adhesion molecules such as cadherins
[29,30], some of which are thought to modulate differ-
entiation [31].
While our model is generic in the sense that we do

not identify explicit morphogens or signalling pathways
in our model, we can nevertheless use it to investigate
the physical mechanisms that underlie experimentally
observed patterns. Previous studies illustrate the com-
plexity of this task. While juxtacrine signalling is typi-
cally concerned with pattern formation on the
lengthscale of a cell [32], it can exert a longer-range
effect. For example, in the imaginal disc of Drosphilia,
sensory organ precursor cells extend filopodia contain-
ing Delta, allowing them to signal to cells which are not
nearest neighbours [33]. Lateral induction of ligand pro-
duction [34] can generate large-scale patterns, with the
juxtacrine signal being relayed between neighbouring
cells [35]. Newman & Bhat [36] suggest a mechanism in
which oscillatory behaviour synchronised by juxtacrine

Figure 1 Patterns of cultured embryonic stem cells. Photograph
showing murine embryonic stem cell aggregates (dark circular
objects) adherent to tissue culture plastic and cultured under
control conditions. Single cells migrated away from the aggregates,
eventually forming a sheet of cells. Alcian blue staining suggests the
presence of chondrogenesis.
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signalling generated large scale patterns by limiting the
period of time over which condensations could grow.
The differences between patterns arising from diffu-

sive and juxtacrine signals therefore merit careful inves-
tigation. Given the complexity of modelling specific
multi-step differentiation pathways, and their interac-
tions with other signalling networks, we propose here a
deliberately simple pattern-generating model that cap-
tures generic features in qualitative terms using minimal
parameter sets. Motivated by the idea of the epigenetic
landscape, we consider a model in which the state of an
individual cell evolves as a flow on a two-dimensional
surface [11]. The surface branches into two valleys,
which correspond to the two alternative cell fates. Dif-
ferentiating cells are assumed to influence other cells
through juxtacrine or diffusive signalling, ‘tilting’ the
potential landscape of a target cell and breaking the
symmetry of the pitchfork bifurcation. We assume the
bifurcation is supercritical, unlike the subcritical case
treated by Huang et al. [37]. We incorporate stochasti-
city in our model in two ways: by introducing noise into
the differentiation process [38,39]; and by introducing a
random element to the initial spatial distribution of cells
within the monolayer. However, to avoid further com-
plexity, we neglect cell motility and division while differ-
entiation takes place.
In order to analyse the patterns that emerge from our

simulations, we employ statistical measures for marked
or multitype spatial point processes. One common class
of spatial statistics are ‘second-order’ characteristics,
which include Ripley’s K-function [40] and pair correla-
tion functions (PCFs) [41], that consider the distribution
of distances between pairs of points. Statistics of this
class have associated cross or bivariate versions, which
only consider distances between pairs of points of speci-
fic types. Both the standard and cross-type versions of
these statistics have been previously used to examine
the distribution of cells in experimental data. For exam-
ple, a number of statistics, including PCFs, were used by
[42] to examine the spatial locations of dividing and
non-dividing cells in histological sections of solid
tumours. Ripley’s K-function [40] has been used to
examine retinal neurons [43], the three-dimensional dis-
tributions of osteocyte lacunae [44], nerve cells [45], and
villous branches in the placenta [46]. Ripley’s L-function
(a variant of the K-function [40]) was used to examine
immune cells in lymph nodes [47]. Su et al. [48] use
“local cell metrics” (LCMs), which are closely related to
PCFs (their normalised LCM is precisely the cross PCF),
to analyse cell-cell interactions in populations of prolif-
erating osteoblasts. However, the types of spatial pat-
terns arising in these experiments, and the biological
questions under consideration, differ from those consid-
ered here. We note that other spatial statistics have

been developed, in particular Minkowski functionals
[49], which are more complicated to implement than
second-order statistics.
In this paper, we examine two statistical measures that

are particularly well suited to multicellular systems, and
which could equally be applied to experimental observa-
tions. These provide a quantitative estimate of pattern
length scales in populations of two cell types, distinguish
‘noisy patterns’ from completely random differentiation
and condense image data into a small number of mea-
sures which are useful for parameter surveys. We show
how PCFs can be used to assign a length-scale to pat-
terns of differentiating cells. We also show how quadrat
histograms (QH) can be used to distinguish noisy pat-
terns from random distributions. QHs are adopted here
on account of their conceptual simplicity, ease of imple-
mentation and low computational cost. PCFs were cho-
sen in preference to other second-order statistics
because of their (arguably) more natural interpretation
in the context of exploratory data analysis, as they indi-
cate the properties of pairs of cells separated by a parti-
cular distance (rather than all those pairs separated by
less than a given distance, which is the case for the Rip-
ley’s K-function). These tools generate simple metrics
that enable us to characterise the patterns that emerge
and their dependence on system parameters.

