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Abstract

canonical genetic code.

Background: As the canonical code is not universal, different theories about its origin and organization have
appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account
the harmful consequences resulting from point mutations leading to the replacement of one amino acid for
another. There are two basic theories to measure the level of optimization: the statistical approach, which
compares the canonical genetic code with many randomly generated alternative ones, and the engineering
approach, which compares the canonical code with the best possible alternative.

Results: Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to
guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness
landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open
debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid
properties far better than expected from a random code, and the engineering approach, which tends to indicate
that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that
reflects the known examples of codon reassignment and the model most used in the two approaches which
reflects the current genetic code translation table. Although the standard code is far from a possible optimum
considering both models, when the more realistic model of the codon reassignments was used, the evolutionary
algorithm had more difficulty to overcome the efficiency of the canonical genetic code.

Conclusions: Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its
optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into
account with the two models, as indicated by the fact that the best possible codes show the patterns of the
standard genetic code. Our results are in accordance with the postulates of the engineering approach and indicate
that the main arguments of the statistical approach are not enough to its assertion of the extreme efficiency of the

Background

The canonical genetic code is not universal although it
is present in most complex genomes. Its establishment
is still under discussion once the discovery of non-
standard genetic codes altered the “frozen accident” [1].
Woese [2] was one of the first to consider the adaptabil-
ity of the genetic code. He suggested that the patterns
within the standard genetic code reflect the physico-
chemical properties of amino acids. An argument in
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favor is the fact that in the canonical genetic code the
amino acids with similar chemical properties are coded
by similar codons.

There are three basic theories on the origin of the
organization of the genetic code [3]. The stereochemical
theory claims that the origin of the genetic code must
lie in the stereochemical interactions between antico-
dons or codons and amino acids. The second one is the
physicochemical theory, which claims that the force
defining the origin of the genetic code structure was the
one that tended to reduce the deleterious effects of phy-
sicochemical distances between amino acids codified by
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codons differing in one base. The third one is the coe-
volution hypothesis [4,5], which suggests that the struc-
ture of the genetic code reflects the biosynthetic
pathways of amino acids through time and the error
minimization at the protein level is just a consequence
of this process. This coevolution theory suggests that
codons, originally assigned to prebiotic precursor amino
acids, were progressively assigned to new amino acids
derived from the precursors as biosynthetic pathways
evolved. For other authors as Higgs [6], the driving
force during the build-up of the standard code is not
the minimization of the effects of translational error,
and the main factor that influenced the positions in
which new amino acids were added is that there should
be minimal disruption of the protein sequences that
were already encoded. Nevertheless, the code that
results is one in which the translational error is
minimized.

Several previous works have studied the genetic code
optimality. Most authors have quantified the efficiency
of a possible code taking into account the possible
errors in the codon bases. Generally, a measurement of
changes in a basic property of the codified amino acids
was used considering all the possible mutations in a
generated code. The most efficient code is one that
minimizes the effects of mutations, as this minimization
implies a smaller phenotypic change in the codified
proteins.

Once the efficiency of a code has been measured, dif-
ferent criteria are used to assess whether the genetic
code is in some sense optimal. These analyses fall into
two main classes: statistical [7] and engineering [8]. The
first one considers the probability of random codes
more efficient than the standard genetic code. With this
alternative for measuring code optimality, the standard
genetic code is compared with many randomly gener-
ated alternative codes. These considerations define the
so-called “statistical approach” [7]. Comparing the error
values of the standard genetic code and alternative
codes indicates, according to the authors using this
approach [9-13], the role of selection. The main conclu-
sion of these authors is that the genetic code conserves
amino acid properties far better than expected from a
random code.

In a first computational experiment with this alterna-
tive, Haig and Hurst [12] corroborated that the canoni-
cal code is optimized to a certain extent. They found
that of 10,000 randomly generated codes, only two per-
formed better at minimizing the effects of errors, when
polar requirement [2] was taken as the amino acid prop-
erty, concluding that the canonical code was a product
of natural selection for load minimization. Freeland and
Hurst [9] investigated the effect of weighting transition
errors differently from transversion errors and the effect
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of weighting each base differently, depending on
reported mistranslation biases. When they used weight-
ings to allow for biases in translation, they found that
only one in every million randomly generated alternative
codes was more efficient than the standard genetic code.

