
RESEARCH ARTICLE Open Access

Algorithms, data structures, and numerics for
likelihood-based phylogenetic inference of huge
trees
Fernando Izquierdo-Carrasco1*, Stephen A Smith1,2 and Alexandros Stamatakis1*

Abstract

Background: The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing
technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with
more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the
scalability of search algorithms, and the high memory requirements for computing the likelihood.

Results: We introduce methods for solving these three key problems and provide respective proof-of-concept
implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to
any likelihood-based (Bayesian or maximum likelihood) tree inference program. We develop a new search strategy
that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the
statistical sense) for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique
for phylogenomic datasets with missing data (already available in RAxML v728) that can reduce execution times
and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ
model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single
rate or rate category for each site to resolve these problems.

Conclusions: We address three major issues pertaining to large scale tree reconstruction under maximum
likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our
ideas are made available as open-source code.

Background
The rapid accumulation of molecular sequence data that
is driven by novel wet-lab sequencing techniques such
as pyrosequencing [1] and collaborative whole-genome
sequencing projects such as the 10 K vertebrate genome
project http://www.genome10k.org/ pose unprecedented
challenges with respect to the scalability and numerical
stability of phylogenetic inference programs. Datasets
are continuously growing with respect to the number of
base-pairs and/or the number of taxa. For likelihood-
based [2] (Bayesian and Maximum Likelihood) codes
with their extremely high computational requirements

in terms of memory and floating point operations,
improving scalability for large datasets is particularly
challenging. Here, we focus on algorithm design,
improvement of numerical stability, and technical solu-
tions for accelerating the likelihood function and redu-
cing the memory requirements on phylogenomic
datasets with missing data that contain more than
10,000 taxa. The concepts we introduce are generic, that
is, they can be applied to other likelihood-based pro-
grams such as IQPNNI [3], GARLI [4], PHYML 3.0 [5],
FastTree 2.0 [6], MrBayes [7], PhyloBayes [8], and
BEAST [9] or to libraries for computing the phyloge-
netic likelihood such as BEAGLE http://code.google.
com/p/beagle-lib/.
The largest published maximum likelihood tree to

date contained approximately 13,000 taxa [10]. FastTree
2 has been used to infer approximate maximum likeli-
hood trees of approximately 200,000 taxa [6], and the

* Correspondence: Fernando.Izquierdo@h-its.org; Alexandros.Stamatakis@h-
its.org
1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for
Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg,
Germany
Full list of author information is available at the end of the article

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

© 2011 Izquierdo-Carrasco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.genome10k.org/
http://code.google.com/p/beagle-lib/
http://code.google.com/p/beagle-lib/
mailto:Fernando.Izquierdo@h-its.org
mailto:Alexandros.Stamatakis@h-its.org
mailto:Alexandros.Stamatakis@h-its.org
http://creativecommons.org/licenses/by/2.0

largest published tree using parsimony contained
approximately 73,000 taxa [11]. With novel alignment
assembly methods such as, for instance, PHLAWD [12],
increasing data availability, and collaborative projects for
reconstructing huge trees (e.g., the iPlant plant tree of
life grand challenge project http://www.iplantcollabora-
tive.org/challenge/iplant-tree-life) there exists a need to
infer even larger trees exceeding 100,000 taxa. RAxML
version 7.2.8 alpha (available at http://wwwkramer.in.
tum.de/exelixis/software.html) already incorporates
some of the mechanisms presented here. It has been
successfully deployed –without crashing– to infer biolo-
gically reasonable Maximum Likelihood (ML [2]) trees
on phylogenomic datasets with 10-20 genes for 38,000,
56,000, and 116,000 taxa.

Methods
In the following we discuss three different topics: (i) the
design of a new search algorithm for large datasets, (ii)
an appropriately adapted re-implementation of the Sub-
tree Equality Vector (SEVs [13]) technique in RAxML,
and (iii) numerical issues that arise with the widely used
Γ model of rate heterogeneity [14].

PhyNav Revisited: Constraining the tree search to a
backbone tree
PhyNav (Phylogenetic Navigator [15]) first introduced
the idea to reduce the dimension of the tree (and poten-
tially also the memory footprint of the tree) on which
the search is conducted, by identifying subtrees of clo-
sely related taxa whose root may be represented by a
single virtual tip. The rationale is that in large align-
ments there may exist many taxa that are closely related
to each other which can therefore be clustered together
into a single virtual tip (which we also denote as super-
taxon). By clustering taxa into virtual tips, the dimen-
sion of the tree can be reduced allowing for a tree
search on the backbone tree that is induced by the vir-
tual tips.
Given a hypothetical perfectly balanced tree, a reduc-

tion of 50% could correspond to collapsing each pair of
taxa into a single virtual tip. Thus, for each pair of tips,
there would be one less inner node to operate on, and
the total number of inner nodes would have been
halved.
We henceforth denote such a reduction of the tree

dimension as reduction factor and denote the reduced
unrooted tree that is induced by the virtual tips as back-
bone tree.
Once an appropriate backbone tree has been com-

puted (see below), a SPR-based (Subtree Pruning Re-
Grafting) search, or any other heuristic search strategy
using, for instance, NNI (Nearest Neighbor Inter-
change) or TBR (Tree Bisection Reconnection) moves,

can be restricted to operate within this backbone tree.
In other words, the virtual tips are interpreted as tips
in the backbone tree on which we conduct the tree
search. In our RAxML proof-of-concept implementa-
tion that deploys SPR moves, only subtrees that form
part of the backbone tree are pruned and will exclu-
sively be re-inserted into branches that lie within the
backbone.
Despite restricting the tree search to the backbone, in

our setup, we always compute the log likelihood score
of the comprehensive tree during the backbone tree
search. The log likelihood score of the comprehensive
tree can be easily computed, because virtual tips are
ancestral probability vectors that summarize the signal
of the (excluded) real tips situated below the respective
virtual tip. Note that, memory requirements for storing
the ancestral probability vector representing a virtual tip
are significantly higher than for storing a terminal
taxon. For terminal taxa, it suffices to store the molecu-
lar sequence as an array of single bytes and to use a
lookup table for obtaining the corresponding tip prob-
ability vector (see [16] for details).
One way to implement a PhyNav-like method com-

prises the following computational steps: Initially, gener-
ate a reasonable starting tree, using, for instance,
parsimony. Then, determine an appropriate backbone
tree and optimize branch lengths and model parameters
on this comprehensive tree under ML. Thereafter, deter-
mine and mark the ancestral probability vectors that will
become virtual tips in the backbone. Finally, conduct a
tree search on the backbone tree.
To also achieve a memory footprint reduction (not

implemented), one can write a multiple sequence align-
ment for the backbone to file that will partially consist
of nucleotide sequences and partially of ancestral prob-
ability vectors representing virtual tips. This reduced
alignment can then be parsed together with the back-
bone tree for conducting a tree search. By deploying
PhyNav-like algorithms, one can save memory, if inner
nodes (ancestral probability vectors) are excluded from
the backbone, since ancestral probability vectors largely
dominate the memory requirements of likelihood-based
programs (see [16] for details).
In terms of algorithm design, the issue that predomi-

nantly affects performance is the computation of the
backbone tree, that is: How do we determine “good” vir-
tual tips?
Building the Backbone
To build a backbone, we assume that a reasonable (i.e.,
non-random) fully resolved comprehensive tree T com-
prising all taxa (e.g., obtained via parsimony using TNT
[11] or RAxML) is provided as input. This comprehen-
sive n-taxon tree has n tips and n-2 ancestral (inner)
nodes.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 2 of 14

http://www.iplantcollaborative.org/challenge/iplant-tree-life
http://www.iplantcollaborative.org/challenge/iplant-tree-life
http://wwwkramer.in.tum.de/exelixis/software.html
http://wwwkramer.in.tum.de/exelixis/software.html