Results
The model is initialised by seeding undifferentiated cells
at random on a planar surface, and allowing them to
push each other apart at short distances (and attract
nearby cells at longer distances) to form aggregates with
only minimal overlap between cells. Thereafter (for t >
0), the cells are assumed to remain stationary while they
undergo differentiation into one of two possible terminal
states, denoted R (red) or G (green) (Figure 2(a)). The
evolution of each cell is modelled by a stochastic differ-
ential equation which is analogous to the motion of a
particle (in the presence of noise) down a valley (in a
surface with coordinates (sn, fn)) that bifurcates into two
sub-valleys via a pitchfork bifurcation (Figure 2(c)). The
‘stemness’ parameter sn for cell n falls from 1 to 0 as the
cell differentiates; the type of cell n is coded by a vari-
able fn that approaches the base of the sub-valley in fn >
0 (R) or fn < 0 (G).
Signals from nearby cells tilt the landscape (Figure 2

(d)), favouring differentiation towards the fate shared by
its neighbours. Noise in the signalling, generated by ran-
domness in the initial spatial distribution of the cell
aggregates and intrinsic variation in the differentiation
of each cell, leads to the formation of local regions con-
taining more cells of type R (fn > 0) or G (fn < 0).
Partitioning of the cells into distinct fates is illustrated

by histograms of fn (Figure 2(a)). The distributions
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presented in Figure 2(a) illustrate one of a large set of
possible simulation outcomes.

Characterising patterns
At the end of each simulation, cells are characterised by
the positions of their centre and their type (R or G).
Two representative patterns are shown in Figure 3, with
which we illustrate the use of PCFs and QHs.

PCFs are represented by two functions, g(r) and gS(r):
g(r) describes the distribution of distances r between
pairs of cells, normalised by the expected distribution if
the cell positions were completely random; the cross-
PCF gS(r) represents the distribution of distances
between pairs of cells of the same type (either R or G).
If the cells have a completely random spatial distribu-
tion, then g(r) ≡ 1 (although the requirement for cells
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Figure 2 Temporal development of differentiation patterns. In (a), the left-hand diagrams show the cell states (sn, fn), with cells coloured
according to the key in (b); the right-hand diagrams are the corresponding QHs for the distribution of the cell type variable fn. “norm. freq.” is
normalized frequency. Parameter values: as in Table 1. (c,d) show the potential surface for (2b), U = Bnsn + χ

(
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)
f 2n /2 − νf 4n /4 for c = 5, ν = 1 with

(c) Bn = 0 and (d) Bn = 0.1. The cells start in a multipotent state (upper valley), but as they progress down the surface they diverge into two
distinct phenotypes (lower valleys). Diffusive morphogens bias differentiation towards one of the two states ("tilting” the surface). Solid lines
correspond to stable steady-states for the type equation (2b) with sn viewed as a constant parameter.
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not to be overlapping implies g < 1 for small r). If cells
differentiate randomly and independently, then gS(r) ≡ g
(r) (Figure 3(e)). However, if the cells form patches of
different types, then the cross PCF will differ from g(r)
(Figure 3(b)). For example, for distances r smaller than
the sizes of the patches, gS(r) >g(r), as two cells sepa-
rated by a distance r are more likely to be of the same
type than two cells which are selected at random. The
point at which the PCFs intersect (r = rp ≈ 38 in this
case) provides a quantitative estimate of the scale of the
pattern.
QHs indicate the proportion pR of cells of type R in

each quadrat when the domain is divided into Mq × Mq

square quadrats. If the cells differentiate at random (Fig-
ure 3(d,e,f)), and the number of quadrats is chosen such
that the average number of cells in a quadrat N/M2

q is

moderately large (N/M2
q > 10), then pR has an approxi-

mately binomial form, NqpR ~ B(Nq, 1/2) with

Nq =
⌊
N/M2

q

⌋
; there are on average Nq cells in each

quadrat, and the type of each cell is determined ran-
domly and independently of the others with probability
1
2
of being R. For large N, pR is approximately normally

distributed with pR ∼ N (1/2, 1/4Nq) (Figure 3(f)). How-
ever, if there are distinct regions (with a length scale lar-
ger than the size of the quadrats) in which most cells
are of one type then there will be many quadrats for
which p ≈ 0 and p ≈ 1, resulting in a distribution with
two large peaks (Figure 3(c)). Thus distributions with
distinct patches are identified by PCFs with gS(r) >g(r)
for sufficiently small r and QHs showing a substantial
majority of quadrats containing cells which are almost
all of one type. In contrast, spatially random patterns of
differentiation (as illustrated in Figure 3(d,e,f)) are char-
acterised by gS(r) ≈ g(r) and a QH of binomial form.
In summary, QHs provide simple information about

whether or not a pattern is present whereas PCFs
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Figure 3 Characterising patterns with spatial statistics. (a,d) show two representative model simulations, computed with different parameter
values ((a) Sdiff = 40, l = 10; (b) Sdiff = 1, l = 40); colours indicate R/G differentiation states; non-overlapping disks represent individual cells. (b,e)
show the corresponding PCFs and (c,f) the QHs. In (b,e), the dashed line is the cross PCF gS(r) for pairs of cells of the same type; the solid line is
the PCF g(r) for all pairs of cells. The numbers on the QH (c) indicate the normalised frequencies (and corresponding percentages) for the end
bins (which exceed the vertical scale of the histogram). In (a,b,c), the cells are organised into distinct patches, reflected in the behaviour of the
PCFs; gS(r) > g(r) for r < rP (i.e., nearby pairs of cells are more likely to be of the same type than two cells selected at random), the intersection
point r = rp giving a quantitative estimate of pattern scale. The QH (c) also indicates the formation of patches, as the majority of the quadrats
contain cells of one type (the range 0 <p < 1 is divided into 50 bins, and the values are normalised such that the total area is one). In (d,e,f), the
cells appear to have differentiated at random, with no discernible structure. This can be seen from the PCFs in (e), with gS ≈ g(r) for all r (i.e., two
nearby cells selected at random are no more likely to be of the same type than two well-separated cells). Similarly, the QH (f) shows that most
of the quadrats contain a mixture of cells of different types, and the proportion of cells of type R in each quadrat is well described by a
truncated normal distribution on [0,1] with mean 1/2 and variance M2

q /4N (solid line).

