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Abstract

Background: The identification of protein coding regions (exons) in DNA sequences using signal processing
techniques is an important component of bioinformatics and biological signal processing. In this paper, a new
method is presented for the identification of exonic regions in DNA sequences. This method is based on the cross-
correlation technique that can identify periodic regions in DNA sequences.

Results: The method reduces the dependency of window length on identification accuracy. The proposed
algorithm is applied to different eukaryotic datasets and the output results are compared with those of other
established methods. The proposed method increased the accuracy of exon detection by 4% to 41% relative to
the most common digital signal processing methods for exon prediction.

Conclusions: We demonstrated that periodic signals can be estimated using cross-correlation. In addition, discrete
wavelet transform (DWT) can minimise noise while maintaining the signal. The proposed algorithm, which
combines cross-correlation and DWT, significantly increases the accuracy of exonic region identification.

Background

When the DNA sequence of a new eukaryotic organism
is synthesized, the exonic (protein coding) regions must
be distinguished from the introns (see Figure 1 for a
schematic of genome arrangement). The protein coding
regions of DNA have been observed to exhibit a period-
3 property due to the non-uniform codon usage in the
translation of codons into amino acids [1]. The aim of
this paper is to use this property to identify exonic
regions.

Several reasons for the existence of period-3 property
have been presented in [2,3] and [4]. Some codons par-
ticipate more in protein synthesis than others, giving
rise to repetitions of a specific type of codon in the gen-
ome [4]. For example, the existence of a large number
of GCA codons in the exonic regions gives greater repe-
tition of G, C and A nucleotides in the first, second and
third codon position, respectively. In other words, the
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G, C and A nucleotides exhibit period-3 property in the
exonic regions.

Gene finding methods based on genetic characteristics,
such as promoter, CpG Island, start and stop codon etc.,
tend to be of insufficient accuracy [5]. The characteriza-
tion of coding and noncoding regions based on nucleo-
tide statistics inside codons is described by Bernaola et
al., who employed a 12-symbol alphabet to identify the
borders between coding and noncoding regions [6].
Later, Nicorici and Astola segmented the DNA sequence
into coding and noncoding regions using recursive
entropic segmentation and stop-codon statistics [7].

The use of signal processing techniques to identify
exonic regions based on the period-3 property offers
new opportunities for gene finding. Tiawari used Fourier
transform spectrum to achieve this goal [8]. In Tiawari’s
method, the discrete Fourier transform (DFT) energy at
a central frequency is calculated for a fixed length win-
dow, and the window is slid across the numerical
sequence. Vaidyanathan [9] identified protein coding
regions using an anti-notch filter which magnified
regions with period-3 property. Datta and Asif [10] pre-
sented a new algorithm using DFT theory with a Bartlett
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Figure 1 The structure of DNA sequence. This figure shows the
structure of DNA sequences. (a) Double helix model of DNA. (b) A
DNA sequence consists of genes and intergenic regions. The genes
of eukaryotes are composed of exons and introns.

window. In another signal processing method, Akhtar
[11] applied time domain algorithms, average magnitude
difference function and time domain periodogram algo-
rithms to identify period-3 property. Some gene finding
methods based on digital signal processing (DSP) tech-
niques have been developed but the accuracy of these
methods is low and requires improvement.

In this paper, a new algorithm based on cross-correla-
tion theory is presented. We show that the algorithm
enhances the accuracy of the identification while redu-
cing noise. The noisy waveform is cross-correlated with
a periodic impulse train to provide the estimated signal.
Discrete wavelet transform is applied to remove extra
frequencies.

The remainder of the paper is organized as follows: in
the Methods section, the application of the cross-corre-
lation to obtain the periodic signal plus noise is
described, together with the period-3 behaviour detec-
tion using cross-correlation theory. The final part of this
section details the use of wavelet transform to remove
noise. The datasets used are introduced in the Dataset
section. Thereafter, evaluation measures are introduced
for the measurement and comparison of various meth-
ods. Finally, in the Results and Discussion section, the
results of the proposed algorithm are compared with
those of the most common digital signal processing
algorithms for exon prediction, in both time and fre-
quency domains.

Methods

Cross-correlation

The discrete nature of DNA and the existence of per-
iod-3 behaviour in the exonic regions render it suitable
for analysis by signal processing algorithms. We present
an algorithm for the identification of the period-3
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component based on cross-correlation techniques. The
theory of cross-correlation theory is briefly explained
below.