The second parameter for the backbone tree algorithm
is the desired tree size reduction factor R, where 0.0 <R
< 1.0. This parameter denotes to which fraction of n the
backbone tree shall be reduced in size. Ideally, the back-
bone tree will then comprise n·R-2 ancestral nodes and
n·R backbone tips. Backbone tips may either be virtual
tips (ancestral nodes) or real tips. Evidently, choosing
very low values of R may significantly impact the quality
of the inference, specially if very short branch lengths
are present. According to our experience (see results
section), using R > 0.25 is a safe lower bound.
Our backbone construction algorithm executes two

main computational steps that are described in more
detail below. Initially, we assign the n tips to n·R clus-
ters, that is, c = ⌈n·R⌉, where c is the total number of
clusters obtained. For each tip we store a cluster identi-
fier that denotes to which cluster the tip has been
assigned. Thereafter, we traverse the tree and use the
cluster identifiers to label all ancestral nodes as residing
inside, outside or on the boundary of the backbone.
Tip clustering There are plenty of possible approaches
to cluster tips. First, the available topology itself (for
example, the optimized parsimony starting tree) can be
used directly as a hierachical tree (hierachical cluster-
ing). Another alternative may be to compute parsimony
scores of subtrees, and then cluster together according
to a threshold. Here, we only present an approach based
on computing a distance matrix and applying average-
linkage hierarchical clustering [17]. Our assesment indi-
cated this approach yields significantly better results
than the others.
In standard hierarchical clustering, the first step con-

sists of calculating a distance matrix that contains the
pair-wise distances between all items (tips) to be clus-
tered. However, given a comprehensive tree T with ML
estimates of branch lengths, we can directly obtain this
distance matrix from the tree by calculating the pair-
wise patristic distances. The patristic distance between
two taxa is the sum of branch lengths on the path in
the tree connecting the two taxa. Thus, the distance
matrix is symmetric. The space requirements for storing
such a patristic distance matrix are in O(n2) which can
become prohibitive for large alignments with n ≥ 30,
000 tips. We observe that, the pair-wise patristic dis-
tances between most tips will be very large and hence
these tips will be assigned to different clusters anyway.
Therefore, to save memory, one can decompose this
process into computing several smaller, partial distance
matrices, since the comprehensive starting tree already
induces a hierarchical clustering structure. If we subdi-
vide the problem into computing p partial pair-wise dis-
tance matrices, and each partial matrix defines

c =
∑k

i=0 ci = �n · R�, so that the total number of clusters,

we need to ensure that desired clusters still corresponds
to the specified reduction factor R. To achieve this, we
do not fix the number of partial matrices k a priori.
Instead, we define a threshold value m that represents
an upper bound for the number of tips contained in
each partial matrix. Let n be the total number of taxa, ni
the number of tips in a partial matrix, where ni ≤ m and

n =
∑k

i=0 ni. From each partial matrix, we extract an
amount of clusters proportional to its size, that is,
ci ∝ c × ni

n .
This is implemented as follows: First, we find a set of

subtrees such that (i) each subtree has as many tips as
possible and at most m tree tips and (ii) each tree tip is
included in exactly one subtree, that is, all tree tips are
included in one subtree and no tip forms part of more
than one subtree.
For each such subtree i, we then build a (partial)

patristic distance matrix for all ni subtree tips. There-
after, we cluster them, by generating a hierarchical clus-
ter tree. This hierarchical tree may be cut at different
levels to generate a varying number of subtree tip
groups. We choose to cut the the tree such that it gen-
erates ci clusters of subtree tips. If required, the number
of desired clusters ci will have been iteratively adjusted
beforehand (for further details see below) for each par-
tial matrix i to ensure that c =

∑k
i=0 ci.

For example, consider a 40, 000-taxon tree, a reduc-
tion factor of 0.5 (corresponding to 20, 000 clusters),
and a partial matrix threshold of 32, 000 taxa. In this
example, we may obtain distance matrices of 10, 000
and 30, 000 taxa respectively. Then we will need to
extract 15, 000 clusters from the 30, 000 taxa distance
matrix and 5, 000 clusters from the 10, 000 taxa dis-
tance matrix.
To be able to apply this method and compute partial

patristic distance matrices, we need to devise an algo-
rithm that selects subtrees from the comprehensive phy-
logeny such that they contain at most m taxa. We start
by selecting the innermost node of the tree (see below).
Consider that, each inner node i of an unrooted binary
tree T can be regarded as a trifurcation that defines
three subtrees Ti, a, Ti, b and Ti, c. We define subtree
length stl(Ti) as the sum of all branch lengths in subtree
Ti. Thus, stl(Ti, a) + stl(Ti, b) + stl(Ti, c) = stl(T) holds
for any inner node i, where T is the comprehensive tree.
In our current default implementation, we select the

innermost node j that maximizes stl(T) - max{stl(Tj, a),
stl(Tj, b), stl(Tj, c)}. An alternative criterion for selecting
the innermost node is to determine the node that mini-
mizes the variance of the three outgoing subtree lengths.
Other possible criteria, that are not based on subtree
length may be defined, for instance, as finding the node
that minimizes the variance of the node-to-tip distance

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 3 of 14

or finding the node with the highest minimum node-to-
tip distance. The node-to-tip distance is defined as the
sum of branch lengths on the path in the tree leading
from an ancestral node to a tip.
We conducted an empirical assessment (based on our

collection of large real-world trees) of these alternative
approaches for determining the innermost node of a
tree. The outcome (results in additional file 1) was that
the respective innermost nodes (as identified by the
above criteria) are either identical or close neighbors,
that is, located in the same region of the tree.
Backbone construction Once we have determined the
innermost node, we conduct a depth-first tree traversal
starting at this node and descend into each of the three
subtrees. The depth-first traversal terminates, when a
subtree root is encountered that comprises ≤ m tips. All
subtree roots that contain ≤ m tips are stored in a list
for further processing. Thus, when the depth-first tra-
versal has been completed, this list of k subtree roots
can be used to generate the k partial patristic distance
matrices of maximum size O(m2). In our implementa-
tion, we set m := 1024. This a suitable value, since only
a few seconds are required for processing partial dis-
tance matrices.
For each subtree root (i.e., each partial patristic dis-

tance matrix), we determine how many clusters should
approximately be extracted, via c̄i :=