Fozard et al. BMC Bioinformatics 2011, 12:396
http://www.biomedcentral.com/1471-2105/12/396

Page 5 of 16



provide additional information about the pattern’s
length-scale.

Diffusive signalling
The spatial patterns that are observed under diffusive
signalling are particularly sensitive to two dimensionless
model parameters: Sdiff, which measures the response of
the bias to morphogen concentrations; and the morpho-
gen decay rate, l. Results from individual realisations of
the model for 16 pairs of parameter values are shown in
Figure 4, illustrating the range of patterns that can be
generated. For small Sdiff and large l, the cells appear to
differentiate randomly, as the strong decay rate inhibits
communication between cells. For large Sdiff and small
l, the patterns often contain many more of one cell
type than another, and in some cases all cells adopt the
same (differentiated) fate, with stochastic effects dictat-
ing whether they are all red (of type R) or all green (of
type G). For fixed l and increasing Sdiff, we observe a
transition from random differentiation to distinct
patches of cells, with “noisy patches” evident for

intermediate values of Sdiff; patterning is more coherent
when cells have greater sensitivity to morphogens. For
fixed Sdiff and increasing l, the spatial scale of the
patches appears to decrease, with the differentiation
becoming random for sufficiently large l.
To identify behaviour that is consistent across multi-

ple realisations, simulations were conducted Msim = 100
times for each parameter set in Figure 4. The corre-
sponding PCFs, averaged over all simulations (Figure 5
(a)), demonstrate consistently random differentiation for
small values of Sdiff and large l (gS(r) ~ g(r)). Distinct
patches are evident for larger Sdiff and small l (gS(r) >g
(r) for r <rp). The quantitative estimates of the scale of
the pattern, rp, increase slightly as l decreases (the dif-
fusive signals act over distances proportional to

√
D/λ),

Figure 5(b), but are less sensitive to Sdiff. We report
values of rp for the mean PCFs in Figure 5(a), noting
that there is a distribution of patch sizes between indivi-
dual simulation realisations; the width of this distribu-
tion is indicated in Figure 5(b). The difference between
gS(r) and g(r) becomes smaller for small l, because some
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Figure 4 Survey of patterns under diffusive signalling. Patterns generated by the diffusive signalling mechanism, for a variety of different
values of the sensitivity parameter, Sdiff = 1,3,10,40 and the morphogen decay rate, l = 1,5,10,40, as indicated. We plot the distribution of cells at
the end of a single realisation of the model for each pair of values Sdiff and l. For fixed Sdiff, increasing l decreases the scale of the patterns. For
fixed l, as Sdiff increases there is a transition from random differentiation, through a “noisy pattern” stage, to patches of cells which are almost all
of one type. The point at which this transition occurs depends upon the values of both parameters.

Fozard et al. BMC Bioinformatics 2011, 12:396
http://www.biomedcentral.com/1471-2105/12/396

Page 6 of 16



realisations contain cells which are all of one type (in
which case gS(r) ≡ g(r)).
The corresponding QHs (averaged over Msim realisa-

tions, see Figure 6), demonstrate a transition from ran-
dom differentiation for small Sdiff and large l, in which
the histogram has a binomial form with a peak at p = 1/
2, to well-defined patterns for large Sdiff and small l in
which the majority of the quadrats contain cells which
are entirely of one type (pR ≈ 0,1). It is helpful to intro-
duce a (very conservative) threshold that defines the

existence of patterns: for example, if more than 10% of
the quadrats have pR < 0.02 or pR > 0.98 (so lie in either
of the extreme bins of the QH), then we say that well
defined patterns exist. We demarcate patterned and
non-patterned distributions defined by this criterion in
Figure 6. Note that the presence of any quadrats with
extreme values of p strongly suggests the presence of
patterning: with the parameters of Table 1, the average
quadrat contains about 24 cells, and if these all differ-
entiate randomly and independently the probability of

λ = 1 λ = 5 λ = 10 λ = 40

S
di

ff
=

40
S

di
ff

=
10

S
di

ff
=

3
S

di
ff

=
1

(a)

1 10
λ

20

30

40

50

r p

(b)
Figure 5 Pair correlation functions: diffusive signalling. (a) PCFs for simulations with diffusive signalling. For each set of parameter values
PCFs are calculated using the results of Msim = 100 realisations (corresponding to the individual realisations shown in Figure 4). The dashed line
is the cross PCF gS(r) for pairs of cells of the same type whilst the solid line is the PCF g(r) for all pairs of cells. Arrows highlight rp, the point of
intersection of gS and g, which is a quantitative estimate of pattern size. (b) Distribution of the values of rp calculated from each individual
realisation of the simulation with Sdiff = 10 and l = 1,5,10,40 (error bars show mean plus or minus one standard deviation). Only realisations in
which the maximum value of gS - g is greater than 0.02 (ignoring those realisations in which all cells differentiate to the same type) are
included; for l = 1, 5,10,40 this corresponds to n = 43, 78, 96,100 of 100 realisations, respectively.
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all 24 being of one type is roughly 2 × (0.5)24 ≈ 10-7.
The degree of noise in the patterns is characterised by
the shape of the histograms for intermediate values of
pR; the roughly uniform distribution on 0 <pR < 1 falls

in magnitude as Sdiff increases (Figure 6), even though
pattern length-scales remain approximately constant
relative to the size of quadrats (Figure 5). This diffusive
signalling mechanism is therefore capable of generating
a wide range of spatial patterns. Overall, the sensitivity
parameter, Sdiff, appears to control the degree of noise
in the patterns, whilst the morphogen decay rate, l,
controls their length-scale.