Correlation between two waveforms, x;[#] and x,[n],
each of length N, is defined as [12]:

N-1

T2 = le [n]x2[n] (1)

n=0

To estimate a periodic waveform that is contaminated
with noise, this waveform is cross-correlated with an
adjustable template waveform; the template waveform is
adjusted until the cross-correlation is maximized. The
resulting template is an estimate of the signal term of
the periodic waveform.

In our approach, a noisy waveform is cross-correlated
with a periodic impulse train of period equal to that of
the signal.

Let the signal of period N, points (N,, <N) be s[#] and
the noise be g[n]; therefore, the noisy waveform is S[x]
= s[n]+q[n]. Periodic impulse train used for the cross-
correlation is denoted d[n-kN,], k = 0, 1, 2,.., N5, where
Nj is the number of impulses. Then

N—-1

ralil = g, Gl - alal — Nyl
n=0

k=0,1,2,.., N;s

Where j represents the lag, defined as the number of
sampling points by which ¢ is shifted to the left. For j =
0, and remembering that J[n-kN,] = 0 for all n = kN,

15[0] = 1\2 (s[0] + q[O] + s[Ny] + q[Np] + ...

+$[NsNy| + q[NsN,])

®3)

Since the signal is periodic, s[n+kN,] = s[x], and equa-
tion (3) becomes

1ss[0] = [\118 (N3s[0] + g[0] + q[Np] + ...

(4)
+q[NsNp])
or
1 &
15[0] = s[0] + qlkN] (5)
Ns kXO: P

1
As N5 — oo, N ngo q[kNy] — 0, and therefore r;
s

— s(0).

Now, the periodic impulse train is shifted on the sig-
nal by an amount depending on j. Thus equation (5)
can be written for all j’s:
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From equation (6), it can be concluded that

rsj] = s[0], s[1], ... sIN—=1] j=0,1,2,..N—17)

from which the periodic signal without noise can be
extracted [12].

Identification of exonic regions
In this section, a new algorithm using the cross-correla-
tion is proposed for the identification of exonic regions.
The algorithm proceeds via the following steps:

1. DNA sequences are converted into numerical
sequences.

2. FIR filter is applied to the numerical sequences
representing DNA sequences.

3. Cross-correlation is applied to the filtered numerical
sequences.

4. The noise effect is removed using discrete wavelet
transform.

Figure 2 represents these steps as a block diagram.
Each step is explained in detail below:
1. Numerical conversion of the DNA sequences
To apply DSP techniques to the DNA sequence to find
nucleotide regions exhibiting period-3 behaviour, the
DNA sequence is first mapped onto the numerical
sequence. The simplest conversion method maps four
numerical sequences I4[n], I7{n], Ic[n] and Ig[n] from
DNA sequences in binary format. In this mapping, the
presence or absence of the respective nucleotides at the
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2. Applying FIR filter to the numerical sequences

After mapping the DNA sequence onto its binary
numerical sequence, the binary sequence is passed
through a Hamming window based FIR filter of order 8
with central frequency set to 2m/3, to emphasize period-
3 property in the exonic regions. Lack of distortions in
FIR filters is one reason for their preferred use over IIR
filters in medical applications [12].

3. Applying cross-correlation theory to the numerical
sequences

Most previous methods have used a window of fixed
length to find the regions in DNA sequences exhibiting
period-3 property. In such methods, the window length
directly affects the accuracy of the identification. Typi-
cally, an appropriate window length is considered to lie
within the range 240-351 (window lengths are multiples
of three to reflect the codon structure). Short length
windows increase noise, while long length windows tend
to miss short exonic regions.