With a similar methodology, Gilis et al. [14] took into
account the frequency at which different amino acids
occur in proteins and found that the fraction of random
codes that beat the canonical code decreases. Torabi
et al. [15] considered both relative frequencies of amino
acids and relative gene copy frequencies of tRNAs in
genomic sequences which were used as estimates of the
tRNA content [16]. Zhu et al. [17] included codon usage
differences between species and Marquez et al. [18]
tested the idea that organisms optimize their codon
usage as well as their genetic code: codons with lower
error values might be used in preference to those with
higher error values, to reduce the overall probability of
errors, although their conclusions were the opposite.

Sammet et al. [19], using a genotype-to-phenotype
mapping based on a quantitative model of protein fold-
ing, compared the standard genetic code to seven of its
naturally occurring variants with respect to the fitness
loss associated to mistranslation and mutation. Accord-
ing to the authors’ methodology, most of the alternative
genetic codes were found to be disadvantageous to the
standard code, that is, the standard code is generally
better able to reduce the translation load than the natu-
rally occurring variants.

The second alternative for measuring code optimality
is the so-called “engineering approach”, followed, for
example, by Di Giulio [8,20]. The approach uses a “per-
centage distance minimization” (p.d.m.) which compares
the standard genetic code with the best possible alterna-
tive. The p.d.m. determines code optimality on a linear
scale, as it is calculated as the percentage in which the
canonical genetic code is in relation to the randomized
mean code and the most optimized code. Therefore, it
is defined as (4,,can - Acode)(Dmean - Alow), Where A,,...,
is the average error value, obtained by averaging over
many random codes, and 4, is the best (or approxi-
mated) A value. This approach tends to indicate that the
genetic code is still far from optimal.

With this methodology, Di Giulio [21] estimated that
the standard genetic code has achieved 68% minimiza-
tion of polarity distance, by comparing the standard
code with random codes that reflect the structure of the
canonical code and with the best code that the author
obtained by a simulated annealing technique. The
author indicates that the minimization percentage can
be interpreted as the optimization level reached during
genetic code evolution. With this methodology, the
authors in [22] also considered the evolution of the
code under the coevolution theory. We previously
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analyzed the evolution of codes within the coevolution
theory [23].

We used the mean square (MS) measurement [9,12]
(Methods Section) to quantify the relative efficiency of
any given code. We considered two possibilities to gen-
erate alternative codes: the first one is the model of
hypothetical codes that reflects the current genetic code
translation table (model 1), which is most used in the
literature. Two restrictions were considered [9,12]:

1. The codon space (the 64 codons) was divided into
the 21 nonoverlapping sets of codons observed in
the standard genetic code, each set comprising all
codons specifying a particular amino acid in the
standard code.

2. Each alternative code is formed by randomly
assigning each of the 20 amino acids to one of these
sets. The three stop codons remain invariant in posi-
tion, these being the same stop codons of the stan-

dard code.

This choice of a small part of the vast space of possible
codes, with these conservative restrictions, as Novozhilov
et al. [24] indicate, “is based on the notion that the block
structure of the standard code is a consequence of the
structure of the complex between the cognate tRNA and
the codon in mRNA where the third base of the codon
plays a minimum role as a specificity determinant”.

As the codon set structure of the standard genetic
code is unchanged, only considering permutations of the
amino acids coded in the 20 sets, there are 20!
(2.43-10"®) possible hypothetical codes. Without restric-
tions in the mapping of the 64 codons to the 21 labels
there would be more than 1.51-10%* general codes [25].