⌊ 1
2 + c · ni

n

⌋
, where i

is the cluster (subtree) number, ni is the number of tips
in the respective cluster/subtree, c = n·R is the total
number of desired clusters, and c̄i is the number of clus-
ters for subtree i. In general, c �= ∑k

i=0 c̄i. The overhead,
or deficit for that matter, of clusters, that is given by

�c = c − ∑k
i=0 ci, is then proportionally distributed

across all remaining partial matrices. This process is
repeated iteratively until no overhead (or deficit)

remains. In each iteration, we reassign ci :=
⌈
c̄i + �c · c̄i

c

⌉

until c =
∑k

i=0 ci for every i.
Then, for each subtree i = 1...k we proceed as follows:
For all tips in subtree i, calculate the patristic dis-

tances to all other tips in this subtree and save them in
the respective distance matrix.
Apply pairwise average clustering to generate a hier-

archical tree of joins from the distance matrix.
Cut the tree, such that exactly ci clusters are

generated.
Add those clusters to a global list of clusters. Maintain

a list that keeps track to which cluster a tip belongs.
When all subtrees have been processed, we have a list

of c clusters. Note that, each cluster contains x tips,
where 1 ≤ x ≤ m and that each tip is assigned to exactly
one cluster. The step to build the backbone from the
clusters is not trivial. We use labels (inside,

boundary and outside) to identify which nodes
belong to the backbone and which ones do not.
The backbone tree is defined by nodes marked as

inside and boundary. Once the clusters have been
computed, we build the backbone as follows: Initially,
we label each inner node in the tree as inside, tip
nodes which belong to clusters of size one as bound-
ary, and all remaining terminal nodes as outside. In
addition, we maintain a list for storing the cluster iden-
tifiers of ancestral nodes that will not form part of the
backbone.
Once this is done, we update/adapt the backbone

assignment for ancestral nodes: The nodes of the com-
prehensive tree that represent the k subtree roots will
remain inside the backbone. On each of the k subtree
roots, we initiate a post-order traversal to relabel the
ancestral nodes, if required, according the following rule
set:
If the two child nodes are labeled as inside or

boundary, the ancestral node remains labeled as
inside.
If one child is labeled as inside or boundary and

the other child as outside, the ancestral node is rela-
beled as inside and the outside child node is rela-
beled as boundary.
If both children are labeled as outside, we need to

check to which cluster they belong. If they belong to the
same cluster, the parent node is labeled as outside
and the shared cluster identifier of the child nodes is
propagated to the parent node. If the two children do
not belong to the same cluster, the parent node is
labeled as inside and both children are relabeled as
boundary.
When the post-order traversal is about to be com-

pleted, we arrive at the subtree root i again, which was
originally labelled as inside. At this point, we check
whether the adjacent backbone node of the subtree root
i has been labeled as outside. Whenever this is the
case (see Figure 1 for an example), the adjacent back-
bone node is relabeled as boundary for consistency.
Given a set of tips that form part of the same cluster,

it may occur that these tips also form a monophyletic
group. In this case, during the postorder traversal, all
ancestral nodes will be grouped together under the
same cluster identifier and the common ancestral node
will become a backbone boundary (virtual tip). How-
ever, if the tips in a cluster are not monophyletic (see
for instance, in Figure 2), the application of the above
rules requires some additional boundary relabelling.
Based on the prolegomena, a single cluster may thus

induce more than a single virtual tip. As a consequence,
the number of virtual tips may actually be higher than
the number of clusters. In turn, the reduction of tree
size that can be achieved will be smaller than specified

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 4 of 14

by R. The impact and frequency of occurrence of this
phenomenon (non-monophyletic clusters) depends on
the shape of the tree and the branch lengths. In Table 1,
we outline this effect for trees with 37,831 and 55,593
taxa. We computed the average number of virtual tips
generated by our algorithm on 10 distinct trees per
dataset and reduction factors of 0.25 and 0.5
respectively.
Tree Searches on the Backbone
We have implemented the above algorithm in a dedi-
cated RAxML version that is available for download at
http://wwwkramer.in.tum.de/exelixis/software/Backbone-
Search.zip. Initially, RAxML will generate a comprehen-
sive randomized stepwise addition order parsimony tree,
or read in a user specified tree via -t. Then it will opti-
mize ML model parameters–including branch lengths–
on the comprehensive tree. Thereafter, it will execute
the backbone algorithm as described above. The tree
searches on the backbone are based on the standard
RAxML hill-climbing algorithm. Lazy SPR moves are
only conducted within the backbone. After each cycle of
SPR moves (see [18] for details), the backbone tree will

be re-computed based on the currently best tree. Also,
the branch lengths of the entire tree (including those
branches not forming part of the backbone) will be re-
optimized once after each SPR cycle.

Subtree Equality Vectors Re-Visited
We introduced and implemented the concept of Subtree
Equality Vectors (SEVs) to accelerate likelihood compu-
tations by reducing the number of required floating
point operations in 2002 [19]. Conceptually similar
approaches were presented in 2004 [20] and 2010 [21].
The underlying idea is based on the following observa-

tion: Given two identical alignment sites i and j that
evolve under the same evolutionary model (GTR para-
meters, a shape parameter of the Γ function, etc.) and
for which a joint branch length has been estimated,
their per-site log likelihoods LnL(i) and LnL(j) will be
identical. Hence, to save computations, one can com-
press the identical sites into a single site pattern and
assign a respective site pattern count (weight) to this
site pattern. Thus, for two identical sites i and j, we can
compute the per-site log likelihood as 2·LnL(i). This

Figure 1 Consistency of labels at the backbone boundaries. At first (left) an initial backbone exists (thick branches), all inner nodes are
labelled as inside (I) and each tip node has a cluster id. After completion of the post-order traversal (right), each inner node has been relabelled
accordingly, if required. Here, cluster 2 is monophyletic, hence the cluster id was inherited propagated back to the initial backbone node. This
produced a branch (edge) with an inside and an outside node; therefore the outside(O) node is relabelled (arrow) as boundary(B) node.

Figure 2 Increase of in backbone tips due to topology conflicts. At first (left) an initial backbone exists (thick branches), all inner nodes are
labelled as inside (I) and each tip node has a cluster id. Upon completion of the post-order traversal (right), each inner node has been
relabelled accordingly. Here, cluster 2 is not monophyletic. Hence, an additional virtual tip is created, that is, cluster 2 generates 2 boundary tips.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 5 of 14

http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip

global compression of alignments (executed prior to
conducting likelihood computations) is implemented in
all current likelihood-based codes.
This basic idea of site compression can be extended to

the subtree level, by using SEVs for instance, to save
additional computations. Consider the equation [2] for
computing the ancestral probability vector entry for
observing nucleotide A at site i of a parent node node
p, with two child nodes l and r given the respective
branch lengths bl and br and transition probability
matrices P(bl) and P(br):

�L(p)A (i) = (
T∑

S=A

PAS(bl)�L(l)S (i))(
T∑

S=A

PAS(br)�L(r)S (i)) (1)

We observe that, if the site patterns in the subtree
(and hence sub-alignment) rooted at p at sites i and j
are identical, and if the transition probability matrices P
(bl) and P(br) are identical at sites i and j (implying
identical branch lengths and model parameters at sites i

and j), then L(p)S (i) = L(p)S (j) for all states S (e.g., A, C,

G, T). Thus, we can avoid re-computing all ancestral
states for site j if we have already computed the ances-
tral states for site i.
The key technical challenge with this approach is that

it requires a large amount of bookkeeping, to keep track
of identical subtree site patterns (for details see [19]).
Moreover, SEVs require additional data structures and a
case switch in the innermost loop of the likelihood func-
tion that iterates over the sites of the ancestral probabil-
ity vectors, which may lead to cache misses and
incorrectly predicted conditional jumps by the processor
hardware. Because of these observations we had aban-
doned this approach completely in RAxML.
However, the advent of gappy phylogenomic align-

ments, that is alignments that contain a large amount of
structured (non-randomly distributed across the align-
ment) missing data regions per gene for the taxa under
study, motivated us to re-assess SEVs in a simpler and
thus more efficient setting.
Gaps and undetermined characters are mathematically

equivalent in the standard ML framework. Since struc-
tured patches of missing data dominate current phyloge-
nomic datasets (typically the amount of missing data