In our proposed method, the cross-correlation between
the numerical DNA sequence and an impulse train of per-
iodicity 3 (N, = 3) is calculated to identify regions in the
DNA sequence with period-3 behaviour. The length of the
impulse train is set at 270. The impulse train signal length
plays the same role as the window length in previous
approaches. Following the cross-correlation calculation,
the impulse train slides across the numerical sequence by
an amount j. The impulse train with periodicity of three
considered as d[n-3k] and Bx[n], By[n], Bc[n] and Bg[n]
are the FIR filter outputs for the input I, [n], It[n], Ic[n]
and Ig[n] sequences respectively. Then,

P . N—1
nth position is represented by ‘1" and ‘0’, respectively. M Balnls 3k o
. . = nlé[n —
For example, given a section of DNA sequence ATCC- A Z aln]é] ] ®)
. . -0
GATATTC, the binary sequence of the nucleotide A, "
denoted I4[n], is [10000101000]. The binary sequences
. N-1
for the other three nucleotides T, C and G are found
similarly [13]. My = 2 Br[n]é[n — 3k] €)
n=0
P
Conversion to binary [La[n] | B4 pass filter B,[n]| Cross correlation M.[n]
mumerical sequence algorithm
~_ @/
Yy
Conversion to binary [L1[n] - Brln]|  Cross correlation | My[n] | Linear
> ? Band pass filter Exon
DNA numerical sequence algorithm and Decision
Sequences . »
° p de-noising with
 [Conversion to binary IC[D]BC["] Cross correlation |~ cl2] p| Discrete wavelet
mumerical sequence algorithm
——
S
| Conversion to binary Ig[n] Beln]| Cross correlation | Ma[n]
numerical sequence algorithm
~—

protein coding regions.

Figure 2 Block diagram of the proposed algorithm. This figure shows the block diagram of the proposed algorithm designed to identify
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N-1

Mc =) Bc[n]s[n — 3k]

n=0

(10)

N-1

Mg = > Be[n]s[n — 3k]

n=0

(11)

Different energy levels of the period-3 components
exist in binary sequences M, M1, Mc and Mg. Thus,
the output energy spectrum is the combination of the
four separate outputs

M=MA+MT+Mc+MG (12)

In this energy spectrum, a peak corresponds to the
presence of a period-3 component on that region,
implying that the region is exonic.

4. Decreasing the noise using discrete wavelet transform
Decreasing noise increases the accuracy of exonic region
identification. As seen from equation (6), a small win-
dow size, required for the detection of small exons, will
not diminish noise sufficiently. Hence we apply discrete
wavelet transform (DWT) to decrease the noise in the
output spectrum.

DWT has been used for de-noising in various signal
processing applications. In protein coding region detec-
tion, Haar wavelet has previously been employed for
noise suppression [14]. Our proposed algorithm uses
Dmey wavelet to remove noise and thereby increase the
accuracy of the exonic region identification.

To this end, by down-sampling the output of low
pass and high pass filters, samples are divided into two
signals; high frequency samples (detail signals) and low
frequency samples (approximation signals), each
embracing half the number of samples as the original
signal. Figure 3 shows this procedure operating over
three levels.

The signal x[n] is passed first through the high pass
filter, /1[n], then through the low pass filter, g[n] [14,15].

Shignle] = ) _ x[n].h[2k — n]

n

(13)

stowlk] =) x[n].g[2k —n]

n

(14)

Approximation and detail signals for the output power
spectrum of the sequence F56F11.4 (GenBank access
number AF099922) at positions 7021-15020 are shown
in Figures 4b and 4c. By removing the detail signal and
considering only the approximation signal, the extra fre-
quencies are removed and the output power spectrum is
smoothed. Therefore, the noise effect is decreased, while
the accuracy of the identification is enhanced.
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Figure 3 DWT decomposition. This figure shows the schematic of
DWT decomposition at three levels. The low pass and high pass
half-band filters are denoted g[n] and h[n] respectively.
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Datasets

Standard datasets are used to compare the efficacy of
different algorithms at identifying exonic regions. Exon
and intron positions in these databases are available and
when DSP methods detect the position of exons, these
positions are compared with real positions. The pro-
posed algorithm is first applied to chromosome III of
Caenorhabditis elegans [NCBI Reference Sequence:
NC_003281.8], containing a total of 13783681 nucleo-
tides with 8172 coding regions, and the results are com-
pared with those of other popular methods. The results
of the proposed algorithm for the sequence F56F11.4 of
C. elegans (comprising 8,000 nucleotides) are separately
presented. This sequence has five exonic regions at posi-
tions 928-1039, 2528-2857, 4114-4377, 5465-5644, and
7255-7605. Also analysed in this paper are the BG570
[16] and HMR190 [17] datasets. BG570 is a genomic
test dataset of 570 single gene vertebrate sequences pre-
pared by Burset and Guigo [16]. HMR195 comprises
195 single-gene human, mouse, and rat sequences
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Figure 4 Applying DWT to the proposed algorithm. This figure shows the results of applying DWT to the proposed algorithm for the
sequence F56F11.4. (a) The output power spectrum of the proposed algorithm before DWT is applied. (b) High frequency components of level
1 DWT decomposition (detail signal). (c) Low frequency components of level 1 DWT decomposition (approximation signal).