Juxtacrine signalling
For the juxtacrine signalling mechanism, we consider
only the effects of varying the sensitivity parameter,
Sjuxt. Simulation results (Figure 7) show a smooth transi-
tion from random differentiation for small Sjuxt to small,
distinct patches of cells for larger Sjuxt. In contrast to
the diffusive signalling mechanism, patch size under jux-
tacrine signalling is limited to approximately 20 cell
radii in scale. The transition from random differentia-
tion is evident in PCFs (gS(r) ≈ g(r) for small Sjuxt; gS(r)
>g(r) for r < rp for larger Sjuxt), which indicate a patch
size of approximately rp ≃ 14 for large Sjuxt. The QHs
also reflect this transition, although as the scale of the
patterns is comparable to that of the quadrats, there are
substantially fewer quadrats containing cells entirely of
one type (pR ≈ 0,1) than in the diffusive case (with large
Sdiff and small l).
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Figure 6 Quadrat histograms: diffusive signalling. QHs for simulations with diffusive signalling. For each set of parameter values histograms
are calculated using the results of Msim = 100 realisations (corresponding to individual realisations shown in Figure 4). Numbers show
normalised frequencies (and corresponding percentages) for the bins if these are greater than 5. In those QH to the upper-left side of the red
line, more than 10% of the quadrats are in either of the extreme bins (pR < 0.02, pR > 0.98), which we use as a conservative criterion for the
presence of patterns.

Table 1 Dimensionless parameter estimates

Symbol Description Dimensionless value

L Computational domain size 120

Ninit Initial number of cells 3500

rc Typical cell radius 1

tend Duration of the simulation 4

c Bifurcation control parameter 5

δ Noise amplitude 10-4

Sjuxt Sensitivity parameter (juxtacrine) 10-3

Rjuxt Radius for juxtacrine signalling 3

Sdiff Sensitivity parameter (diffusive) 10

la, lb Morphogen degradation rates 10

Da, Db Morphogen diffusion coefficients 103

Ms Number of grid squares 120

Mq Number of quadrats in each direction 12

Msim Number of simulation realisations 100

Mg Number of distance intervals for RDFs 60

dt Time step 4 × 10-4

Dimensionless parameter estimates; unless otherwise stated (in the figure
caption), these are the parameter values used for simulations.
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Discussion
Heterogeneity in differentiating populations of stem cells
hinders the efficient generation of specific types of dif-
ferentiated cells. Whilst it seems likely that cells will
always need to be sorted before being implanted in vivo,
not least because undifferentiated cells can cause terato-
mas (e.g. [50]), improving the yield of particular cell
lineages would be of great value. The detailed mechan-
isms which govern the later stages of cell differentiation
into particular phenotypes are not well understood, and
there is evidence to suggest that components of both
diffusible and juxtacrine signalling pathways play a role
[21-24,27,28].
The statistical measures described here provide a

robust, quantitative measure of noisy spatial patterns.
We have shown, using a simple model of diffusive or

juxtacrine signalling in a cellular monolayer, how QHs
provide a simple measure for distinguishing binary pat-
terns of cellular differentiation from spatially uncorre-
lated outcomes, and how PCFs may be used to estimate
the typical lengthscale of binary patterns. As discussed
below, these could be readily applied to experimental
data, allowing the objective comparison of patterns asso-
ciated with different culture conditions. In the future,
such measures may prove useful in future for comparing
the outputs of mechanistic, theoretical models with
experimental outcomes. Spatial multicellular simulations
often contain large numbers of parameters and generate
verbose output; PCFs and QHs may prove to be useful
tools for the automatic exploration of parameter space
and for condensing the information into a smaller num-
ber of physically meaningful quantities.
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Figure 7 Juxtacrine signalling patterns. Patterns generated by the juxtacrine signalling mechanism, for a range of values of the sensitivity
parameter, Sjuxt. Each of the quadrat histograms and PCFs was calculated from the results of Msim = 100 realisations with the same parameter
values.
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Model extensions
The present model is deliberately simple, but sufficient
to capture the fundamental dynamics (a pitchfork bifur-
cation with symmetry broken by signalling) that we
expect to govern cell fate specification. There are many
ways in which we could extend the model. For example,
we could include more detailed models of the regulatory
networks that govern differentiation [5], and details of
their interactions with signalling pathways, such as Wnt
signalling [51,52], which is thought to play a role in reg-
ulating mesenchymal differentiation [53] and the cell
fate of intestinal epithelial cells [54].
At present, all cells lose their “stemness” at the same,

pre-determined rate. It seems plausible that individual
cells could undergo a rapid, asynchronous transition
from an undifferentiated stem-like state to a committed
or differentiated one; our model could be extended to
permit this by changing the form of the potential sur-
face. This would also permit small numbers of partially-
differentiated cells to be present in the terminal popula-
tion [55].
In addition, embryonic stem cell populations have