ranges between 50% to 90%), we only track subtree site
patterns that entirely consist of gaps/undetermined
characters (e.g., we are only interested in subtree sites of
the from: —— in a subtree of size 4). Thereby, we avoid
the more complex task (see [20] and [21]) of tracking
all identical subtree site patterns (e.g., detecting all sites
of the form: ACCT in a subtree of size 4). This restric-
tion simplifies the required bookkeeping procedure and
data structure significantly, because we only need to
know whether a subtree site consists entirely of gaps or
not. Thus, given an alignment with n sites, it suffices to
enhance the data structures for storing tips and inner
nodes by a simple bit vector with n bits. If all-gap sites
are represented by 1 and non-gap sites by 0, we simply
need to execute a bit-wise AND on the respective bit
vectors of the child nodes l and r in conjunction with
the tree traversal for computing the likelihood to deter-
mine the all-gap sites at the ancestral node p (see Figure
3). We can then use this bit vector at p to determine if
we need to compute something at a site i or not.
We have implemented this method for DNA and pro-

tein data under the Γ model of rate heterogeneity in
RAxML v728 (alpha) available at http://wwwkramer.in.
tum.de/exelixis/software.html. Evidently, the efficiency
of this approach depends on the proportion of gaps/
missing data and the distribution of gaps in the input
alignment. Since areas of missing data are typically well-
structured in current phylogenomic datasets, this
approach is expected to work well with this kind of
input data. To facilitate the deployment of the SEV-
based version of the likelihood function, we have inte-
grated an automatic performance test that decides
whether to use the SEV-based or the standard likelihood
implementation. When the starting tree has been com-
puted or parsed by RAxML, the program will execute a
full tree traversal (re-compute all ancestral probability
vectors) for the standard and the SEV-based likelihood
function implementation and measure the respective
execution times. If the execution time of the SEV-based
approach is 20% smaller than that of the standard
implementation, RAxML will automatically use the
SEV-based implementation for all subsequent likelihood
computations. The threshold of 20% is based on empiri-
cal observations. While SEVs can speed-up ancestral
probability vector computations, SEVs slightly slow
down the branch length optimization and likelihood
computation (at the root) functions because of the
memory accesses to the bit vectors.
Saving Memory with SEVs
SEVs as implemented here, can also be deployed to
reduce memory requirements. As mentioned above, if,
at an ancestral node p we encounter an all-gap site, we
completely omit its computation. In order to accomplish
this, we need to maintain only one additional ancestral

Table 1 Average number of computed backbone tips
over 10 distinct trees

Average number of computed backbone tips

Reduction Factor R 37831 (expected) 55593 (expected)

0.25 12668.0 (9457.75) 19366.7 (13898.25)

0.50 22340.0 (18915.5) 33501.5 (27796.5)

The average number of backbone tips is higher than the expected number
n·R

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 6 of 14

http://wwwkramer.in.tum.de/exelixis/software.html
http://wwwkramer.in.tum.de/exelixis/software.html

probability vector site, that contains the signal for all-
gap sites. Consider an ancestral probability vector where
50% of the entries in the all-gap site bit-vector are set to
1, that is, where we only need to compute 50% of the
ancestral probability vector entries with respect to the
total alignment length.
We can observe that, in addition to saving 50% of the

computations required for this ancestral probability vec-
tor, we can also save 50% of the memory space required
for storing the ancestral probability vector (see Figure
4). Thus, the memory requirements for each ancestral
node can be determined on-the-fly as we traverse the
tree, by subtracting the number of entries that are set to
1 in the bit vector from the input alignment length.
Remember that, the bit vectors we deploy are always as
long as the input alignment.
The key technical problem that arises is that, the

required ancestral probability vector lengths at inner
nodes will change dynamically when the tree topology
changes or even when the tree is just re-rooted. Given a
rooting of the tree, one may think of this as ancestral
probability vectors becoming longer while one

approaches the root of the tree. At present we have
implemented this by dynamically freeing and allocating
memory (using free() and malloc()) at each ances-
tral node. The reallocation only takes place when the
all-gap bit-vector count (number of bits set to 1) corre-
sponding to the required ancestral probability vector
does not equal the all-gap bit-vector count of the cur-
rent ancestral probability vector at an ancestral node.
Note that, the concepts presented here can also be

applied to phylogenomic datasets with joint branch
length estimates across partitions, while the conceptually
different ideas presented in [22] can only be applied to
partitioned phylogenomic datasets with per-partition
branch length estimates.

Numerical Problems of the Γ Model of Rate
Heterogeneity
Numerical scaling of the entries in the ancestral (inner)
probability vectors during likelihood computations on
trees, for avoiding numerical underflow has become a
standard technique that is implemented in most likeli-
hood-based programs (PHYML, Mr-Bayes, GARLI,
RAxML, BEAST, etc.). For an overview of numerical
scaling techniques, please refer to [16]. A numerical pro-
blem that arises for very large trees with more than
approximately 50,000 taxa in RAxML (and probably all
other likelihood-based programs as well) is associated
with the widely used [23] Γ model of rate heterogeneity
[14].
For the Γ model, a discrete approximation (typically

using 4 discrete rates) is used to approximate the inte-
gral of the likelihood over the Γ curve at each site. That
is, instead of computing the ancestral probabilities L(A),
L(C), L(G), L(T) for the 4 nucleotides A, C, G, T at a
specific site of an ancestral node in the tree (see Equa-
tion 1), one needs to compute those probabilities for all

Figure 3 Using Subtree Equality Vectors to save computations for all-gap alignment sites in subtrees.

Figure 4 Using Subtree Equality Vectors to save computations
and memory for all-gap alignment sites in subtrees.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 7 of 14

4 discrete Γ rates r0, r1, r2, r3. Thus, every site of an
ancestral probability vector comprises 16 values:

L(A)r0 , L(C)r0 , L(G)r0 , L(T)r0 , ...

..., L(A)r3 , L(C)r3 , L(G)r3 , L(T)r3 .
(2)

The numerical problem that arises with the Γ model
on very large trees is that those 16 values need to be
jointly scaled numerically (all 16 values are multiplied
by a large number) to avoid numerical underflow (see
below).
Scaling of the probability vector entries may be con-

ducted as follows: At a specific site c of an ancestral
probability vector for DNA data �L we scale the entries
if, for instance,

L(A)r0 (c) < ε ∧ L(C)r0 (c) < ε, ...

..., L(G)r3 (c) < ε ∧ L(T)r3 (c) < ε
(3)

where ε can be set to ε := 1/2256 under double preci-
sion arithmetics. Thus, we decide to scale up all ances-
tral probability vector entries at a site c, when all
unscaled entries for all discrete rates are smaller than
some pre-defined ε.
Other options for scaling exist. For instance, one cal-

culates a scaling factor such that the largest of the 16
ancestral probability values at a site is scaled to 1.0. One
can also conduct this type of scaling at every ancestral
probability vector without checking that all values are
smaller than some ε. We also experimented with such
alternative implementations for numerical scaling in
RAxML, but were not able to solve the general scaling
problem for the Γ model of rate heterogeneity (see
below). With alternative scaling implementations, the
fundamental numerical problem occurred again for
slightly larger tree sizes.
If according to Equation 3 a probability vector column

c at vector �L needs to be scaled, we simply multiply all
entries

−→
LAr0 (c),

−→
LCr0 (c), ...,

−→
LGr3 (c),

−→
LT r3 (c) (4)

by 2256.
In order to correct (undo) the scaling multiplications

(accumulated during a tree traversal) at the virtual root,
we need to keep track of the total number of scaling
operations conducted per column. For this, we use inte-
ger vectors �U that maintain the scaling events and cor-
respond to the respective probability vectors at inner
nodes. As we traverse the tree to compute an ancestral
vector �L(k) from two child vectors �L(i) and �L(j) the scaling
vector is initially updated as follows
�U(k)(c) := �U(i)(c) + �U(j)(c). Then, if an entry of �L(k) needs
to be scaled at position c we increment
�U(k)(c) := �U(k)(c) + 1. The scaling vectors at the tips of

the tree are not allocated, but implicitly initialized with
0.
At the virtual root, given �L(i), �L(j) and the correspond-

ing scaling vectors �U(i), �U(j), we can compute the likeli-
hood under the Γ model as follows:

l(c) = εU
(i)(c)+U(j)(c)(14 · Qr0 +

1
4 · Qr1 +

1
4 · Qr2 +

1
4 · Qr3) (5)

where, for instance,

Qr0 := (

Tr0∑
R=Ar0

(πR�L(i)Rr0
(c)

Tr0∑
S=Ar0

PRS(bvr)�L(j)Sr0 (c))) (6)

If we take the logarithm of l(c) this can be rewritten
as:

log(l(c)) = (U(i)(c) + U(j)(c))log(ε) + ...

