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Abstract

Background: Genome-wide mapping of protein-DNA interactions has been widely used to investigate biological
functions of the genome. An important question is to what extent such interactions are regulated at the DNA
sequence level. However, current investigation is hampered by the lack of computational methods for systematic
evaluating sequence specificity.

Results: We present a simple, unbiased quantitative measure for DNA sequence specificity called the Motif
Independent Measure (MIM). By analyzing both simulated and real experimental data, we found that the MIM
measure can be used to detect sequence specificity independent of presence of transcription factor (TF) binding
motifs. We also found that the level of specificity associated with H3K4me1 target sequences is highly cell-type
specific and highest in embryonic stem (ES) cells. We predicted H3K4me1 target sequences by using the N- score
model and found that the prediction accuracy is indeed high in ES cells.The software to compute the MIM is freely
available at: https://github.com/lucapinello/mim.

Conclusions: Our method provides a unified framework for quantifying DNA sequence specificity and serves as a
guide for development of sequence-based prediction models.

Background
Of the entire 3GB human genome, only about 2% codes
for proteins. The identification of biological functions of
the entire genome remains a major challenge [1,2]. One
powerful venue to gain functional insights is to identify
the proteins that bind to each genomic region. Recent
development of chromatin immunoprecipitation followed
by microarray or sequencing (ChIP- chip or ChIPseq)
technologies has made it feasible to map genome-wide
protein-DNA interaction profiles [3-5]. The data generated
by these experiments have not only greatly facilitated the
genome-wide characterization of regulatory elements such
as enhancers [6,7] but also been integrated with other data
sources to build gene regulatory networks [8-11].
An important question is to what extent a specific pro-

tein-DNA interaction is mediated at the level of genomic
sequences. While it is well known that specific sequence
motifs are crucial for transcription factors (TF) mediated

cis-regulation, there are many other proteins, such as
chromatin modifiers, whose target sequences cannot sim-
ply be characterized by a handful of distinct motifs [12].
Such sequences are often regarded as nonspecific and
not studied further. However, recent studies in nucleo-
some positioning have provided new insights by going
beyond this motif-centric view [13]. Here various
sequence features have been associated with nucleosome
positioning, including poly dA:dT track [14,15], abun-
dance of G/C content [16,17], and certain periodic pat-
terns [18,19]. Such patterns cannot be captured by
traditional motif analysis methods. Similar results have
been obtained by analyzing histone modification [20,21]
and DNA methylation data [22,23].
Despite the success of these recent sequence-based

prediction models, it remains difficult to determine
which sequences lack intrinsic specificity because a poor
prediction outcome might imply than more sophisticated
models. A guide is needed for developing sequence-based
prediction models. To this end, here we present a simple
approach to quantify sequence specificity based on the
frequency distribution of k-mers. We will also systemati-
cally investigate the relative merit of various distance or
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similarity functions for capturing specific sequence infor-
mation. While k-mers have been extensively to detect
splice sites [24], to study functional genomic regions[25],
to identify protein coding genes[26] and used in motif
analysis (reviewed by [27]), to our knowledge, they have
not been used to quantify sequence specificity.
We evaluated the performance of our approach by ana-

lyzing one simulated datasets and two real experimental
datasets, corresponding to a TF (STAT1) and a histone
modification (H3K4me1) respectively. Our results have
provided new insights into the role of DNA sequences in
modulating protein-DNA interactions regardless of motif
presence.

