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Abstract

Background: Multiple genetic factors and their interactive effects are speculated to contribute to complex
diseases. Detecting such genetic interactive effects, i.e., epistatic interactions, however, remains a significant
challenge in large-scale association studies.

Results: We have developed a new method, named SNPInterForest, for identifying epistatic interactions by
extending an ensemble learning technique called random forest. Random forest is a predictive method that has
been proposed for use in discovering single-nucleotide polymorphisms (SNPs), which are most predictive of the
disease status in association studies. However, it is less sensitive to SNPs with little marginal effect. Furthermore, it
does not natively exhibit information on interaction patterns of susceptibility SNPs. We extended the random forest
framework to overcome the above limitations by means of (i) modifying the construction of the random forest
and (ii) implementing a procedure for extracting interaction patterns from the constructed random forest. The
performance of the proposed method was evaluated by simulated data under a wide spectrum of disease models.
SNPInterForest performed very well in successfully identifying pure epistatic interactions with high precision and
was still more than capable of concurrently identifying multiple interactions under the existence of genetic
heterogeneity. It was also performed on real GWAS data of rheumatoid arthritis from the Wellcome Trust Case
Control Consortium (WTCCC), and novel potential interactions were reported.

Conclusions: SNPInterForest, offering an efficient means to detect epistatic interactions without statistical analyses,
is promising for practical use as a way to reveal the epistatic interactions involved in common complex diseases.

Background
The identification and characterization of susceptibility
gene variations relevant to common complex diseases is
one of the central goals of human genetics. Recent
advances in genetic technology, such as high-throughput
genotyping techniques based on microarrays, have pre-
sented not only substantial opportunities but also
unprecedented challenges for resolving the genetic
architecture of complex diseases. For example, genome-
wide association studies (GWAS) have recently been
established, in which a huge number of single-nucleo-
tide polymorphisms (SNPs) across the whole genome
are examined in a sample of cases and controls to deter-
mine which SNPs are associated with a specific disease
[1]. While GWAS have already achieved a certain degree
of success in newly detecting disease-associated SNPs, a

large proportion of the genetic factors involved in com-
plex diseases has yet to be uncovered. This might be
partly because current GWAS have primarily focused on
testing association of only a single SNP at a time.
Because of the sophisticated regulatory mechanisms
encoded in the human genome, complex diseases are
speculated to be caused by multiple variations and their
interactive effects, which are referred to as epistatic
interactions. These variations possibly contribute to a
certain disease only by pure interactions whereas they
may show little effect individually. Such variations
would not be detected in single-variation association
analyses. Identifying the epistatic interactions will there-
fore likely be key to further understanding the patho-
genesis of complex diseases.
Identifying epistatic interactions between multiple

SNPs remains both statistically and computationally
challenging in large-scale association studies. The chal-
lenges include the high-dimensionality problem,
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computational capability, the absence of marginal
effects, the multiple testing problem, and genetic hetero-
geneity. Some computational methods have been pro-
posed to address this problem, other than traditional
parametric statistical methods such as logistic regres-
sion. They can be roughly divided into three categories
on the basis of their optimization strategies: brute-force
search methods, greedy search methods, and stochastic
search methods. Brute-force search methods, such as
the multifactor-dimensionality reduction (MDR; [2]),
basically rely heavily on exhaustively verifying all possi-
ble SNP combinations. Greedy search methods, such as
the set association approach [3], select SNPs one by one
such that selected SNP combinations have maximum
interactive effects. Since the first SNP is selected on the
basis of a univariate test, these methods will fail to
detect SNP combinations when marginal effects of each
SNP are weak or absent, even if they do have effects
caused by interaction. Most methods suffer from the
multiple testing problem. Adjusting for multiple testing
results in a decrease in power to detect weaker associa-
tions of susceptibility SNPs. Furthermore, an additional
concern that previous methods have confronted is the
presence of genetic heterogeneity; that is, there might be
multiple different genetic factors that are independently
associated with the same disease. Methods that lump an
entire sample into a single group to assess the average
effects will likely degrade their power to detect
associations.
Recently, interest has grown in applying machine