In this work we considered the commented restrictive
codes. Nevertheless, as Higgs [6] indicates, none of the
known examples of codon reassignment occurs by swap-
ping the amino acids assigned to two codon blocks.
Instead, one or more codons assigned to one amino acid
are reassigned to another, so one block of codons
decreases in size while the other increases. Furthermore,
the amino acid that acquires the codon is almost always
a neighbor of the one that loses it. As Higgs [6] states,
“The reason for this is that reassignments of codons to
neighbouring amino acids can be done by changing only
a single base in the tRNA anticodon”. Hence, we also
studied a second alternative with these possible
restricted hypothetical codes which consider these
codon reassignments (model 2), model not considered
in the previous literature.

Methods
The optimality of a code is related to its relative effi-
ciency when different errors are considered in the DNA
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sequence or in the transcription and translation machin-
ery of the protein synthesis. The efficiency generally
considers these possible errors to take into account the
possible changes in codified amino acids and their prop-
erties [7-18,20-27]. A code which, on average, generates
fewer changes is more efficient, as the effects of errors
are minimized.

Encoding and genetic operators

An adapted genetic algorithm (GA) [28,29] was used to
search for alternative codes that were more optimized
than the standard genetic code. Each individual of the
genetic population must encode a hypothetical code.
Model 1 of alternative codes considered permutations of
the amino acids coded in the 20 codon sets observed in
the canonical code, so each individual has 20 positions,
and each position encodes the particular amino acid
associated with the codon set (Figure 1). The use of a
simple algorithm ensures that the individuals of the
initial population encode the 20 amino acids. Three
codons are used for the stop label, which are the same
as those of the canonical code.

In model 1, the GA used a swap operator. The opera-
tor interchanges the contents of two codon sets, that is,
once two positions are randomly selected, the amino
acids codified by the two respective codon sets are
swapped. Figure 1 shows how this operator works.

In model 2 of hypothetical codes each individual has
64 positions, corresponding to the 64 codons. In each
hypothetical code, 3 codons are reserved for the stop
signal. In this case, the genetic operator models the
known codon reassignments [6]. This operator can be
summarized as follows:

1. Choose a random codon from the 61 codons that
encode an amino acid.

2. The encoded amino acid is copied (duplicated) in
another codon (randomly chosen) which differs only
in one letter with respect to the first codon. If the
amino acid to replace is the only instance in the
hypothetical code, then the operator is not applied.

In both models, tournament was used as selection
operator. It chooses the best in a window of randomly
selected individuals from the population. Hence, the size
of the window determines the required selective pres-
sure. Moreover, elitism of the best individual was used,
that is, this individual is kept in the next generation
without changes.

Fitness function in the Genetic Algorithm

The fitness function was the measurement that calcu-
lates the mean square (MS) change in an amino acid
property resulting from all possible changes to each
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Figure 1 Evolutionary computing methodology applied to the search for better adapted codes. (a) Each individual of a genetic
population encodes a possible hypothetical code, which is evaluated according to its efficiency to changes or mutations in the codon bases. (b)
This efficiency defines the fitness of each individual, which is used by the genetic algorithm to select the individuals (c) in which a genetic
operator (swap) is applied to define the individuals of the next generation (model 1 of hypothetical codes). (d) This evolutionary process is
iterated through generations.

base of all the codons within a given code [9,12]. Any one
change is calculated as the squared difference between
the property value of the amino acid coded for by the ori-
ginal codon and the value of the amino acid coded for by
the new (mutated) codon. As most authors [9,12,20-22]
we used the polar requirement as the amino acid prop-
erty. This property can be considered as a measurement
of hydrophobicity and it was introduced by Woese as a
measurement for the polarity of an amino acid, which is
defined as a partitioning coefficient of an amino acid in a
water/pyrimidine system [2]. The final error is an average
of the effects of all the substitutions over the whole code.
Hence, the error A is defined as:

2 XiX))?

ij Nij

A

where N;; is the number of times the i-th amino acid
changes into the j-th amino acid, and X; is the value of
the amino acid property of the i-th amino acid. The
changes from and to “stop” codons are ignored, while
synonymous changes (the mutated codon encoding the

same amino acid) are included in the calculation. The
MS value defines the fitness value of a given code and
the evolutionary algorithm will try to minimize it.