Results
A simple measure of sequence specificity
While specific sequence information has been identified
in the absence of distinct motifs, to our knowledge, it is
always associated with enrichment of certain k-mers
(where k is a small number, such as 4). Its main differ-
ence with motifs is that, when k is small, a single k-mer
may occur many times in the genome and therefore
would not be useful for any practical purpose. On the
other hand, we reasoned that more specific information
can be obtained by combinations of multiple k-mers.
Therefore, it seems appropriate to quantify sequence spe-
cificity by aggregating enrichment information for all k-
mers. For the rest of the paper, we fix k = 4, although the
method presented below is equally applicable to any
choice of k. Treating complementary sequences as identi-
cal, there are 136 non-redundant 4-mers. By counting the
frequency of each 4-mer, each input sequence is then
mapped to a 136 dimensional numerical vector contain-
ing the frequency of each k-mer. The distributions corre-
sponding to sequences containing specific information
should be distinct from those for random sequences,
which are generated to match the number and length of
the input sequences. We use the symmetric Kullback-
Leibler (KL) divergence [28] for comparing frequency
distributions and average over the entire set of input
sequences. We term the resulting value as the Motif
Independent Metric (MIM). To evaluate statistical signif-
icance, we estimate the null distribution by computing
MIM values for sets of random sequences. The detailed
procedure is described in the Methods section.

Model Validation
Simulated data
As an initial evaluation, we synthetically generated 8
sequence sets each containing 2000 sequences, mimicking
TF ChIPseq experiments for which the corresponding TF
recognizes a single motif: TTGACA. The difference
between these sequence sets is the motif strength, which is
parameterized by a real number ε (see Methods). In

particular, a perfect motif corresponds to ε = 0, whereas a
random sequence corresponds to ε = 0.25. In a typical
ChIPseq experiment, only a subset of target sequences
contains the motif. To simulate this fact, we randomly
selected 1000 sequences from each set and inserted the
motif at a randomly selected location. As control, we also
synthesized 1000 sets of 2000 random sequences each.
We calculated the MIM values for each sequence set

and evaluated the statistical significance of the resulting
values. We found that the MIM values are statistically sig-
nificant (p-value < 0.001) for ε up to 0.1 (Figure 1a and
1b). The information content for the corresponding motif
is 5.35 bit, which is still lower than 98% of the motifs in
the JASPAR core database [29]. In the following we will
show that our method indeed performs well for real data.
We ranked each k-mer according to its relative contribu-
tion to the MIM. The most informative k-mers are shown
in Table 1. The methodology used to select such motif is
outlined in the methods section. We noticed that the top
k-mers are substrings of the inserted motif (highlighted in
bold in Table 1), suggesting that these k-mers may be used
as a seed for motif detection, in a similar way as the dic-
tionary approach [30]. In additional to the KL divergence
considered here, there are a number of other metrics to
compare frequency distributions. We selected a few com-
monly used metrics and repeated the above analysis
(Methods). We found that the results are quite similar
(Table 2).
Real ChIPseq data
To validate our method using real experimental data, we
analyzed a publicly available ChIPseq dataset for STAT1
[31], a member of the signal transducer and activator of
transcription (STAT) family TFs, in the HeLa S3 cell line.
The dataset contains 39,000 target sequences, 35% of
which contains the consensus motif TTCCNGGAA (JAS-
PAR database [29]). As control, we sampled random
sequences from genomic background matching the num-
ber and length of the target sequences.
We evaluated the level of sequence specificity of the

whole set of target sequences by using the MIM measure.
The sequences are indeed highly specific (see Figure 2a
and 2b). Again, among the top ranked k-mers, several are
substrings of the “classic” STAT1 motif (highlighted in
bold in Table 3), suggesting it may provide useful informa-
tion for identifying discriminative sequence signatures
without the knowledge of TF motifs. Furthermore, the
results are not sensitive to the specific choice of distances
as in the simulated data experiment (Table 4).