been found to be heterogeneous, containing subpopula-
tions which are biased towards particular lineages
[56-58]. Such effects could be modelled by considering a
subcritical pitchfork bifurcation, as in the model of [37],
rather than the supercritical one considered here. While
the current model allows limited plasticity in cell fate,
with partially differentiated cells being able to change
cell type, it is possible to include de-differentiation in
response to specific extracellular signals [59,60] and
transdifferentiation of cells [61,62].
More accurate models for diffusive signalling could be

developed that account for realistic cell shapes in three
dimensions and the details of receptor-ligand binding
[63] and signal transduction [64]. The model for juxta-
crine signalling could also be greatly refined, incorporat-
ing established mechanisms [65-68]. Mechanical forces
are also known to affect tissue morphogenesis (reviewed
by [69]); changes in cell shape [70] and substrate stiff-
ness [71] have been found to cause mesenchymal stem
cells to commit to different lineages. Extracellular
matrix (ECM) proteins are thought to regulate differen-
tiation [72-75], and it has recently been observed that
the ECM generated by osteogenic precursors promotes
the osteogenic differentiation of ESCs [76]. Such effects
could be incorporated in a similar manner to diffusible
morphogens, but without diffusion. Other extracellular
stimuli that are known to influence differentiation, such
as O2 tension [77,78], could also be readily incorporated
in the model.
Cell motion can be readily included in the model, e.g.

equation (1), which is here used to determine initial cell
positions, could be employed and noise added to

account for random cell motility. It would also be inter-
esting to extend the model to account for cell division.
However, we have concentrated on the case of static
populations of non proliferating cells in order to investi-
gate the two patterning mechanisms in a simple context.

Applications to experimental data
The positions of the cell nuclei (possibly obtained
through DAPI staining and confocal imaging, followed
by image segmentation and identification of the cen-
troids of the nuclei) give a set of points in space, and if
a cell type can be assigned to each point (through co-
staining), the data will be of the same form as that ana-
lysed in this paper. The PCFs (and also the QHs) may
be calculated in a straightforward manner using the R
package spatstat [79,80].

Conclusions
We have shown how two statistical techniques, QHs
and PCFs, can be used to analyse the spatial patterns
that emerge in populations of differentiating cells, when
there is randomness in the spatial distribution of cells
and in the superimposed patterns of differentiation. We
have illustrated these techniques using data from a sim-
ple stochastic model, in which cell patterning is regu-
lated by either diffusive or juxtacrine signals. We have
shown how the size and onset of patterns can be quanti-
fied, and illustrated how patterns depend on the
mechanisms controlling differentiation and the system
parameters.
Our results suggest that when diffusive signalling reg-

ulates differentiation, pattern size, as characterised by
the QHs and PCFs, is strongly influenced by morphogen
decay rate and the degree to which the morphogen
biases cell differentiation, with large-scale patterns
observed when the decay rate is low and the cells’ sensi-
tivity to the morphogen is high. For juxtacrine signal-
ling, the size of the patterns that emerge is an
increasing, saturating function of the cells’ sensitivity to
signalling; large-scale juxtacrine patterns were not seen
in our simulations. Our results also reveal how standard
statistical techniques such as PCFs and the QH may be
used to analyse and characterise the patterns that
emerge from differentiating populations of cells in pla-
nar multicellular aggregates.

Methods
We simulate individual cells on a planar substrate. The
model operates in two steps, described in detail below:
undifferentiated cells are seeded at random (at t = 0),
and a mechanical model is used which generates aggre-
gates of non-overlapping cells (at t = 0); thereafter (for t
> 0), individual cells stop moving and undergo differen-
tiation, mediated by diffusive or juxtacrine signalling
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(see Figure 8). We combine an individual-based model
for cell differentiation with a model for signalling; for
diffusive signalling, we use continuum reaction-diffusion
equations for the diffusible species, whilst for juxtacrine
signalling, we assume that each cell influences the differ-
entiation of a finite number of nearby cells.
Patterns of aggregation and differentiation are ana-

lysed with PCFs and QHs, as explained below.

Modelling initial spatial distribution
N cells are distributed randomly on a square domain [0,
L] × [0, L], considered to be periodic in both directions.
Cells move according to a simple, cell-centre based
model for a time interval tinit, generating a distribution
that minimises overlapping but allows aggregate forma-
tion. Cells move due to forces between neighbouring
cells that are repulsive over short distances to prevent
overcrowding but attractive over longer distances to
mimic adhesion.
The location of the centre of the n-th cell, xn, evolves

according to the differential equation

dxn
dt

=
N∑

m=1,m�=n
v(|xn − xm|) xn − xm

|xn − xm| · (1a)

Short-range repulsion and long-range attraction are
simulated by the velocity v(r), satisfying

v(r) =
{
Ar2c r

−3(2rc − r) r < Rv,
0 r > Rv.

(1b)

(We note that other functions having a similar quanti-
tative form would be similarly effective.) We take the
cut-off radius to be Rv = 3rc, where rc is the cell radius.
A parametrises the size of cell-cell forces. Equations (1)
were simulated using the Euler method for an interval
tinit = 0.002, taking A = 5000.