2000 2500 3000 3500 4000

()

selected in 2001 by Rogic et al. [17] to test and evaluate
the performance of gene structure prediction algorithms.

Evaluation Measures

To accurately compare different methods, the evalua-
tion is performed at the nucleotide level. In the identi-
fication of exonic regions using DSP techniques, some
parameters are defined by changing the threshold level
in the output spectrum. Those parameters which make
the comparison possible are defined in this section. In
the identification step, the number of nucleotides cor-
rectly predicted as exons is denoted true positive
(represented by TP), while the number of nucleotides
correctly predicted as introns is denoted true negative
(represented by TN). Similarly, the number of intron
nucleotides predicted as exon nucleotide is the false
positive (FP) value, while the number of exon nucleo-
tides predicted as intron nucleotides is the false nega-
tive (FN) value. From these four defined quantities, the
sensitivity and specificity parameters are determined as
follows [16]:

TP

= (15)
TP + FN

n

P

S, = 16
P~ TP+ FP (16)

The sensitivity S, is the proportion of exon nucleo-
tides that have been correctly predicted as exons, and
the specificity S, is the proportion of predicted exon
nucleotides that actually exist in the exonic regions.
These parameters alone are not suitable for evaluation
because at high sensitivity, the specificity is low and vice
versa. Therefore, another measure known as the approx-
imate correlation (AC) has been defined. This parameter
combines sensitivity and specificity as shown [16].

1 TP TP
ACP = x( + +
a*tpv N T TP+ FP a”
TN ™
TN + FN TN + FP
AC = (ACP — 0.5) % 2 (18)

In applying DSP techniques to gene searching, other
parameters have been described. A most popular evalua-
tion measure is the Receiver Operating Characteristic
(ROC) curve. By selecting different threshold levels, dif-
ferent values of TP for a given FP are calculated at each
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threshold and the ROC curve is constructed from the
various TPs and their corresponding FPs. The area
under the ROC curve (AUC) is used as an evaluation
measure; the greater the AUC, the higher the accuracy
of the gene finding algorithm [18]. Another means by
which to compare identification accuracy between meth-
ods is the calculation of specificity for different sensibil-
ities. Since the majority of genomes comprise intronic
and intergenic regions, the calculation of FP can provide
a useful comparison measure [19].

Threshold Selection Method

To discriminate between coding and noncoding regions,
a threshold is imposed on the output power spectrum.
The selection of a proper threshold can optimise the
accuracy of the identification; however, the calculation
of an optimum threshold value itself raises problems
[20]. Therefore, in this paper, the sensitivity, specificity
and approximate correlation measures are defined by
changing the threshold level, to accurately compare dif-
ferent methods. In this section, we discuss implementa-
tion of the threshold selection.

To select an appropriate threshold, the method of
Kwan et al. [21] is used. The mean and standard devia-
tion of the period-3 values determined from a training
set of exon and intron sequences are used to calculate
the threshold level T, defined as:
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sdPs, * meanPs; + sdPsz; x meanPs,

T
SdPSg + SdP3i

(19)

where meanPs, and sdPs, represent respectively the
mean and standard deviation of the period-3 values
obtained from the exon sequences of a training set,
and meanPs3; and sdP3; represent respectively the
mean and standard deviation of the period-3 values
obtained from the intron sequences of the same train-
ing set.