Detecting sequence specificity in absence of a dominant
motif
STAT1
As mentioned above, while the presence of STAT1
motif can explain the sequence specificity for 35% of the
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target sequences, it is unclear how TF is recruited to the
other 65% of the targets. In order to evaluate the role of
DNA sequence specificity for these motif-absent targets,
we compared the MIM values between the motif-pre-
sent and motif-absent subsets of targets. Surprisingly,
we found that the MIM value for motif-absent targets is
almost indistinguishable from motif-present targets (see
Figure 2a and 2b). This high level of specificity cannot
be simply explained by promoter-related biases, because
only 11% of target sequences are located in promoters.
To gain mechanistic insights, we searched for enrich-

ment of other TF motifs in the JASPAR database [29],
using the FIMO software [32]. We found two motifs that
are significantly enriched (threshold p-value < 10-6): SP1
and ESR1, both have previously been shown to interact
with STAT1 [33,34]. Therefore, STAT1 might be recruited
to the motif-absent targets through interaction with these
other TFs. We further compared the associated gene
ontology terms between the motif-present and motif-
absent sets to see if there are any functional differences.
We found that these two sets share many similar biologi-
cal functions, such as hydrolase and ATPase activities (p <
10-17). On the other hand, while the motif-present targets
are highly enriched for the voltage-gated calcium channel

complex (p < 10-12), the motif-absent targets are highly
enriched for cytoplasmic components instead (p < 10-12).
H3K4me1
Unlike TFs, histone (de)modifying enzymes usually do not
directly interact with DNA. The role of DNA sequences in
the regulation of histone modification patterns remains
poorly understood. As an example, the histone modifica-
tion H3K4me1 plays an important role in gene regulation
by demarcating cell-type specific enhancers [6]; yet how it
is recruited to enhancer regions is poorly understood. We
hypothesized that the role of DNA sequence may play a
cell-type specific role and aimed to detect such differences
by using our MIM measure. To this end, we assembled an
H3K4me1 ChIPseq dataset in seven human cell-lines,
including H1 (a human embryonic stem cell line), K562 (a
myelogenous leukemia cell line), Huvec (human umbilical
vein endothelial cells), Nhek (normal human epidermal
keratinocytes), and three T cell-lines (CD4+, CD36+, and
CD133+) from the public domain [1,4,35]. For each cell
line, we identified the peak locations by using cisGenome
[36] then calculated the MIM value for DNA sequences at
the peaks (in Table 5 the top 20 k-mers ranking by differ-
ent distances on H1 cell line). The MIM values are highly
cell-type specific (see Figure 3a and 3b and Table 6).

Figure 1 MIM values for simulated sequences. (a) The MIM values and corresponding p-values (above the bars) for the simulated data. Note
that the MIM values change in the same direction as motif strength; (b) comparison of the MIM values with respect to the null distribution,
which is obtained by using 1000 sets of random sequences.
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Interestingly, the value for H1 cells is much higher than
any other cell line, suggesting that the DNA sequence
plays a unique role in H3K4me1 recruitment in ES cells.
To eliminate the possibility that this difference may be
simply due to a GC content related bias, we repeated the
analysis by using a different null model, obtained by ran-
dom shuffling the original sequences within each dataset.
While the MIM values slightly change, they are ordered in
nearly the same way as before (Additional File 1). Impor-
tantly, the MIM values are distinctively higher in the H1
cell line compared to the other cell lines, suggesting that
such differences are unlikely due to a GC- content related
bias.
Since the H3K4me1 marks cell-type specific enhan-

cers, one possible explanation for the high sequence

specificity in ES cells is that the targets might be asso-
ciated with a few ES-specific TFs. To test this possibility,
we searched for enrichment of TF motifs in the JASPAR
database using FIMO. Surprisingly, we were unable to
find any significantly-enriched motif, suggesting that the
specificity is contributed to a different mechanism.
We then investigated whether the H3K4me1 targets in

ES cells are indeed highly predictable. In previous work,
we developed a sequence-based model, called the N-
score model, to predict epigenetic targets [19,21]. This
model integrates information from three classes of
sequence features (sequence periodicity, word counts,
and DNA structural parameters) by using stepwise logis-
tic regression model (see methods for details). Here we
applied the N-score model to predict H3K4me1 target
sequences. As negative control, we selected the same
number of sequences from the genome at random. We
evaluated the model performance by using a 3-fold cross-
validation. We found that prediction accuracy is indeed
high for ES cells (AUC = 0.967) (Figure 4), whereas the
accuracy for other cell types is much lower.