+log(14 · Qr0 +
1
4 · Qr1 +

1
4 · Qr2 +

1
4 · Qr3)

(7)

As can be observed, if all 16 values are scaled jointly,
the scaling multiplications can be easily undone numeri-
cally at the virtual root, when the overall likelihood of
the tree is computed (see [16] for more details). This is
not the case, if one intends to scale the ancestral prob-
ability values individually on a per-rate (r0, ..., r3) basis.
The problem that arises with using Γ on very large trees

is that, the 16 ancestral probability values (using four dis-
crete Γ rates for DNA data), may have such highly diver-
gent numerical values because of the 4 discrete rates r0, r1,
r2, r3, that scaling across all 16 of them will still not prevent
numerical under-flow. In other words, the smallest value of
those 16 will be too small and the largest too large to fit
into the representable machine number range between 0.0
and 1.0. Scaling values above 1.0 will yield numerical over-
flow and does hence not provide a solution either. At pre-
sent, we are not aware how scaling multiplications can be
undone (reversed) in a numerically stable way at the root,
if one scales the probability values for each discrete rate
category individually. This phenomenon could also occur
for models other than Γ that only use four values per site
(see below), but will probably occur on significantly larger
trees. While one could use extended precision libraries, as
provided for instance by the GNU Scientific Library, the
negative performance impact will be such, that the compu-
tation of large trees also becomes prohibitive.
It is however possible to address this scaling problem

by discarding the per-rate/category likelihoods that con-
tribute least to the overall likelihood and thereby
approximate the GAMMA-based likelihood score of a
site. This approach (currently unpublished) has been
implemented in PhyML [5].
To this end, we advocate the usage of per-site rate

categories as proposed and implemented in RAxML
(CAT approximation of rate heterogeneity [24]),

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 8 of 14

PhyloBayes [25], or FastTree 2.0 [6]. While methods that
model among-site rate heterogeneity by using one rate
per site can help to significantly reduce computational
requirements (memory utilization and floating point
operations are reduced by approximately a factor of four
compared to a Γ model with four discrete rates [24]),
they can also help to resolve the aforementioned numer-
ical problems with Γ on very large trees. Note that, the
CAT approximation as implemented in RAxML should
not be confused with the substantially different CAT
model implemented in PhyloBayes. The unfortunate fact
that an identical acronym is used is because at time of
publication, the author of RAxML was not aware of the
PhyloBayes CAT model that was introduced earlier.
One key issue with the so-called CAT approximation

of rate heterogeneity [24] in RAxML was that branch
length values were meaningless. This has been corrected
in RAxML version 7.2.9 (available at http://wwwkramer.
in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2) by
appropriately re-scaling the per-site rate categories such
that the mean substitution rate is 1.0. While, as we
show, the correctly scaled CAT-based branch lengths
are highly correlated (see results section) with the
branch lengths obtained from the Γ model, the overall
tree length obtained for Γ and CAT-based branch
lengths can vary significantly. Analogous results were
obtained for FastTree 2.0 [6]. This does not represent a
problem as long as post-analysis tools for trees (e.g,
divergence-time estimation, ancestral state reconstruc-
tion) do not rely on absolute branch length values.
Another issue that needs to be addressed is that CAT-

based log likelihood scores across different runs (e.g.,
two ML searches on the original alignment using differ-
ent starting trees) can not be compared directly, because
the estimates and assignments of rate categories to sites
may be slightly different for each search/tree topology.
Therefore, for comparing likelihood scores of trees
under the CAT approximation of rate heterogeneity, we
need to score all alternative trees under the same assign-
ment of rate categories to sites. RAxML v729 imple-
ments the -f n option to score a set of fixed trees
under the same rate category to site assignment.
Finally, one also needs to assess how differently trees

are ranked (ordered) with respect to their log likelihood
scores, if scored under Γ or under CAT. While one
would not expect a perfect rank correlation (because
CAT has more ML model parameters than Γ), because
both models accomodate rate heterogeneity, the correla-
tion should not be too low either.

Results and Discussion
Test Datasets
To assess our methods, we used two large multi-gene
datasets of plants.

The first dataset comprises 37,831 taxa and 9,028 sites
and was obtained as follows: We assembled a DNA
sequence matrix of 37,831 seed plant taxa consisting of
the chloroplast regions atpB (1,861 taxa, > 2.6 Mega-
bases [Mb]), matK (10,886 taxa, > 14.3 Mb), rbcL (7,319
taxa, > 9.7 Mb), trnK (4,163 taxa, > 7.5 Mb), and trnL-
trnF (17,618 taxa, > 13 Mb), and the internal transcribed
spacer (ITS; 26,038 taxa, > 14.3 Mb), using the Phylo-
geny Assembly with Databases tool (PHLAWD [12]
http://code.google.com/p/phlawd). All sequence align-
ments were conducted using MAFFT version 6 [26] for
initial alignments and MUSCLE for profile alignments
[27]. Alignment matrix manipulations were performed
with Phyutility [28].
The second dataset comprises 55,593 taxa and 9,853

sites and was obtained using the same pipeline as
described above. The gene regions used were atpB
(2,346 taxa, > 3.6 Megabases [Mb]), matK (14,848 taxa,
> 33.6 Mb), rbcL (10,269 taxa, > 14.9 Mb), trnK (5,859
taxa, > 15.3 Mb), and trnL-trnF (25,346 taxa, > 30.1
Mb), and the internal transcribed spacer (ITS; 37,492
taxa, > 30.9 Mb).
For ease of reference we henceforth denote the 37,831

taxon datasets as 38 K and the 55,593 taxon as 56 K.
Trees computed on the 56 K dataset have recently been
published [29] and the alignment is available at http://
datadryad.org/. The 38 K dataset is currently unpub-
lished, but will be made available immediately upon
publication.