learning techniques to analyzing genetic association stu-
dies due to their ability to thrive on large-scale and
high-dimensional data. In one recent study, Bayesian
epistasis association mapping (BEAM; [4]) designed a
form of Bayesian model selection and used a Markov
chain Monte Carlo sampling strategy to estimate the
model parameters. A recent approach called SNPHarve-
ster [5] searches for SNP groups with significant associa-
tions on the basis of an enhanced variation of the
genetic programming algorithm. These methods per-
form reasonably in certain model cases. However, not
all the concerns have been fully addressed: the detection
power of susceptibility SNPs is still not sufficient and
the effectiveness in the presence of genetic heterogeneity
has not been validated; in addition, they all partly utilize
statistical association tests with adjustments for multiple
testing applied. Thus, further high-performance methods
are still desired from different perspectives.
In this study, to identify epistatic interactions in large-

scale association studies, we propose a new method that
uses an ensemble learning technique called random for-
est [6]. The random forest technique is a tree-based pre-
dictive method, which produces a series of classification
trees using a large set of predictor variables. It was

proposed as a way to discover the SNPs that are most
predictive of the disease status in large-scale association
studies (e.g. [7,8]). The technique can detect SNPs that
are likely to affect disease susceptibility from among a
large number of SNPs, taking into account the effects of
interactions among them at some level. It has, however,
some limitations for identifying epistatic interactions.
First, it may perform poorly in detecting SNPs that have
little marginal effect. Furthermore, it does not natively
exhibit information on interaction patterns of suscept-
ibility SNPs. We extend the random forest framework to
overcome the limitations and establish an applicable
method for identifying epistatic interactions. Having
been developed with all the above-mentioned concerns
taken into consideration, this method avoids many of
the difficulties previous approaches have faced and
proves to be very effective in a wide range of simula-
tions reflecting practical disease models that incorporate
the absence of marginal effects and also genetic
heterogeneity.

Results and discussion
Analysis using simulated data
Models of epistatic interactions with weak marginal effects
We considered three disease models with different char-
acteristics: an additive model that contains two SNPs
that independently contribute to the disease risk, a mul-
tiplicative model that involves interactions of two SNPs
with multiplicative effects, and a threshold model that
involves interactions of two SNPs with threshold effects.
The marginal effect size was set to l = 0.5. For r2, two
values (1.0 and 0.7) were used for data simulation; for
the MAF, four values (0.05, 0.1, 0.2, and 0.5) were con-
sidered. There were thus eight parameter settings for
each disease model.
By using SNPInterForest, the importance of the SNPs

concerned was found to be clearly distinguishable from
that of the others by the importance score derived in
this method. Besides, the interaction score using the
number of simultaneous appearances in tree branches in
the random forest is shown to be able to correctly iden-
tify the interaction of these SNPs. Figure 1 compares
the simulation results of SNPInterForest with those of
BOOST [9] and SNPHarvester [5]. For reference, power
of the single-locus chi-square test to detect both loci in
the interaction with a rather liberal threshold of 0.1
(Bonferroni corrected) is also given in the figure. The
results show that SNPInterForest outperforms both
BOOST and SNPHarvester for all three models. In prac-
tice, the performance of BOOST is significantly low in
the cases with low MAF for the additive model, and in
the cases with high MAF for the multiplicative and
threshold models. As discussed in [10], MAF at disease-
associated SNPs strongly influences the detectability of
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those SNPs. Since BOOST is based on statistical tests
through an exhaustive search strategy, correction for
multiple testing might become a severe burden where
multilocus information is not so large as to negate its
cost; the interaction-based search involves 103 times as

many tests as the single-locus search does. SNPHarve-
ster also utilizes in part statistical association tests. On
the other hand, SNPInterForest achieves better or even
considerably higher performance even in these para-
meter settings. As for precision, SNPInterForest and