Discussion
Recently it has been shown that a large number of pro-
teins may weakly bind to DNA [37]. It remains unclear
to what extent such events are mediated by specific
sequence information. This question cannot be
answered by using traditional motif analysis, since the
target sequences do not contain distinct motifs. As an
alternative approach, we define a simple measure, called
MIM, to quantify sequence specificity by aggregating
information from all k-mers. Our approach does not
make any assumptions regarding motif presence, provid-
ing a more versatile tool for sequence analysis. We vali-
dated this method by analyzing both simulated and
experimental data and found that it is indeed effective
for detecting sequence specificity in both cases.
We also showed that the MIM measure can provide

new biological insights. Specifically, we found that the
motif-absent targets of a TF may also contain specific
sequence information due to interaction with other TFs.
We also found that the sequence specificity for
H3K4me1 targets is higher in ES cells than in differen-
tiated cell-types, suggesting a unique role of DNA
sequence in the recruitment of H3K4me1 in ES cells.
Interestingly, this high specificity cannot be explained by
enrichment of known TF motifs, suggesting a yet
uncharacterized recruitment mechanism in ES cells. The
MIM algorithm is implemented in Python and can be
freely accessed at : https://github.com/lucapinello/mim.

Conclusion
The role of DNA sequence in gene regulation remains
incompletely understood. Our MIM method has

Table 1 Top 20 k-mers ranked by different distances on
Cell1 of Synthetic dataset

Cell1

KL Bhattacharyya Hellinger

tcaa tcaa tcaa

gaca gaca gaca

gtca gtca gtca

acag acag acag

caag caag caag

attg caac attg

acat acac acat

caac attg caac

acac acat acac

aatg aatg aatg

acaa acaa acaa

ttaa cgga ttaa

aaat caaa aaat

cgga gacc cgga

caaa agat caaa

aatt aaat aatt

cata taaa cata

gacc ccgc gacc

agat cgcc agat

gtaa aagg gtaa

agat cgcc agat

Table 2 Distances values on Synthetic dataset

Cell KL p-value Bhattacharyya p-value Hellinger p-value

1 4.12E-03 <0.001 2.18E-03 <0.001 2.67E-02 <0.001

2 3.64E-03 <0.001 1.93E-03 <0.001 2.51E-02 <0.001

3 4.06E-03 <0.001 2.16E-03 <0.001 2.65E-02 <0.001

4 3.23E-03 <0.001 1.70E-03 <0.001 2.36E-02 <0.001

5 2.06E-03 <0.001 1.07E-03 <0.001 1.89E-02 <0.001

6 9.59E-04 <0.001 5.03E-04 <0.001 1.29E-02 <0.001

7 7.80E-04 0.0262 4.09E-04 0.0497 1.16E-02 0.0207

8 6.27E-04 0.2367 3.75E-04 0.1670 1.04E-02 0.2467
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extended previous work by further accounting for
sequence specificity due to accumulation of weak
sequence features. The information can be used as a
guide to systematically investigate the regulatory
mechanisms for a wide variety of biological processes.

Methods
Synthetic data generation
We simulated ChIPseq data for a TF whose motif
sequence is TTGACA. In order to simulate the variation
of motif sites among different target sequences, we
modeled the position weight matrix (PWM) as illu-
strated in Table 7, where ε measures the mutation rate
of the motif and can change between 0 (perfect motif)
and 0.25 (totally random). We sampled ε at 8 different
values: 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.1667, and 0.25.
For each choice of ε, we generated 2000 sequences of
500 bp each. The sequences were initially generated by
randomly sampling from the background distribution
with the probabilities of A,C,G,T equal to 0.15, 0.35,
0.35, 0.15, respectively. In addition, we randomly
selected a subset of 1000 sequences and inserted the
motif at a random location.

Figure 2 MIM values for STAT1 target sequences. (a) The MIM values and corresponding p-values (above the bars) for different subsets of
STAT1 target sequences: all targets, STAT1 motif containing ones, and STAT1 motif absent ones; (b) comparison of the MIM values with respect
to the null distribution, which is estimated by using 1000 sets of random sequences.