Backbone Algorithm
To test the backbone algorithm we executed the dedi-
cated RAxML version (available at http://wwwkramer.in.
tum.de/exelixis/software/BackboneSearch.zip) with the
experimental -L command line option. This option
initially builds a backbone tree and then deploys the
CAT approximation of rate heterogeneity [24] with the
standard RAxML hill-climbing search algorithm [18,30]
to apply lazy SPR moves (see [18]) within the backbone
only. We used tree size reduction factors of 0.25 and
0.5. As starting trees, we used randomized stepwise
addition order parsimony starting trees generated with
RAxML v727 (-y option). For each dataset, we inferred
10 ML trees for each of the 10 parsimony starting trees.
RAxML was executed using the Pthreads-based parallel
version [31] with 16 threads on unloaded Quad-Core
AMD Opteron nodes with 16 cores and 128 GB RAM
each.
We computed average runtimes over 10 runs for the

38 K and 56 K datasets respectively. For each backbone
tree, we also computed the theoretical minimum num-
ber of bytes (denoted as Memory for Backbone) required
to store the ancestral probability vectors at the virtual
tips and the inner nodes which dominate memory

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 9 of 14

http://wwwkramer.in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2
http://wwwkramer.in.tum.de/exelixis/software/RAxML-7.2.9.tar.bz2
http://code.google.com/p/phlawd
http://datadryad.org/
http://datadryad.org/
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip
http://wwwkramer.in.tum.de/exelixis/software/BackboneSearch.zip

requirements. If the branch length optimization process,
unlike in our current implementation, is limited to opti-
mizing branches within the backbone, this theoretical
minimum value represents a good estimate of the mem-
ory footprint for a backbone tree search. We also com-
puted the respective memory requirements for the
comprehensive tree (denoted as Memory for Full tree),
which reflects the ‘standard’ memory requirements
when no reduction factor is applied.
These values (see Tables 2 and 3) provide a notion of

the potential memory savings that can be achieved by
the backbone approach. In Tables 2 and 3 we also pro-
vide the respective execution times and average log like-
lihood scores obtained by using the backbone algorithm
(R := 0.25, R := 0.5) and a comprehensive search on the
full tree (R := 1.0). Those values have been averaged
over 10 runs (10 starting trees). While execution times
can be reduced by the backbone approach, log likeli-
hood scores obtained by conducting searches on a back-
bone are slightly worse than those obtained by
searching on the full tree. Also note that, for unfavor-
able tree shapes, that is, tree shapes where a substantial
part of the phylogenetic signal is located at or near the
tips, a too aggressive setting of R may potentially gener-
ate unfavorable results since this signal can be lost in
the backbone. However, some exploratory tests with
simulated data (results not shown) did not show such
an effect for backbone searches.
In Figures 5 and 6 we show that the choice of the ran-

dom number seed (-p option in RAxML), that deter-
mines the shape of the starting trees, has a significant
impact on the final log likelihood score (computed
under GTR+Γ), irrespective of the search strategy that is
used. On average, searches on the full tree yield better
likelihood scores than searches on backbone trees. How-
ever, the variance of the likelihood score as a function
of the starting tree (parsimony random number seed) is
analogous to the score variance between full and back-
bone tree searches. For example, on the 38 K dataset,
the log likelihood scores on 10 final trees obtained for

full searches show a standard deviation of 1307 log like-
lihood units. The average difference in log likelihood
scores per starting tree between the full search and a
backbone search with R := 0.50 is only 645 log likeli-
hood units and 2030 log likelihood units for backbone
searches with R := 0.25, respectively.
Given the runtimes savings that can be achieved by

the backbone approach, backbone tree searches can be
used, for instance, to explore a larger number of parsi-
mony starting trees which substantially influence the
final log likelihood scores. A reasonable strategy for
finding best-known ML trees may consist in starting
many fast searches with a relatively aggressive setting of
R := 0.25 to identify/determine a set of ‘good’ starting
trees that yield the best final log likelihood scores. In a
second step, full tree searches can be conducted on
those promising starting trees to find trees with even
better scores.
We used simulated datasets in order to better under-

stand the impact of the backbone algorithm on topolo-
gical accuracy. We ran indelible [32] to generate
simulated MSAs of 1500 taxa (575 bp) and 5000 taxa
(1074 bp). We compared the symmetric difference
(number of bipartitions that differ between two topolo-
gies) between the true tree and the topologies from the
starndard full search and the backbone-based ones. For
each dataset, the full search and the backbone search
with R := 0.25 and R := 0.5 were ran 5 different times
with different starting trees. Table 4 shows the average
symetric differences among all approaches for the data-
set with 1500 taxa. We see that, in terms of topological
accuracy, applying the reductions of R := 0.25 and R :=
0.5 yield topologies that remain close to the standard
full search. Furthermore, the distance to the true tree is
not increased by the reduction.
The likelihood scores for both simulated datasets fol-

low the same pattern as in the case of real data. These
results, details on how the simulation datasets were gen-
erated, as well as the symetric difference for the 5000
taxa dataset have been included in the additional file 1.

Table 2 Average runtimes, memory requirements, and
log likelihood scores (over 10 runs) for the 38 K dataset

37831 taxa

R = 0.25 R = 0.5 R = 1

Runtime (h) 30.41 38.60 54.03

Memory for Backbone (GB) 4.90 7.70 N/A

Memory for Full tree (GB) 10.33 10.33 10.33

LogLikelihood (Avg) -5531436 -5530051 -5529406

LogLikelihood (Std Dev) 943.26 770.47 1307.16

Avg (logLH - logLH(R = 1)) 2030.24 645.31 0.0

Table 3 Average runtimes, memory requirements, and
log likelihood scores (over 10 runs) for the 56 K dataset

55593 taxa

R = 0.25 R = 0.5 R = 1

Runtime (h) 50.17 63.22 85.89

Memory for Backbone (GB) 8.22 12.72 N/A

Memory for Full tree (GB) 16.82 16.82 16.82

LogLikelihood -7063342 -7061516 -7060488

LogLikelihood (Std Dev) 1727.90 1761.27 1718.47

Avg (logLH - logLH(R = 1)) 2853.41 1028.04 0.0

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 10 of 14

SEV Performance
We also used the 38 K and 56 K datasets to test memory
savings and speedups achieved by applying the adapted
SEV technique to phylogenomic datasets. The gappyness

(percentage of missing data in the alignments) is 81.53%
for 38 K and 83.40% for 56 K, respectively.
For each alignment, we computed a parsimony start-

ing tree with RAxML that was then evaluated (model

Figure 5 Log Likelihood scores for different Reduction factors (38 k dataset). Plot of log likelihood scores under GTR+Γ of the final trees
obtained by each method as a function of the starting tree (random number seed) for the 38 K dataset. Each LH score (point) results from an
independent search. The lines linking the points are only guiding the eye.

Figure 6 Log Likelihood scores for different Reduction factors (56 k dataset). Plot of log likelihood scores under GTR+Γ of the final trees
obtained by each method as a function of the starting tree (random number seed) for the 56 K dataset. Each LH score (point) results from an
independent search. The lines linking the points are only guiding the eye.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 11 of 14

parameter and branch length optimization without tree
search, RAxML -f e option) with RAxML under the
GTR+Γ model using the SEV reimplementation (with
and without memory saving) and using the standard
likelihood implementation.
The standard implementation required 41 GB of

memory on the 38 K dataset and 66 GB of memory on
the 56 K dataset. The SEV technique with the memory
saving option enabled (-U option, available as of
RAxML v727) reduced memory footprints under Γ to
14 GB (38 K) and 21 GB (56 K) respectively. The log
likelihood scores for all three implementations were
exactly identical. As shown in Tables 5 and 6, the run-
times of the SEV-based versions are 25-40% faster than
for the standard implementation. The runtime differ-
ences between the SEV-based implementation with
memory saving enabled and the plain SEV version with-
out memory saving, can be attributed to differences in
memory access patterns. While both versions conduct
the same number of computations, the memory-saving
version needs to make millions of calls to OS routines
(free() and malloc()) while the plain SEV version
exhibits a higher memory footprint and thereby, poten-
tially, a higher cache miss rate.