(a) Additive model

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

MAF
0.05 0.1 0.2 0.5

r2=1.0

MAF
0.05 0.1 0.2 0.5

r2=0.7

(b) Multiplicative model

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

MAF
0.05 0.1 0.2 0.5

r2=1.0

MAF
0.05 0.1 0.2 0.5

r2=0.7

(c) Threshold model

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

MAF
0.05 0.1 0.2 0.5

r2=1.0

MAF
0.05 0.1 0.2 0.5

r2=0.7

SNPInterForest

BOOST

SNPHarvester

Single-locus χ2-test (α<0.1)

Figure 1 Performance for models of epistatic interactions with weak marginal effects. Performance of SNPInterForest compared with
those of BOOST and SNPHarvester for models of epistatic interactions with weak marginal effects: (a) additive model, (b) multiplicative model,
and (c) threshold model.
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SNPHarvester do not detect any spurious associations,
whereas BOOST falsely detects five interactions among
these datasets.
Models of pure epistatic interactions without marginal
effects
First of all, we studied simple models where two SNPs
are involved in the etiology of disease by a pure epistatic
interaction; these are the original models of Velez et al.
[11]. Here, six models with the parameters set to practi-
cal values were considered (h2 ranged from 0.2 to 0.4,
and the MAFs were 0.2 and 0.4).
Figure 2 shows the distribution of the importance

score for the SNPs associated with disease and that of
the other SNPs. Compared with the original random
forest, the ability to detect SNPs that are associated with
disease by only a pure epistatic interaction is signifi-
cantly improved in this method by means of multiple-
SNP selection at each node in the construction of the
random forest; the original random forest where only a
single SNP is used fails to detect the significance of
these SNPs.
Table 1 summarizes a comparison of the number of

interacting SNP pairs detected in the simulation by
SNPInterForest, BOOST, and SNPHarvester. The results
show that the power of the SNPInterForest and BOOST
is superior to that of SNPHarvester for all models con-
sidered. In fact, both methods work very well to identify
successfully almost 100 percent of the epistatic interac-
tions for all models, while SNPHarvester succeeds in
only 70-80 percent over all models. We note that the
original random forest identifies no interaction for

models with h2 of 0.2 and MAF of 0.4, and succeeds in
at most a few percent of the datasets for models with
high heritability. The single-locus chi-square test also
loses its power completely for these models as is natu-
rally expected from the nature of the models. On the
other hand, BOOST is shown to suffer from false posi-
tives over all models, while false discovery rates for
SNPInterForest and SNPHarvester are quite low.
The proposed method was further examined to test

whether it can identify interactions involving more than
two SNPs. For this purpose, we considered a disease
model that contained three SNPs interactively associated
with disease: two that are moderately associated with
disease by a pure epistatic interaction and another with
a weaker effect that amplifies the interactive effect in
collaboration with the other two. Five simulated datasets
reproducing this model were constructed by redesigning
the above two-SNP interaction model for moderate
association (h2 of 0.2 and the MAF of 0.4) such that one
of the non-associated SNPs was realigned to interac-
tively affect disease susceptibility with the two associated
SNPs. The interaction score was computed for combina-
tions consisting of three SNPs. The three interacting
SNPs are successfully captured by the interaction score
for all five datasets (Table 1). The results suggest that
the proposed method can be directly generalized to
identify higher-order interactions. These interactions are
not identified by SNPHarvester. BOOST cannot identify
interactions with more than two SNPs.
Second, we explored the case where multiple epistatic

interactions affect disease susceptibility, which is likely
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Figure 2 Distribution of the importance score compared with the original RF. Distribution of the importance score which is computed by
permutation testing for a simple model of pure epistatic interactions. The upper panel shows the results from the original random forest, and
the lower panel shows the result from SNPInterForest. The SNPs associated with disease are represented by red boxes, and the other SNPs are
represented by black boxes.
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to happen especially in the pathogenesis of complex dis-
eases. Here, we considered six hybrid models, which
included five interactions each involving two SNPs. For
each hybrid model, we constructed simulated datasets
by mixing five datasets from each of the above single
two-SNP interaction models, respectively (the same as
in the work of Yang et al. [5]). Furthermore, we
extended the simulation studies to incorporate genetic
heterogeneity. To mimic heterogeneous causal interac-
tions, we constructed simulated datasets for heteroge-
neous models again using the single two-SNP
interaction models, but in this case by simply combining
two datasets from each of the models. That comes to
six heterogeneous models containing 400 cases and 400
controls, which include two interactions that indepen-
dently predispose respective halves of the patients to the
same disease.