Table 3 Top 20 k-mers ranked by different distances on
motif sequences on STAT1 dataset

STAT1 Motif

KL Bhattacharyya Hellinger

aata atat aata

ttaa tata ttaa

aaat aata aaat

aaaa ttaa aaaa

ggaa atta ggaa

atat aaat atat

atac taaa atac

tcaa atac tcaa

aatt aatt aatt

acat ataa acat

taca taca taca

aggg cata aggg

cgga aaaa cgga

atta attg atta

attg acat attg

taga tcaa taga

caaa agcg caaa

acta gata acta

ccag taga ccag

agca cgga agca

Pinello et al. BMC Bioinformatics 2011, 12:408
http://www.biomedcentral.com/1471-2105/12/408

Page 5 of 9



ChIPseq data source
Genome-wide STAT1 peak locations in HeLa S3 cell
lines were obtained from the http://archive.gersteinlab.
org/proj/PeakSeq/Scoring_ChIPSeq/Results/STAT1[31].
ChIPseq data for H3K4me1 in seven human cell lines
were obtained from literature: CD4+ T cell [4], CD36+
and CD133+ T cells [35], H1, Huvec, K562, and Nhek
[1]. The raw data were processed by cisGenome to iden-
tify peak locations [36]. The DNA sequences at the peak
locations were analyzed subsequently.

Motif analysis
Motif analysis was done by using several tools in the
MEME suite (http://meme.nbcr.net/meme/) as follows.
Scanning DNA sequences for matches of a known motif
was done by using the FIMO [32]. Motif comparison
was done by using TOMTOM.

Functional annotation
Functional annotation was done by using the GOrilla
software [38] (http://cbl-gorilla.cs.technion.ac.il/).

Details of the MIM measure
Each DNA sequence is mapped to numerical values by
enumerating the frequency of each k-mer treating com-
plementary k-mers as the same. There are m = 136
non-redundant k-mers for k = 4. MIM is essentially a
metric between two distributions of k-mer frequencies.
Specifically, let P = (Pij) be the k-mer frequency distri-
butions corresponding to a set of n target sequences S =
(Si), where Si represents a sequence in the set S. We
generate a set of n random sequences R = (Ri) matching
the sequence lengths (analogously Ri represents a
sequence in the set R). Let Q = (Qij) be the k-mer fre-
quency distributions corresponding to R. Finally let

Pj =
�iPij
�ijPij

and Qj =
�iQij

�ijQij
(Pj in particular represents the

probability of the j-th k-mer in S, analogously, Qj repre-
sents the probability of the j-th k-mer in R) then the dif-
ference between P and Q is quantified by the
symmetrical Kullback-Leibler (KL) divergence [28], as
follows:

dkl(S,R) =

m∑
j=1

Pjlog2
Pj

Qj
+

m∑
j=1

Qjlog2
Qj

Pj

2

The MIM value corresponding to S is defined as the
expected value dkl (S, R), which is estimated by aver-
aging over 1000 sets of random sequences. The MIM
value, using the symmetrical KL divergence, can be
interpreted as the number of the expected number of
extra bits required to code samples from S when using
a code based on the background distribution. Note that
there exist several alternatives to measure the similarity
of two probability distributions [39]. To evaluate
whether the results are sensitive to the specific choice of
distances, we also computed MIM values based on two
other well-known distances between probability
distributions:
1) The Hellinger distance [39]

dhl(S,R) =

√√√√1
2

m∑
j=1

(√
Pj−

√
Qj

)2

whose main differences from dkl are 1) dhl naturally
satisfies the triangle inequality; and 2) the range of dhl is
the interval [0,1].