Estimating branch lengths and computing likelihood
scores with CAT
We optimized branch lengths and model parameters
under CAT and Γ using RAxML v730 (-f n option) on
collections of 32 and 22 final ML trees for the 38 K and
56 K partitioned datasets, respectively. For the CAT
model, we also assessed the impact of using, 8, 16, 25
(default), and 40 per-site rate categories.

For each tree, we computed the average Pearson cor-
relation coefficient between the branch lengths obtained
under CAT (for 8, 16, 25, and 40 per-site rate cate-
gories) and the branch lengths as estimated under Γ.
We also computed the average tree length ratio over all
32 trees.
To determine if the trees are ranked in the same order

by their respective Γ and CAT log likelihood scores, we
computed the Spearman rank correlation of the CAT-
and Γ-based tree rankings. As shown in Tables 7 and 8,
the Spearman correlation was above 0.99 in all cases.
This indicates that, trees are ordered in almost the same
way, regardless of whether they are scored under CAT
or Γ.
We also used FastTree 2 (with options -gamma -nt

-nome -mllen) to score both collections of trees
under the hybrid CAT/Gamma20 model [6]. Once
again, the Spearman rank correlation of FastTree CAT/
Gamma20 and RAxML Γbased tree rankings remained
above 0.99 in all cases.
The average branch length correlation between CAT

and Γ optimized branches was above 0.87. On those two
large datasets, the absolute length of Γ-based branch
length estimates was larger than for CAT as shown by
the average tree length ratios.
We also executed analogous analyses on 10 smaller

single-gene (and non-partitioned) datasets with 1481 up
to 4114 taxa. In addition, we evaluated significantly lar-
ger ML tree collections (160 ML trees per dataset) for
those smaller datasets. These additional experiments
confirmed our observations for the 38 K and 55 K data-
sets and also revealed that the total tree length under

Table 4 Average symmetric differences (over 5 runs) for
the 1500 dataset

Average Symmetric Difference

R := 0.25 R := 0.5 R := 1

R := 0.25 182.6 169.9 188.0

R := 0.5 169.9 152.8 146.2

R := 1 188.0 146.2 133.0

True Tree 398.8 382.0 388.0

Table 5 SEV evaluation for the 38 k dataset

37831 taxa

SEVs SEVs with memory saving standard

Runtime (s) 4125.1 4116.8 6541.1

Memory (GB) 42 15 41

LogLikelihood -5528590 -5528590 -5528590

Execution times and memory requirements for optimizing model parameters
and branch lengths under on the 38 K dataset using SEVs, SEVs with memory
saving, and the standard likelihood implementation.

Table 6 SEV evaluation for the 56 k dataset

55593 taxa

SEVs SEVs with memory saving standard

Runtime (s) 7145.2 8095.1 11181.4

Memory (GB) 67 29 67

log likelihood -7059556 -7059556 -7059556

Execution times and memory requirements for optimizing model parameters
and branch lengths under on the 56 K dataset using SEVs, SEVs with memory
saving, and the standard likelihood implementation.

Table 7 Correlations between CAT and Γ models for the
38 k dataset

37831 taxa, 32 ML trees

Number of per-site rate categories 8 16 25 40

Average BL correlation with Γ 0.994 0.995 0.995 0.995

Average Tree length ratio (Γ/CAT) 1.743 1.739 1.739 1.739

Spearman rank correlation(Γ, CAT) 0.994 0.992 0.992 0.992

Correlation between CAT and Γ-based ML branch length estimates, total tree
length ratios, and Spearman rank correlation coefficients between likelihood-
induced tree rankings obtained from CAT and Γ for dataset 38 K.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 12 of 14

CAT, can also be larger than the Γ-based tree length.
Respective plots for all datasets are provided in the addi-
tional file 1.

Conclusions
We have explored several techniques, addressed pro-
blems, and proposed some solutions for phylogenetic
tree inference with likelihood-based methods on trees
with several tens of thousands of taxa.
Initially, we revisit and re-assess techniques for redu-

cing the tree size, inspired by earlier work on a program
called Phylogenetic Navigator (Phy-Nav). Significant
effort was invested in exploring different backbone con-
struction techniques (results/experiments not shown).
Here, we describe the method that worked best with
respect to final log likelihood scores. Such backbone-
based techniques can help to reduce memory footprints
and execution times. However, in almost all cases they
yield final trees with worse likelihoods compared to
comprehensive tree searches on a full, unreduced tree.
We find that likelihood scores of final trees heavily
depend on the respective starting trees, and conclude
that backbone approaches can be deployed for identify-
ing ‘good’ starting trees, that can then be further refined
using a comprehensive tree search.
We have adapted and re-implemented the SEV techni-

que for phylogenomic datasets with missing data and
enhanced it by a novel memory-saving option. This new
technique, is generally applicable to all likelihood-based
codes and can reduce execution times by 25-40% on
sufficiently ‘gappy’ datasets by omitting redundant com-
putations. More importantly, the revised SEV technique
can be deployed to achieve significant memory savings
that are almost proportional to the amount of missing
data in the test datasets. This technique has already
been fully integrated into the standard RAxML distribu-
tion (as of v727). Moreover, RAxML will automatically
determine whether to use the standard likelihood imple-
mentation or the SEV-based likelihood implementation.
Finally, we analyze problems associated to numerical

scaling for avoiding underflow, that can occur when
using the Γ model of rate heterogeneity on very large
datasets. While for the 38 K and 55 K datasets we were

still able to evaluate trees under Γ, on some even larger
datasets that we are currently analyzing (e.g., 116,408
taxa 18,692 sites) numerical scaling under Γ appears to
be impossible using 64-bit floating point arithmetics. To
this end, we advocate the usage of models that rely on
per-site rate categories for accommodating rate hetero-
geneity among sites. Clearly, further research is required
in this area to devise statistically robust and meaningful
models. Nonetheless, we provide an empirical assess-
ment of branch length estimates as obtained under Γ
and the RAxML-specific implementation for estimating
and assigning per-site evolutionary rate categories. We
find that, given proper scaling of per-site rates, branch
lengths between CAT and Γ based trees are highly cor-
related, despite the fact that absolute branch length
values can differ substantially. We also find that, order-
ing tree collections using Γbased and CAT-based log
likelihood scores induces very similar rankings of trees
as determined be the Spearman rank correlation
coefficient.
The work presented here has a clear exploratory flavor

and we hope that it will be useful to the community for
identifying future research directions pertaining to large-
scale phylogenetic inference using likelihood-based
methods. The problems and solutions we discuss in this
paper, emerged within the framework of the plant tree
of life grand challenge project that aims at reconstruct-
ing the plant tree of life comprising approximately
500,000 taxa.

Additional material

Additional file 1: Supplementary Material. Assesment of alternative
criteria to identify the innermost node of a tree. Evaluation of the
backbone algorithm with simulated data: Simulation details and
symmetric difference for the 5000 taxa dataset, log likelihood scores for
ML trees on simulated datasets(1500 and 5000 species). Evaluation of the
backbone algorithm with real data and comparison with FastTree 2.
Correlation between CAT and Γ-based ML branch length estimates, total
tree length ratios, and Spearman rank correlation coefficients between
likelihood-induced tree rankings obtained from CAT and Γ for 12
different datasets ranging from 1481 up to 4114 number of taxa.
Correlations between log likelihood scores under the RAxML CAT model
and Γ model for the 38 k and 56 k dataset. Correlations between log
likelihood scores under the RAxML CAT model and the FastTree 2 CAT/
Gamma20 model for the 38 k and 56 k dataset.

Acknowledgements
FIC is funded by the German Science Foundation (DFG), AS is funded by the
Heidelberg Institute for Theoretical Studies, SAS is funded by the National
Science Foundation (NSF). The authors would like to thank Bernard Moret
for granting access to his AMD Barcelona nodes and Morgan Price for useful
discussions regarding branch length issues under CAT.