The 1000 multi exon genes from chromosome III of
C. elegans provide data for training. The calculated
threshold level is 61. This threshold level was applied
to the F56F11.4 gene in chromosome III of C. elegans
as shown in Figure 5.a. Clearly, at this threshold, all
five regions are correctly identified as coding regions.
However, there also exist small non-coding regions
around position 2000 which are misidentified as coding
regions. Since the characteristics of the DNA sequence
can change significantly at different positions, even
within the same dataset, a static threshold may yield
incorrect identifications at some positions. Therefore,
an adaptive threshold selection algorithm such as that
described in [22] is required for exon prediction. In
Tables (1), (2), (3), and (4) our proposed algorithm is
compared with other algorithms over a range of
thresholds.
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Figure 5 The identification of exonic regions on the gene sequence F56F11.4. The results of exonic region identification on the sequence
F56F11.4 (8,000 bp) are plotted for different methods. (a) Cross-correlation (proposed), (b) AN filter, (c) TDP and (d) DFT methods. The shadowed
regions are exonic regions that must be identified.
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Figure 6 Results of applying DWT to the proposed algorithm for the gene sequence F56F11.4. This figure shows the results of applying
DWT to the proposed algorithm for the sequence F56F11.4. (a) The output power spectrum of the proposed algorithm before DWT is applied.
(b) The output power spectrum of the proposed algorithm following DWT processing.
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Results and Discussion

In this section, the results of the proposed algorithm are
compared with those of established methods, namely,
Average Magnitude Difference Function (AMDF), Time
Domain Periodogram (TDP) [11], Anti-Notch filter (AN
filter) [9], Fourier Transform Spectrum (DFT) [8] and
Asif [10]. As mentioned in the previous section, to evalu-
ate and compare the results, measures such as the area
under the ROC curve, the specificity and the number of
false negatives in a particular sensitivity are computed.
The approximate correlation measure for different
threshold levels is also calculated. Our proposed algo-
rithm is first applied to the gene sequence F56F11.4. In
Figure 5a, the output power spectrum computed by
equation (12) is displayed. The output power spectrum of
the AN filter, TDP and DFT methods is shown in Figures
5.b, ¢ and 5d respectively. Exonic regions that should be
identified in this figure are marked as shaded regions. It
should be noted that Figure 5.a is the output of equation
(12) after de-noising with DWT, as shown in Figure 6.b.
The strongest feature of our proposed algorithm is the
noise reduction. Not only is the noise reduced by increas-
ing the window length, but the small length exonic
regions can be identified. Unlike the established methods,
the accuracy of identification does not decrease by chan-
ging the window length up to a specific value. Figure 7
shows the effect of changing window length on area
under the ROC curve for the F56F11.4 sequence. Accord-
ing to this curve, the identification accuracy of our algo-
rithm is fixed for window lengths ranging from 150 to
510 bp, whereas that of the other tested methods
depends on window length. The window length varies
according to gene length. The decreasing noise effect and
magnification of the period-3 component under FIR fil-
tering causes the peaks to coincide with exon positions
and enables detection of small exons, such as the first
exon in F56F11.4 (shown in Figure 5.a).

In Table 1, the approximate correlation and specificity
for specified sensitivities are presented for our proposed
method and for the other tested methods (using gene
sequence F56F11.4). We observe that our algorithm
yields the highest value of both parameters.

The proposed algorithm is then applied to chromo-
some III of Caenorhabditis elegans [NCBI Reference
Sequence: NC_003281.8], comprising 13783681 nucleo-
tides with 8172 coding regions, and the results are again
compared with the outputs of other popular methods.
Different evaluation measures for the proposed algo-
rithm, AN filter and TDP methods are shown in Table
2. Clearly, the proposed method outperforms AN filter
and TDP methods. It achieves a larger area under the

09+

08+

0.7

AUC

06F

05

—&— Proposed
—&—DFT

0.4 | —#—Time domain1
—+—Time domain2
—— Fourier spec
0 i 10 15 20 25 0
window length (X*30)

Figure 7 The effect of window length. Area under the ROC
curves generated by different methods for the gene sequence
F56F11.4 is plotted. In our algorithm, the accuracy of identification is
fixed for window lengths between 150 and 510 bp, but changing
the window length affects the identification accuracy of the other
methods.
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Table 1 Comparison of different methods using the
sequence F56F11.4.