It was found that SNPInterForest can simultaneously
detect SNPs that affect disease susceptibility in multiple
ways. Of particular importance is that it can automati-
cally identify the interacting SNP combinations by the
interaction score. Tables 2 and 3 summarize a compari-
son of the number of interacting SNP pairs detected in
the simulation by SNPInterForest, BOOST, and
SNPHarvester for hybrid models and heterogeneous
models, respectively. SNPHarvester identifies only a por-
tion of the multiple interacting SNP pairs in each data-
set. BOOST considerably outperforms SNPHarvester.
However, it also suffers to some extent from false posi-
tives. SNPInterForest performs comparably to BOOST
in most cases, keeping false discovery rates lower. The
results suggest that the new method can effectively con-
tribute to concurrently identifying multiple interactions,
even under the existence of genetic heterogeneity.

Table 1 Comparison of performances of different methods on simple models of pure epistatic interactions

SNPInterForest BOOST SNPHarvester

# of true positives
(Ntotal = 50)

# of false positives # of true positives
(Ntotal = 50)

# of false positives # of true positives
(Ntotal = 50)

# of false positives

h2 = 0.4,
MAF = 0.2

50 0 50 6 37 0

h2 = 0.4,
MAF = 0.4

50 0 50 9 38 0

h2 = 0.3,
MAF = 0.2

50 0 50 1 36 0

h2 = 0.3,
MAF = 0.4

50 0 50 5 38 0

h2 = 0.2,
MAF = 0.2

49 1 50 1 36 0

h2 = 0.2,
MAF = 0.4

49 0 50 5 39 1

# of true positives
(Ntotal = 5)

# of false positives # of true positives
(Ntotal = 5)

# of false positives # of true positives
(Ntotal = 5)

# of false positives

3SNP interaction 5 0 - - 0 0

Table 2 Comparison of performances of different methods on hybrid models

SNPInterForest BOOST SNPHarvester

# of true positives
(Ntotal = 250)

# of false positives # of true positives
(Ntotal = 250)

# of false positives # of true positives
(Ntotal = 250)

# of false positives

h2 = 0.4,
MAF = 0.2

250 0 250 10 119 0

h2 = 0.4,
MAF = 0.4

250 0 250 3 115 0

h2 = 0.3,
MAF = 0.2

250 0 250 7 103 0

h2 = 0.3,
MAF = 0.4

250 0 250 8 108 0

h2 = 0.2,
MAF = 0.2

249 2 250 9 111 1

h2 = 0.2,
MAF = 0.4

248 1 250 2 102 0
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False discovery rates evaluation on null simulations
As already mentioned in previous subsections, SNPIn-
terForest is not affected by deleterious rates of spurious
detection in contrast to achieving high recall rates. On
the other hand, the tradeoff between power and preci-
sion has been classical suffering (e.g., [12]). To further
approximate the precision, we simulated datasets with-
out any disease-associated SNPs. We constructed 50
datasets containing 1,000 SNP markers genotyped for
2,000 cases and 2,000 controls, where the SNPs were
generated independently with MAF uniformly distribu-
ted in [0.05, 0.5]. The running parameters for the pro-
grams were set in the same way as for the disease
models. In the null simulations, SNPInterForest did not
report any false positives.