Author details
1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for
Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg,
Germany. 22 Smith Lab, Dept. Ecology and Evolutionary Biology, University

Table 8 Correlations between CAT and Γ models for the
56 k dataset

55593 taxa, 22 ML trees

Number of per-site rate categories 8 16 25 40

Average BL correlation with Γ 0.877 0.877 0.877 0.877

Average Tree length ratio (Γ/CAT) 1.569 1.567 1.567 1.608

Spearman rank correlation(Γ, CAT) 1.0 1.0 1.0 1.0

Correlation between CAT and Γ-based ML branch length estimates, total tree
length ratios, and Spearman rank correlation coefficients between likelihood-
induced tree rankings obtained from CAT and Γ for dataset 55 K.

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 13 of 14

http://www.biomedcentral.com/content/supplementary/1471-2105-12-470-S1.PDF

of Michigan, 2005 Kraus Natural Science Building, Ann Arbor, MI 48109-1048
USA.

Authors’ contributions
FIC developed and implemented the backbone algorithm and conducted all
computational experiments. AS developed and implemented the SEV-based
techniques and implemented the CAT re-scaling procedure. SAS assembled
the large test datasets. FIC, AS, and SAS wrote and edited the manuscript.

Received: 23 April 2011 Accepted: 13 December 2011
Published: 13 December 2011

References
1. Ronaghi M: Pyrosequencing Sheds Light on DNA Sequencing. Genome

Research 2001, 11:3-11.
2. Felsenstein J: Evolutionary trees from DNA sequences: a maximum

likelihood approach. J Mol Evol 1981, 17:368-376.
3. Minh B, Vinh L, Haeseler A, Schmidt H: pIQPNNI: parallel reconstruction of

large maximum likelihood phylogenies. Bioinformatics 2005,
21(19):3794-3796.

4. Zwickl D: Genetic Algorithm Approaches for the Phylogenetic Analysis of
Large Biological Sequence Datasets under the Maximum Likelihood
Criterion. PhD thesis University of Texas at Austin; 2006.

5. Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O: New
algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Systematic biology 2010,
59(3):307.

6. Price M, Dehal P, Arkin A: FastTree 2- Approximately Maximum-Likelihood
Trees for Large Alignments. PLoS ONE 2010, 5(3):e9490.

7. Ronquist F, Huelsenbeck J: MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 2003, 19(12):1572-1574.

8. Lartillot N, Blanquart S, Lepage T: PhyloBayes. v2. 3. 2007.
9. Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 2007, 7(214):1471-2148.
10. Smith S, Donoghue M: Rates of Molecular Evolution Are Linked to Life

History in Flowering Plants. Science 2008, 322(5898):86-89.
11. Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Källersjö M,

Farris JS: Phylogenetic analysis of 73060 taxa corroborates major
eukaryotic groups. Cladistics 2009, 25:1-20.

12. Smith SA, Beaulieu JM, Donoghue MJ: Mega-phylogeny approach for
comparative biology: an alternative to supertree and supermatrix
approaches. BMC Evolutionary Biology 2009, 9(37).

13. Stamatakis A, Ludwig T, Meier H, Wolf MJ: Accelerating Parallel Maximum
Likelihood-based Phylogenetic Tree Calculations using Subtree Equality
Vectors. Proc of IEEE/ACM Supercomputing Conference 2002 (SC2002) 2002,
[Proceedings on CD].

14. Yang Z: Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites. J Mol Evol 1994, 39:306-314.

15. Le S, Schmidt H, Haeseler A: PhyNav: A novel approach to reconstruct
large phylogenies. Proc of GfKl conference 2004.

16. In Bioinformatics: High Performance Parallel Computer Architectures. Edited
by: Schmidt B. Taylor 85-115.

17. de Hoon MJL, S Imoto JN, Miyano S: Open source clustering software.
Bioinformatics 2004, 20(9):1453-1454.

18. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics 2006,
22(21):2688-2690.

19. Stamatakis A, Ludwig T, Meier H, Wolf MJ: AxML: A Fast Program for
Sequential and Parallel Phylo-genetic Tree Calculations Based on the
Maximum Likelihood Method. Proceedings of 1st IEEE Computer Society
Bioinformatics Conference (CSB2002) 2002, 21-28.

20. Pond S, Muse S: Column sorting: Rapid calculation of the phylogenetic
likelihood function. Systematic biology 2004, 53(5):685-692.

21. Sumner J, Charleston M: Phylogenetic estimation with partial likelihood
tensors. Journal of theoretical biology 2010, 262(3):413-424.

22. Stamatakis A, Alachiotis N: Time and memory efficient likelihood-based
tree searches on gappy phylogenomic alignments. Bioinformatics 2010,
26(12):i132-i139.

23. Ripplinger J, Sullivan J: Does Choice in Model Selection Affect Maximum
Likelihood Analysis? Syst Biol 2008, 57:76-85.

24. Stamatakis A: Phylogenetic Models of Rate Heterogeneity: A High
Performance Computing Perspective. Proc. of IPDPS2006, HICOMB
Workshop, Proceedings on CD, Rhodos, Greece 2006.

25. Lartillot N, Philippe H: A Bayesian Mixture Model for Across-Site
Heterogeneities in the AminoAcid Replacement Process. Mol Biol Evol
2004, 21(6):1095-1109.

26. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence
alignment program. Briefings in Bioinformatics 2008, 9(4):286-298.

27. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research 2004, 32(5):1792-1797.

28. Smith SA, Dunn CW: Phyutility: a phyloinformatics tool for trees,
alignments and molecular data. Bioinformatics 2008, 24(5):715-716.

29. Smith S, Beaulieu J, Stamatakis A, Donoghue M: Understanding
angiosperm diversification using small and large phylogenetic trees.
American Journal of Botany 2011, ajb-1000481v1.

30. Stamatakis A, Blagojevic F, Antonopoulos CD, Nikolopoulos DS: Exploring
new Search Algorithms and Hardware for Phylogenetics: RAxML meets
the IBM Cell. J VLSI Sig Proc Sys 2007, 48(3):271-286.

31. Stamatakis A, Ott M: Efficient computation of the phylogenetic likelihood
function on multi-gene alignments and multi-core architectures. Phil
Trans R Soc series B Biol Sci 2008, 363:3977-3984.

32. Fletcher W, Yang Z: INDELible: a flexible simulator of biological sequence
evolution. Molecular biology and evolution 2009, 26(8):1879-1888.

doi:10.1186/1471-2105-12-470
Cite this article as: Izquierdo-Carrasco et al.: Algorithms, data structures,
and numerics for likelihood-based phylogenetic inference of huge
trees. BMC Bioinformatics 2011 12:470.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Izquierdo-Carrasco et al. BMC Bioinformatics 2011, 12:470
http://www.biomedcentral.com/1471-2105/12/470

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/11156611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7288891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16046495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20224823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7932792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7932792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14871861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16928733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15545249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15545249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20529898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18275003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18275003?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15014145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15014145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15034147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19423664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19423664?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	PhyNav Revisited: Constraining the tree search to a backbone tree
	Building the Backbone
	Tree Searches on the Backbone

	Subtree Equality Vectors Re-Visited
	Saving Memory with SEVs

	Numerical Problems of the Γ Model of Rate Heterogeneity

	Results and Discussion
	Test Datasets
	Backbone Algorithm
	SEV Performance
	Estimating branch lengths and computing likelihood scores with CAT

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