Method Sn Sp AC

DFT 0.80 017 008
AN filter 0.80 0.23 0.25
Asif 0.80 0.18 0.12
AMDF 0.80 0.20 0.19
TOP 0.80 049 055

Cross-correlation (Proposed) 0.80 0.82 0.78

Table 1 shows the approximate correlation (AC) measure and specificity (S,) at
the same sensitivity (S,,) for our proposed method and for other methods
using the sequence F56F11.4.
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correlation method is improved by a factor of 1.24 rela-
tive to the next-best performing method, Asif. Our pro-
posed algorithm shows relative improvements of 21%,
8.3%, 24%, 18% and 4% over the DFT, AN filter, Asif,
AMDF and TDP methods respectively, in terms of the
area under the ROC curve. Similar superiority of our
proposed algorithm is apparent for the BG570 dataset.
Table 4 shows the AC measure of our proposed
method in addition to the other tested methods. At a
sensitivity of 80%, the AC measure for the proposed
method is 40% in the BG570 database, while that of
TDP (yielding the highest AC of the established meth-

Table 2 Evaluation of different methods using chromosome Il of C. elegans

Sn
%20 %40 %60
Methods AUC FP Sp AC FP Sp AC FP Sp AC
AN filter 0.6471 157 71 0.17 372 66.3 0.21 727 60 0.20
TDP 06115 196 70 0.15 436 65 0.18 796 59 0.19
Cross-correlation (proposed) 0.6891 134 76.5 0.20 302 70.9 0.25 610 61 0.26

Table 2 shows the area under the ROC curve (AUC), the number of false positives (FP), the approximate correlation (AC) and specificity (S,) at the same sensitivity
(S,,) for our proposed method and for other methods using the chromosome Il of C. elegans.

Table 3 Evaluation of different methods using HMR195 and BG570 genomic datasets.

BG570 HMR195
Sn Sn
%10 %30 %50 %10 %30 %50
Methods AUC FP S, FP S, FP S, AUC FP S, FP S, FP S,
DFT 0.6540 279 458 767 433 1412 343 0.6782 438 515 1184 45 2064 417
AN filter 0.6765 121 55 499 497 1103 36.7 0.7615 151 644 526 574 1217 511
Asif 05748 140 342 330 317 554 291 0.6261 214 471 473 446 787 399
AMDF 0.6600 340 408 770 394 1309 353 0.6980 410 479 1010 468 1821 433
TDP 0.7560 160 62 408 56 805 494 07850 262 648 627 604 1128 56
Cross-correlation (proposed) — 0.8143 81 75.5 244 69 547 61 0.8250 124 71 382 67 841 59

Table 3 shows the area under the ROC curve (AUC), the number of false positives (FP), the approximate correlation (AC) and specificity (S,) at a given sensitivity
(Sp) for the proposed method and for other methods using the BG570 and HMR195 datasets.

ROC curve, fewer false positives and higher specificities
and approximate correlation compared with AN filtering
and TDP. By way of illustration, at a sensitivity of 20%
the false positive output of our algorithm is 134 bp
compared with 157 bp and 196 bp for AN filtering and
TDP, respectively. In addition, our proposed method
exhibits relative improvements of 3% and 5% respec-
tively over AN filter and TDP methods in the approxi-
mate correlation measure.

The proposed algorithm was finally applied to the
HMR195 and the BG570 datasets. The output results
are shown in Table 3. With regard to the HMR195 data-
set, our algorithm outputs the least number of nucleo-
tides incorrectly identified as exons. At a sensitivity of
30%, the number of false positives in the cross-

ods) is 31%. Finally, from Figures 8 and 9, illustrating
the ROC’s of the proposed and other methods, it is
obvious that the proposed method’s area under curve in
both datasets is the highest of all the tested methods.
This implies that our proposed algorithm is superior to
the other methods at identifying exonic gene regions.

Conclusions

This paper presents a new algorithm based on cross-
correlation theory, designed to increase the accuracy
of exonic region identification. The FIR filter makes it
easier to identify the exonic regions. The main advan-
tage of the proposed method is its reduced depen-
dency on the window length as a result of the
decreasing noise effect. The ability to detect small
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exonic regions is another advantage of this algorithm.
The final step of the algorithm utilizes the discrete
wavelet transform to reduce noise. Compared with
established time and frequency domain methods, the
proposed algorithm yields improvements ranging from
4% to 41% in terms of the area under the ROC curve
for the HMR195 and BG570 datasets. Our proposed
method also minimises the number of nucleotides
incorrectly predicted as exonic. This decrease in the
number of false positives is responsible for the
increase in specificity; for example, at a sensitivity of
30%, our proposed algorithm yielded 15% to 85%
improvement in specificity over other tested methods.
As can be seen from Tables 3 and 4, our algorithm
confers significant improvement on the accuracy of
exonic region identification.
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