Table 4 Distances values on STAT1 dataset

Peaks KL p-value Bhattacharyya p-value Hellinger p-value

Stat1 Motif 3.26E-02 <0.001 2.19E-03 <0.001 7.51E-02 <0.001

Non STAT1 Motif 3.36E-02 <0.001 2.72E-03 <0.001 7.61E-02 <0.001

All 3.76E-02 <0.001 3.65E-03 <0.001 8.05E-02 <0.001

Table 5 Top 20 k-mers ranking by different distances on
H1 cell line on H3k4me1 dataset

H1 cell line

KL Bhattacharyya Hellinger

tcga tcga tcga

cgaa tcca cgaa

attc attc attc

tcca atgg tcca

atcg cgaa atcg

ggaa ggaa ggaa

atgg aatg atgg

aatg atcg aatg

aacg tata aacg

ctta ttaa ctta

gcta ctta gcta

ttaa aacg ttaa

ctaa gcta ctaa

agct taaa agct

ggta ggta ggta

taaa ataa cgga

cgga cgga taaa

acgg atta acgg

ataa acgg ataa

atta aaaa atta
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2) The Bhattacharyya distance[40]

dbh(S,R) =
m∑
j=1

(
μPj − μQj

)2

4
(
σPj + σQj

) +
1
2
log

(
σPj + σQj

2√
σPj + σQj

)

which has been widely used for pattern recognition in
computer science [41];

where μPj =
1
n

n∑
i=1

Pij and σPj =

√
1

n − 1

n∑
i=1

(
Pij − μPj

)2
are the mean and standard deviation, respectively, of Pj

(μQj and σQj are defined similarly for Qj).
In order to estimate the null distribution, we gener-

ated 1000 sets of random sequences and then calculated

MIM values for each random sequence set. The prob-
ability density function (pdf) was estimated by using a
kernel method [42]. This pdf was used to infer not only
the mean and standard deviation of the null distribution
but also the statistical significance for any MIM value.
Recognizing the limited resolution of the estimated pdf,
we did not distinguish p-values that are smaller than
0.001.

N-score model
The N-score model was described previously [19,21]. In
brief, the model integrates three types of sequence fea-
tures, including sequence periodicities [19], word counts
[16], and structural parameters [43], a total of 2920

Figure 3 MIM values for H3K4me1 target sequences. (a) The MIM values and corresponding p-values (above the bars) for H3k4me1 target
sequences in different cell lines. Note that the MIM value for H1 is much higher than for other cell lines; (b) comparison of the MIM values with
respect to the null distribution, which is estimated from 1000 sets of random sequences.

Table 6 Distances values on H3k4me1 dataset

Cell KL p-value Bhattacharyya p-value Hellinger p-value

H1 4.43E-01 <0.001 1.28E-02 <0.001 2.71E-01 <0.001

Cd4+ 1.97E-01 <0.001 8.47E-03 <0.001 1.82E-01 <0.001

NHEK 1.10E-01 <0.001 4.10E-03 <0.001 1.37E-01 <0.001

K562 0.083176 <0.001 0.003584 <0.001 0.119491 <0.001

Cd133+ 0.064867 <0.001 0.006796 <0.001 0.105424 <0.001

Cd36+ 0.026875 <0.001 0.002996 <0.001 0.067992 <0.001

HUVEC 0.014557 <0.001 0.002912 <0.001 0.050102 <0.001
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candidate features. Model selection was done by step-
wise logistic regression. The final model was used for
target prediction.

Most informative k-mers selection
Giving Pj and Qj associated to S and R respectively, it is
possible to calculate their Kullback-Leibler (KL) diver-
gence for each j, where j indicates the j-th k-mer com-
ponent. This results in a list of 136 distance values,
whose ranking can be used as a guide to identify the
most informative k-mers.

Additional material

Additional file 1: Choice of the null model for sequence specificity.
(a) The MIM values for H3k4me1 target sequences in different cell lines
experiment with a null model obtained shuffling the original sequences.
(b) The MIM values for the same experiment using as a null model a set
of random sequences extracted from genome with matching lengths.
Note that the the H1 cell line is far more specific than the other cell
lines independently of the null model chosen.
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