Results and discussion

We tested the implemented GA, searching for alterna-
tive codes, with the two definitions of models of
hypothetical codes previously explained. Figure 2 shows
the evolution of the MS across the generations of the
genetic algorithm. The quality (fitness) of the best indi-
vidual and the average quality of the population were
the result of an average of 50 evolutions with different
initial populations. The population size was 1,000 indivi-
duals for the different tests and we used tournament
selection with a size of 3% of the population. The
selected individuals pass to the next generation, applying
the suitable genetic operators for each model (Methods
Section).

The mean value of the best final codes was 3.506
using model 1, with a low standard deviation of 0.031.
The best value found by Freeland and Hurst [9] was 4.7
and the MS value of the standard genetic code is 5.19.
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Figure 2 Evolutions of alternative codes with MS and tMS. Evolution of the best individual and the average quality of the population using
MS and tMS as fitness with codes that reflect the canonical code translation table (model 1) and with the model of natural codon

reassignments (model 2). MS is the average mean square error of the effects of possible changes in the three codon bases. tMS incorporates the

quantification of mistranslation in each particular base. These curves of fitness evolution were the result of an average of 50 evolutions with

different initial populations. The horizontal lines indicate the corresponding MS or tMS values of the canonical code.

The p.d.m., using the best value obtained by the GA,
was 71% with these restrictive codes. Figure 2 shows
that evolution easily finds better adapted codes,
although the p.d.m. value shows good adaptability of the
standard genetic code. The p.d.m. with the codes of
model 2 was 68%, this value being lower since the freer
evolution of codes can obtain better optimal codes.

We repeated the analysis taking into account the
errors as a function of the base position in the codon.
Table 1 shows the quantification of mistranslation used
in [9] as well as in this work to weight the relative effi-
ciency of the three bases. It presents a summary of the
empirical data on the frequency of transition and trans-
version mutations at the three codon positions. The MS
is changed to tMS, which weights the errors according
to the values shown in Table 1.

Using model 1, there was an increase from a p.d.m.
value of 71% in the MS case to a p.d.m. value of 84%
when the mistranslation biases were considered in the fit-
ness calculation. Using model 2, the increase was larger,
from a p.d.m. value of 68% in the MS case to a value of
89% using tMS. This implies that the standard code is
better adapted when we consider the quantification of
mistranslations. This agrees with the results obtained in
the statistical study of Freeland and Hurst [9] (these

Table 1 Quantification of mistranslation used to weight
the relative efficiency of the three bases in the tMS
calculation

Combined weighting  First base  Second base  Third base
For transitions 1 0.5 1
For transversions 0.5 0.1 1

authors used only model 1). Note that using the two fit-
ness functions, MS and tMS, model 2 obtains better
values, although using tMS the GA needs more genera-
tions to overcome the corresponding values found with
model 1, so the evolutions with model 2 are shown with
more generations. The reason of the better values with
model 2 is that, with the movements of this model, there
is the possibility to reach the codes obtained with model
1, so the GA has a larger landscape where to find better
codes.

The evolution of the quality curves leads to the same
conclusion: Evolution requires more generations to
obtain a better individual with a better value than that
of the canonical code when using tMS. This is clearer
with the known codon reassignments model. With the
average quality we have the same effect, as the GA has
greater difficulty in obtaining better individuals than the
canonical code.