Modelling cell differentiation
We parametrise the state of the n-th cell (1 ≤ n ≤ N) by
(sn, fn), which serves as a low-dimensional approxima-
tion to the levels of numerous transcription factors and
the methylation status of many genes. The variable sn,
lying in the range 0 ≤ sn ≤ 1, denotes the “stemness” or
degree of plasticity of the cell; each value of sn may
represent a set of regulatory network activation patterns
from the molecular viewpoint, and may depend on the
relative abundance and subcellular localisations of pro-
teins and RNAs as well as other types of signalling
molecules.
At the start of the simulations, all cells have stemness

parameter sn = 1. Over time and as the cells differenti-
ate, sn decreases (in the present model in a deterministic
manner). The variable fn (a measure of the relative
expression level of specific genes) may take any real
value and represents the differentiation fate of the cells.
We classify the cells into two types, R and G, for which
fn > 0 and fn < 0, respectively. (In images of simulations,
cells of types R and G are coloured red and green,
respectively.) At the start of the simulation, we set fn =
0 (no preferred lineage) for all cells.
The state of the n-th cell evolves according to the sys-

tem of stochastic ordinary differential equations

dsn = −κsndt (2a)

dfn =
(
Bn + χ

( 1
2 − sn

)
fn − vf 3n

)
dt +

√
2δdWn (2b)

where t is time, � > 0 controls the rate at which cells
differentiate, while c > 0 and ν > 0 are parameters
which regulate positive and negative feedback. The
equation for fn is chosen such that (with sn viewed as a
parameter, and Bn = δ = 0) it displays a supercritical
pitchfork bifurcation at sn = 1/2, with a single stable

(a) (b)
Figure 8 Pathways of diffusive and juxtacrine signalling. (a) In diffusive signalling, cells of type R (G) generate morphogens a (b) which
diffuse in space and influence other cells through a signal Bdiff

n which biases subsequent differentiation. (b) In juxtacrine signalling, cells of type
R (G) force a signal Bjust

n which acts on neighbouring cells.
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steady state for sn > 1/2, but two stable (and one
unstable) steady states for sn < 1/2, associated with the
two distinct cell fates (Figure 2(c)). Bn ≡ Bjuxt

n + Bdiff
n

denotes the influence of external factors (juxtacrine and
diffusive signalling) on the fate of the cell. Non-zero Bn

breaks the symmetry of the pitchfork bifurcation (Figure
2(d)). Noise (of amplitude δ) accounts for randomness
in the differentiation process, allows plasticity in the fate
of partially committed cells, and perturbs the system
from the unstable state in which all cells have fn = 0.
Cells are assumed to remain stationary while they differ-
entiate. We do not claim that the present model for dif-
ferentiation is definitive; however, it exemplifies in a
simple phenomenological way the phenotypic evolution
of individual cells.
Diffusive signalling
To simulate diffusive signalling, we assume that the cells
produce morphogens with concentrations (at a point x
in space) denoted by a(x, t) and b(x, t). Cells of type R
(fn > 0) produce a, whilst cells of type G (fn < 0) pro-
duce b, with the production rates of the nth cell being
given by aa(sn, fn) and ab(sn, fn), respectively (Figure 8
(a)). The morphogens diffuse freely in the extracellular
space, with diffusion coefficients Da and Db, and are
degraded at rates la and lb. The concentrations a and b
satisfy the equations

∂a
∂t

= Da∇2a +
N∑
n=1

αa(sn, fn)δ(x − xn) − λaa (3a)

∂b
∂t

= Db∇2b +
N∑
n=1

αb(sn, fn)δ(x − xn) − λbb (3b)

where the xn (n = 1,..., N) are the positions of the cell
centres. Uptake of the morphogens by the cells is
neglected. For simplicity we adopt the following forms
for the production functions:

αa(Sn, fn) =
{

α(1 − sn) fn > 0,
0 fn < 0,

(3c)

αb(sn, fn) =
{
0 fn > 0,
α(1 − sn) fn < 0,

(3d)

where a > 0 is a constant. Production rates increase as
the cells lose their multipotency (i.e. as sn decreases).
The influence of morphogens on cell fate in (2b) is

modelled by assuming that Bdiff
n is proportional to the

difference in concentrations of the two morphogens,

Bdiff
n = Sdiff(a(xn) − b(xn)), (3e)

Sdiff being a parameter representing the sensitivity of
cells to diffusive signalling. Differentiation is biased

towards type R (G) when Bdiff
n is positive (negative) via

(2b).
Juxtacrine signalling
To simulate signalling between cells which are in direct
physical contact (represented by cells whose centres are
less than a distance Rjuxt apart, where we take Rjuxt =
3rc), we define the influence function Bjuxt

n in (2b) to be

Bjuxt
n = Sjuxt

∑
m

2rc(βa(sm, fm) − βb(sm, fm))
|xm − xn| (4a)

summing over all m ≠ n, with | xm - xn |<Rjuxt. The
signals produced by differentiating cells (Figure 8(b)) are
chosen to be

βa(sn, fn) =
{

β(1 − sn) fn > 0,
0 fn < 0,

(4b)

βb(sn, fn) =
{
0 fn > 0,
β(1 − sn) fn < 0.