Analysis using real GWAS data
We performed SNPInterForest on real GWAS data of
rheumatoid arthritis (RA) from the Wellcome Trust
Case Control Consortium (WTCCC; [13]), which con-
sisted of about 500 K SNPs and 3,499 individuals (1,999
cases and 1,500 controls). The WTCCC distributes two
control samples (1958 British Birth Cohort and UK
Blood Service Control Group), each of which contains
1,500 individuals. Because the latter sample cannot be
accessed by commercial organizations, we used only the
former. We narrowed the search down to the top
10,000 SNPs selected by single-locus association study
to accommodate computational requirements. It took
about 98 hours for SNPInterForest to handle it on a
Linux system with a single CPU (CPU: Intel Xeon 2.67
GHz) and a memory of 6 GB. The running time of
SNPInterForest, SNPHarvester, and BOOST on this
dataset is summarized in Table 4. We note that
SNPHarvester requires substantial memory space and its
running time is highly sensitive to the size of memory.
SNPInterForest identified two novel interactions from
this dataset, which are summarized in Table 5.

Information on genes related to the SNPs in these inter-
actions is also provided in Table 6. Although biological
interpretation of the interacting SNPs is yet unclear,
there are some functions in these genes that seem to
have possibility to relate with RA, such as inflammatory
response in the gene PROK2. These interactions were
also identified by BOOST. BOOST detected a dozen of
other interactions, which were not detected by
SNPInterForest.

Conclusions
We proposed a new effective method, named SNPInter-
Forest, for identifying epistatic interactions in large-scale
association studies by extending an ensemble learning
technique called random forest. SNPInterForest, which
introduces a new procedure to capture SNP interactions
on the basis of the tree structure in the random forest
and modifies the construction method of a random for-
est, offers an efficient means to detect epistatic interac-
tions without statistical analyses. Although it is relatively
computationally expensive, the effectiveness of the pro-
posed method was verified in extensive simulation stu-
dies under a wide spectrum of disease models. This
method achieved considerable improvements compared
to the original random forest in identifying pure epi-
static interactions, and outperformed the existing meth-
ods in high recall rates while keeping low false discovery
rates. Encouraged by the success in detecting multiple
SNP interactions, we plan to extend our current method
in the future to infer the overall genetic network
involved in the pathogenesis of complex diseases. The

Table 3 Comparison of performances of different methods on heterogeneous models

SNPInterForest BOOST SNPHarvester

# of true positives
(Ntotal = 100)

# of false positives # of true positives
(Ntotal = 100)

# of false positives # of true positives
(Ntotal = 100)

# of false positives

h2 = 0.4,
MAF = 0.2

98 1 98 5 64 0

h2 = 0.4,
MAF = 0.4

98 0 100 7 66 1

h2 = 0.3,
MAF = 0.2

90 1 81 6 59 0

h2 = 0.3,
MAF = 0.4

80 0 100 7 62 0

h2 = 0.2,
MAF = 0.2

28 4 16 10 19 0

h2 = 0.2,
MAF = 0.4

38 1 78 3 29 2

Table 4 Running time of different methods on WTCCC RA
data

SNPInterForest BOOST SNPHarvester

98 hours 11 min 5 hours

Yoshida and Koike BMC Bioinformatics 2011, 12:469
http://www.biomedcentral.com/1471-2105/12/469

Page 6 of 10



software is available at: https://gwas.lifesciencedb.jp/
SNPInterForest/index.html.

Methods
Random forest
The random forest technique is an ensemble learning
technique for conducting classification analyses [6]. In
brief, it constructs a collection of classification trees to
aggregate them into one robust classifier, where each of
the trees is built with two stochastic modifications
applied to the deterministic tree-growing algorithm: (i)
each tree is trained on a bootstrap sample of the original
sample; (ii) at each node in the trees, the best split is
chosen from among a randomly selected subset of the
predictor variables instead of the full set. A desirable
feature of the random forest technique is that it pro-
vides an importance score for respective variables that
measures their contribution to the predictive accuracy.
The contribution of a variable is quantified via permuta-
tion testing by disrupting the dependence between the
variable and the class and measuring how much the pre-
diction accuracy of the trees decreases compared to that
in the original setting. Specifically, the importance score
of a certain variable is defined as follows [14]. For indi-
vidual i, let Xi represent the vector of variable values, yi
its true class, Vj(Xi) the prediction of tree j, and tij an
indicator taking value 1 when individual i is out-of-bag
for the bootstrap sample of tree j and 0 otherwise. Let X
(A, j) represent the vector of variable values with the

value of variable A randomly permuted among the out-
of-bag individuals for tree j. Letting F(C) denote the
indicator function taking value 1 when the condition C
is true and 0 otherwise, the importance score of a vari-
able A is calculated as follows:

I(A) =
1
T

T∑
j=1

1
Nj

N∑
i=1

[
F

(
Vj(Xi) = yi

) − F
(
Vj(X

(A, j)
i ) = yi

)]
tij, (1)

where Nj represents the number of out-of-bag indivi-
duals for tree j, N is the total number of individuals in
the sample, and T is the total number of trees. Impor-
tantly, the importance score encompasses the effects of
interactions among variables, as it assesses the contribu-
tion of a certain variable to the prediction in the pre-
sence of all other variables. In the context of genetic
association studies, this importance score can be used to
discover variables, i. e., SNPs, that are most predictive of
the disease status and thereby likely to affect disease
susceptibility [15].
The random forest technique can deal with a large

number of SNPs. It is also thought to be easily adapta-
ble to handling genetic heterogeneity, since separate
models are automatically fitted to subsets of data
defined by early splits in the trees in the course of tree-
building processes. However, its critical disadvantage in
detecting epistatic interactions is that it is less sensitive
for SNPs with little marginal effect. When the contribu-
tion of a SNP is caused only by a pure interaction with
other SNPs, the importance score of the relevant SNP
diminishes. This is a primary limitation that must be
overcome to enhance its ability as a detection tool of
epistatic interactions. The random forest framework can
also be extended from the viewpoint that the tree-based
model has good interpretability in terms of representing
variable interactions. While the importance score
natively provided by the technique can be used to prior-
itize susceptibility SNPs, it is computed for individual
SNPs and does not reveal the combination patterns of
interacting SNPs. Further exploration is required to
extract the interaction patterns among significant SNPs.
In the next section, we describe a means to improve the
random forest technique in terms of the absence of
marginal effects. Then, rather than a statistical analysis,
we introduce a new procedure to capture the SNP inter-
actions on the basis of the tree structure in the random
forest.

SNPInterForest: extension of random forest for detecting
epistatic interactions
The new method, named SNPInterForest, is designed in
the following way. First, the random forest is con-
structed on case-control data as a classifier to discrimi-
nate between cases and controls with SNPs as

Table 5 Interactions identified by SNPInterForest in
WTCCC RA data

Interacted SNPs Location Type MAF

rs17665418 3p13 gSNP Case: 0.12/Control: 0.067

rs2121526 10q21.1 iSNP Case: 0.12/Control: 0.057

rs17665418 3p13 gSNP Case: 0.12/Control: 0.067

rs4799934 18q12.2 iSNP Case: 0.12/Control: 0.056

Table 6 Gene information related to the SNPs identified
in WTCCC RA data

SNPs Closest
genes

Classification for the genes (morceaux)

rs17665418 PROK2 G-protein coupled receptor protein signaling
pathway
Angiogenesis, Cell proliferation, Chemotaxis
Inflammatory response
Positive regulation of smooth muscle
contraction
Sensory perception of pain

rs2121526 PCDH15 Cell adhesion
Sensory perception of light stimulus

rs4799934 BRUNOL4 Embryo development
Germ cell development
mRNA splice site selection
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categorical variables that have three possible values, i. e.,
the three genotype values. In this regard, an emphasis is
placed on deriving the importance score of each SNP
that measures its contribution in determining the dis-
ease status. In the construction of classification trees, a
sample is recursively split into two subsamples on the
basis of a chosen split variable, with each split improv-
ing the homogeneity of the sample contained in the pre-
sent node with regard to the disease status. In this
process, the Gini index [16] is used to assess the homo-
geneity of a sample at a certain node, which is defined
for node g as follows:

ϕ(γ ) = 1 − f20 − f21, (2)

where f1 and f0 are the relative frequencies of cases
and controls, respectively. Now, for a split at node g
that yields two sub-nodes, g1 and gr, the improvement of
homogeneity by this split is calculated by the decrease
in the Gini index as follows:

�ϕ(γ ) = ϕ(γ ) − f1ϕ(γ1) − frϕ(γr), (3)

where f1 and fr are the fractions of samples in g that
fall into g1 and gr, respectively.
Here, the construction of classification trees is modified

such that, when choosing a split variable at each node, a
combination of multiple SNPs as well as a single SNP is
allowed. In the original tree-building manner, the single
SNP that provides the best partition, that is, that gives
the maximum decrease in the Gini index, is chosen for a
split variable. It is suspected that using only a single SNP
tends to decrease the possibility to ever appear in trees
for SNPs without marginal effects, since the first split
variable is selected on the basis of just individual effects.
In the modified version, combinations of multiple SNPs
are also considered as candidates for a split variable, and
the best combination of SNPs or the best single SNP is

chosen. When evaluating the best partition by a certain
candidate variable, all possible splitting rules are taken
into account. Specifically, a candidate variable of a com-
bination of n SNPs can have 3n possible values, and the
best partition for it is chosen from among (23

n−1 − 1)
ways of splitting rules. Figure 3 illustrates the case for a
combination of two SNPs for reference. This modifica-
tion is expected to prevent the importance scores of
SNPs without marginal effects from being underesti-
mated. In this study, combinations of up to two SNPs are
considered for one node. We think this is reasonable
enough, considering it to be least likely that among SNPs
interactively associated with disease, any set of two SNPs
do not show any effect at all.
Next, a procedure is implemented for extracting inter-

action patterns from the constructed random forest. In
the random forest, each path from the root node to the
leaf node, i. e., a branch, in the classification trees indi-
cates a possible interaction among variables on that
branch. In other words, interactions of variables are
represented within a branch in trees. Thus, in a specific
sense, it may be argued that when a certain combination
of SNPs appears more frequently in the same branches,
those SNPs should interact more strongly with each
other in affecting the disease outcome. Therefore, for
each SNP combination, the number of simultaneous
appearances in the same branches is counted over all
trees in the random forest as a measure of its interac-
tion strength. Specifically, it is defined for a SNP combi-
nation G as the summation of the number of
appearances of G in a branch b, nb(G), for all branches
over all trees in the random forest as follows:

inter(G) =
T∑
j=1

∑
b∈Bj

nb(G), (4)

Figure 3 Illustration of how the best partition is evaluated for a combination of two SNPs. A combination of two SNPs can have nine
possible values (corresponding to respective cells in each panel), and its best partition is chosen from among (28-1) ways of splitting rules
(corresponding to the number of panels each of which depicts one of the dual-splitting rules by white and grey cells).
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where Bj represents the collection of all branches in
tree j, and T is the total number of trees. Note that a
certain combination is to be counted only once to avoid
bias towards those at the top of a branch. This measure-
ment, hereafter referred to as the interaction score, can
be used to discover interacting SNP groups. We normal-
ize the interaction score for each SNP combination by
using its respective baseline level, which indicates the
expected number of simultaneous appearances under
the null hypothesis, i. e., the hypothesis that the SNP
combinations concerned do not interact. The baseline
levels for respective SNP combinations are estimated in
the following manner. First, the SNP positions in the
trees in the random forest constructed are randomized
with the numbers of the respective SNPs and the topol-
ogy of the trees kept unchanged. Then, for each SNP
combination, the number of simultaneous appearances
in the same branches is counted in the same way as for
the original random forest. The sequence of these pro-
cesses is repeated 100 times to develop statistical distri-
butions of the baseline levels for respective SNP
combinations. The normalized interaction score for a
SNP combination G is thus obtained by subtracting the
baseline mean and dividing by the baseline standard
deviation as follows:

INTER(G) =
inter(G) − interrandom(G)

σ
(
interrandom(G)

) , (5)

Where interrandom(G) represents the statistical distri-
bution of the baseline level estimated by randomization,
and interrandom (G) and s(interrandom(G)) are its mean

and standard deviation, respectively. The normalization
is expected to work effectively to pick out weaker inter-
actions and to eliminate contamination from spurious
interactions involving SNPs with strong single-handed
associations. The detection threshold of the normalized
interaction score is empirically determined to be above
25s throughout the experiments on the basis of simula-
tions on various preliminary datasets. In most cases, the
scores of disease-associated interactions are much more
significant than others: the maximum scores of non-
associated interactions lie around 15s or less.