(4c)

Sjuxt parametrises the sensitivity of cells to juxtacrine
signalling and the constant b > 0 represents the typical
number of cell-surface ligands. In (4a), the area of con-
tact between cells (and hence the number of receptor-
ligand interactions) is assumed to be inversely propor-
tional to the distance between them.
Parameter estimation and nondimensionalization
The governing equations can be simplified by making
the model dimensionless. The parameters rc, �, a, b
and ν, can be eliminated by rescaling time on �-1, dis-
tances on rc, the cell fate variable fn on �1/2ν-1/2, diffu-
sive morphogen concentrations and production rates
on α/κr2c and a respectively, juxtacrine production
rates on b and biasing functions Bn on �3/2ν-1/2. In
dimensionless variables, we recover equations (2) with
� = ν = 1 and parameters c and δ replaced by χ̂ = χ/κ
and δ̂ = δν/κ2; equations (3) with Da, Db replaced by

D̂b = Db/κr2c , D̂b = Db/κr2c and la , lb replaced by

λ̂b = λb/κ, λ̂b = λb/κ; equations (3d) with a = 1; equa-

tion (3e) with Sdiff replaced by Ŝdiff = Sdiffαν1/2/κ5/2r2c ;
equation (4a) with rc = 1 and S juxt replaced by

Ŝjuxt = Sjuxtβν1/2/κ3/2 and R juxt by Rjuxt = Rjuxt/rc; and
equations (4b,c) with b = 1. The domain becomes

[0, L̂] × [0, L̂] with L̂ = L/rc, and simulations are of dura-
tion t̂end = κtend. Henceforth we work only with dimen-
sionless quantities and omit hats.
Estimates for the dimensionless parameters are listed

in Table 1; these are the default values used for simula-
tions in Results. Da and Db are based on the diffusion
coefficient for the morphogen BMP-2, which was esti-
mated to be 10-8 cm2s-1 in [13] (we do not include the
correction proposed in [13] for the slowing of diffusion
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by the extracellular matrix), and we take Da = Db. The
typical cell radius is taken to be 10 μm. Data to estimate
the other parameters are not readily available, in parti-
cular �, which we take to be � = 1 day-1. However the
parameters Sdiff, Sjuxt and la, lb have a significant effect
on the generated patterns, and therefore a wide region
of parameter space is surveyed. (We note that the range
of l considered (1 ≤ l ≤ 40) encompasses the degrada-
tion rate 2.5 × 10-4 s -1 for the morphogen Dpp in Dro-
sophila measured by [81], corresponding to l = 21 in
dimensionless units.) For simplicity we assume la = lb
= l, say.
In order to select parameter values such that the dif-

fusive and juxtacrine mechanisms exert similar effects
on differentiating cells, we estimate the maximum sizes
of Bdiff

n and Bjust
n . Cells are typically separated from

their nearest neighbours by a dimensionless distance of
2 (2rc in dimensional units), so for the juxtacrine
mechanism the contribution to Bjust

n in (4) from a
neighbouring cell is of the order of Sjuxt. As cells typi-
cally have 6 or fewer neighbours (close packing for
discs), we estimate |Bjuxt

n | ≈ 6Sjuxt. For the diffusive sig-
nalling mechanism, the steady-state morphogen field
generated by a point source of strength unity is given
by

a =
1

2πDa
K0

(√
λa

Da
r

)
(5)

where r is the distance from the source and K0 a mod-
ified Bessel function. As K0 (x) ∼ e−x

√
π/2x as x ® ∞,

diffusive signalling will be significant between cells sepa-
rated by r = O(

√
Da/λa). Provided la ≪ Da, we estimate

|Bdiff
n | ≈ Sdiffφ

Da

∫ ∞

0
K0

(√
λa

Da
r

)
r dr =

Sdiffφ
λa

(6)

where φ = 1/
(
2
√
3
)
represents the density of cell cen-

tres for closely packed discs. For Da = 1000, la = 10,
this expression is approximately 0.03Sdiff. We therefore
expect that the juxtacrine and diffusive signalling
mechanisms will have similar effects on differentiation if
Sjuxt is roughly 1000 times smaller than Sdiff.
Numerical methods
Solutions to the stochastic differential equations (2) are
approximated numerically using the Euler-Maruyama
method [82]. Denoting by Δt the integration timestep
and introducing the superscript τ to represent the state
of a cell at time t = τΔt, we have

sτ+1n = (1 − 
t) sτn, (7)

f τ+1
n = f τ

n + (Bτ
n + χ( 12 − sτn)f

τ
n − (f τ

n )
3)
t

+
√
2δ
Wτ

n

(8)

where the 
Wτ
n are independent random numbers

drawn from a normal distribution with mean zero and
variance Δt.
The morphogen equations (3) are approximated

numerically using a cell-centred finite-volume approach
to discretise spatial derivatives. We denote by aj,k(t) and
bj,k(t) (j,k = 1,..., Ms) the average concentration of a or b
in the region Ij,k = [(j- 1)h,jh] × [(k - 1)h, kh] at time t,
where h = L/Ms. Equation (3a) becomes

d
dt
(aj,k) =

Da

h2
(aj−1,k + aj+1,k + aj,k−1 + aj,k+1

−4aj,k) +
1
h2

∑
xn∈Ij,k

αa(sn, fn) − λaaj,k
(9)

for 1 ≤ j, k ≤ Ms, and similarly for (3b).
Solutions to the continuous equations (3) have loga-

rithmic singularities at the cell centres, as the cells are
modelled as point sources. These singularities are regu-
larised via the spatial discretization, which averages all
quantities over a grid square, making the strength of
autocrine signalling (and that between cells separated by
distances which are of the order of h or less) dependent
on h. The discrete equations are stepped forward in
time using the Douglas alternating-direction implicit
method [83,84]. The morphogen concentrations a(xn,t)
and b(xn,t) experienced by the n-th cell are then taken
to be those for the grid square in which its centre, xn,
lies. As the system contains stochastic elements, we per-
form Msim simulation realisations for each set of para-
meter values.
The simulations were written in ISO C99, using the

random number generator of the GSL library [85], and
are available as Additional file 1.

Spatial statistics
Pair correlation functions
PCFs are ‘second-order’ characteristics (involving rela-
tionships between pairs of points). We first define them
for sets of points which are all of one type, before
extending their definitions to the multitype case.
Let Π(ξ,h) be the probability of finding at least one

cell centre in both of the infinitesimally small discs, with
centres ξ and h and areas dS1 and dS2, respectively. The
product density [41], r(2) (ξ,h), is intuitively defined by
Π(ξ, h) = r(2) (ξ,h) dS1dS2 (see [41,86] for a rigorous
definition). If the pattern is translation-independent and
isotropic, then r(2) (ξ,h) ≡ r(2) (r), where r = |ξ - h|. Let
r = N/L2 be the average density of cell centres. Then
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the PCF (or radial distribution function [87]) is defined
by g(r) ≡ r(2) (r)/r2, and describes the distribution of
distances between pairs of cells.
In the multitype case, for each choice of X, Y Î {R, G},

we define ρ
(2)
XY (ξ , η) as for r(2) (ξ,h), except that we

require the points in S1 and S2 to be of types X and Y
respectively. The corresponding cross pair correlation
functions [88] (or mark PCFs [41], or partial radial dis-
tribution functions [87]) are defined by

gXY(r) = ρ
(2)
XY (r)/ρXρY, where rX is the density of cells of

type X.
We estimate PCFs using the approach illustrated in

Figure 9; see [41] (p. 284) for more detailed discussion.
(Functions pcf for calculating g(r) and pcfcross for cal-
culating gXY(r) are included in the R package spatstat
[79].) A piecewise constant estimate of g(r) is obtained
by dividing the range 0 <r <L into Mg intervals of equal
length L/Mg. Setting rj = jL/Mg, we approximate g(r) on
rk <r ≤ rk+1 by

g(r) =
L2

N2π(r2k+1 − r2k )

N∑
m=1

N∑
n=1,n�=m

I(rk,rk+1](dnm) (10)

where dnm ≡ | xn - xm |, I(s,t](r) is the indicator func-
tion on (s,t]:

I(s,t](r) =
{
1 s < r ≤ t,
0 otherwise.

(11)

For each cell m Î {1, 2,..., N}, and each interval k, we
calculate the number of cells in the annular region rk <
r ≤ rk+1 centred at xm, and normalise this by the
expected number of cells in an area of this size were the
cells to be uniformly distributed. We then average this
over all N cells. (Smooth estimates of g(r) can be
obtained by using a smoothing kernel in place of the
indicator function.) Whilst the above estimate is piece-
wise constant, in order to show the distribution more
clearly, we plot the values calculated as above at the
centres of each interval ((rk+1 + rk)/2) (this is linearly
interpolated to give a continuous line).
The cross PCFs gXY are calculated in a similar manner,

but the sums for m and n in (10) run only over cells of
types X and Y respectively, and the normalization con-
stant is L2/[NXNYπ(r2k+1 − r2k )], where NX and NY are
the numbers of cells of type X and Y. As the simulations
are initially symmetrical in the two cell fates, we will
combine gRR(r) and gGG(r) to give the cross PCF for
pairs of cells of the same type, gS(r), defined by

gS(r) =
(ρR)

2gRR(r) + (ρG)
2gGG(r)

(ρR)
2 + (ρG)

2 . (12)

We choose to weight the two cross PCFs in propor-
tion to the number of pairs of cells of that type, as gS(r)/
g(r) is then the conditional probability that two ran-
domly selected cells are of the same type, given that
they are separated by a distance r, divided by the prob-
ability that any two randomly selected cells are of the
same type ((ρ2

R + ρ2
G)/ρ

2). We take the arithmetic mean
of PCFs over Msim realisations with the same parameter
values in order to better estimate them.
Quadrat histograms
To calculate this statistic, we partition the domain [0, L]
× [0, L] into Mq × Mq squares (or quadrats) with side
length L/Mq. We calculate the proportion pR of cells of
type R (those for which fn > 0) in each quadrat, ignoring
empty quadrats; we combine the results of Msim simula-
tions with the same parameter values to generate a his-
togram of the distribution of pR over all quadrats and
for all simulations.

Additional material

Additional file 1: Simulation source code. Source code for simulations
of pattern generation in populations of stem cells.

rk+1

rk

xm

Figure 9 Calculating PCFs. Schematic diagram to illustrate the
method used to calculate PCFs. For each distance interval (rk, rk+1]
and each cell with centre xm, we count the number of (other) cells
in rk <r ≤ rk+1 where r is distance from xm. The PCF, g(r), on rk <r ≤
rk+1 is the mean number of cells in these annular regions
normalised by π(r2k+1 − r2k )ρ, which is the number of other cells
which would be expected to be found in the annular region were
the cells uniformly distributed (see equations (10)-(11)). For the cross
PCFs gXY(r), we restrict xm to be of type X and only count cells of
type Y; gS(r) is calculated from gRR(r) and gGG(r) by (12).
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