Simulations
The performance of SNPInterForest was evaluated by
simulations under diverse disease models and compared
to those of recent studies (SNPHarvester [5] and the
most recent BOOST [9]) as they were found to be very
powerful for detecting epistatic interactions in compre-
hensive comparisons with other methods. Following
many previous studies, we considered models of epistatic
interactions with weak marginal effects using the three
models in the work of Marchini et al. [10], which are

additive, multiplicative, and threshold models (Section
4.1). In the additive model, a disease-associated allele at
each locus increases the odds of disease independently in
a multiplicative fashion both within and between two
loci; in the multiplicative model, at least one disease-
associated allele must be present at each locus for the
odds to increase, and each additional disease-associated
allele at the loci further increases the odds in a multipli-
cative fashion; and the threshold model takes the same
forms as a multiplicative model in requiring at least one
disease-associated allele at both loci, but additional dis-
ease-associated alleles do not increase the risk further.
The marginal effect is measured in effect size l (i.e., the
size of effect that is expected to be seen separately at
each of the locus for an interaction [10]), and the linkage
disequilibrium (LD) between the disease-associated SNPs
and a genotyped SNP is measured by r2. We simulated
data under different parameter settings of the LD and the
minor allele frequencies (MAFs) of the disease-associated
SNPs, considering practical concerns for this issue.
Furthermore, we conducted extensive simulation for
models of pure epistatic interactions without marginal
effects to validate the power of the new method in that
problematic case (Section 4.2). A wide range of pure
interaction models has been discussed in the literature
[17]. Following Yang et al. [5], we generated synthetic
data on the basis of the interaction models given by
Velez et al. [11]. The parameters considered for data
simulation are the broad-sense heritability h2 (i.e., the
extent to which affection status can be genetically deter-
mined [17]) and the MAFs of the disease-associated
SNPs. For this case, in addition to simple single-interac-
tion models, we explored multiple-interaction models
and models of heterogeneous interactions that mimic
genetic heterogeneity.
We constructed datasets each containing 1,000 SNP

markers genotyped for 2,000 cases and 2,000 controls
for models of epistatic interactions with weak marginal
effects, and datasets containing 1,000 SNP markers gen-
otyped for 200 cases and 200 controls for models of
pure epistatic interactions unless otherwise noted. For
each disease model, 50 datasets were used in the simula-
tion. The performance of the methods for a specific
model was measured by the power defined as the ratio
of the number of successful identifications to the total
number of simulated datasets. False discovery rates were
also estimated as the probability of detecting spurious
SNP pairs to be epistatic. For SNPInterForest, we deter-
mined the detection threshold of the normalized inter-
action score to be above 25s throughout the
experiments. There are two main tuning parameters for
the random forest: ntree (the number of classification
trees built in the random forest) and mtry (the number
of randomly selected candidates for a split variable at
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each node). Taking into account the prediction error
and, more particularly, the stability of the estimates of
the importance score, we empirically determined their
values as ntree = 10,000, and mtry = 50,000, which is
around 10% of the number of all the possible candidates

(here, (1, 000 + C2
1,000) for 1,000 SNPs). In general, the

larger the value yields, the better the performance
within the range we studied, although ntree has minimal
effect over a wide range of values on the order of 1,000-
10,000 trees particularly in the case of detecting strong
associations. The parameter for SNPHarvester was set as
SuccessiveRun = 50, as suggested in its original simula-
tion study [5]. The significance threshold for BOOST
was selected to be 0.1 after the Bonferroni correction, as
used in the original study [9].
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