Figure 3, with the usual representation of the genetic
code, corresponds with the assignments of best evolved
codes using MS and tMS in the restrictive codes as well
as with the model of codon reassignments. The position
of each codified amino acid is shaded by a gray scale
representing its polar requirement value. Although there
are very different assignments of amino acids with
respect to the canonical code, the two alternative
restrictive codes present two patterns that are correlated
with systematic errors in the processes of replication
and translation, which are also present in the standard
genetic code [30]. Pattern I: Amino acids are more simi-
lar to each other along the first codon position than
they are along the second. This “column-like” pattern
corresponds to the high rate of translational misreading
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Figure 3 Tables of best evolved codes with MS and tMS in restrictive codes (model 1), and best evolved codes in the codon
reassignments model (model 2). The position of each codified amino acid is shaded by a gray scale, representing its polar requirement value.

in the first codon position; Pattern II: Along the second
position, amino acids associated with pyrimidine bases
(U,C) or purine bases (A,G) are more similar within
these sets than between them. This is associated with
mutational bias in replication, in which transitions
(mutations within these base sets) occur more frequently
than transversions (mutations of a base in one set to a
base in the other set). Pattern I is present in all the
evolved codes except for the evolved code using model

2 and MS, where is more difficult to recognize such pat-
tern. Pattern II is clearer in the best codes with tMS,
especially with model 2 of hypothetical codes. This is
logical because the tMS variant models the different fre-
quency of transition and transversion mutations.

The MS or tMS values of each sample of codes in
each generation form a probability distribution against
which the standard genetic code MS or tMS values may
be compared. Figure 4 shows the histograms at four
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stages of the evolutionary processes: initial population,
generations 5, 10 and 50. The histograms of the initial
populations present a similar distribution as the ones of
Freeland and Hurst [9], as the populations are random.
A better code (better than the canonical code) was not
found by chance in those initial populations. At the end
of the evolutionary processes, the situation changed
radically, where most of the individuals showed a better
MS/tMS than that of the standard genetic code.

Conclusions

We used a genetic algorithm to search for better
adapted hypothetical codes and as a method to guess
the difficulty in finding such alternative codes, allowing
to clearly situate the canonical code in the fitness land-
scape. We are emphasizing what simulated evolution
search can provide about such difficulty of discovering
possible better codes than the canonical one, and we
must take into account that our methodology does not
provide possible evolutionary pathways by which the
canonical code reached its current state, as done by
other authors [6].

From our GA simulations we can infer several conclu-
sions. First, our results are not in disagreement with the
main result of the statistical approach, as it is shown in
the histograms of the initial populations, because such
distributions of codes demonstrate, using the MS and
tMS cost functions, that the canonical code is much bet-
ter than random codes. Moreover, we agree with Knight
et al. [26] when they state that the code could be
trapped in a local, rather than global, optimum, and
when they indicate that the average effect of amino acid
changes in proteins is unlikely to be perfectly recaptured
by a single linear scale of physical properties [26].
Nevertheless, with the information provided by the evo-
lution of the histograms (Figure 4), now we do not
agree with the authors who focus their analyses on the
statistical approach [7,9-11,27] when they favor it
because, as they emphasize, the approach takes into
consideration that the possible random codes form a
Gaussian distribution of error values [13]. According to
the authors, the canonical genetic code is “extremely
efficient” [9]. When they used an amino acid similarity
based on the PAM 74-100 matrix, Freeland et al. [27]



Santos and Monteagudo BMC Bioinformatics 2011, 12:56
http://www.biomedcentral.com/1471-2105/12/56

stated “if theoretically possible code structures are lim-
ited to reflect plausible biological constraints, and amino
acid similarity is quantified using empirical data of sub-
stitution frequencies, the canonical code is at or very
close to a global optimum for error minimization” [27].
Nevertheless, Di Giulio has questioned this work, as the
title of his article “the origins of the genetic code cannot
be studied using measurements based on the PAM
matrix because this matrix reflects the code itself, mak-
ing any such analysis tautologous” clearly explains [31].

However, regarding the comments of the authors
focused on the statistical approach, even beginning with
the Gaussian distributions of random codes in the initial
genetic populations, the GA simulations indicate that it
is very easy to improve the adaptability level of the stan-
dard genetic code. The better codes were obtained with
low selective pressure and in few generations. Hence,
the canonical code is clearly far from optimal, as also
revealed by the position of the optimality values of the
canonical code in the curves of quality evolution (Figure
2) for the two models considered. In this sense, we
agree with the engineering approach as this alternative
tends to indicate that the canonical code is still far from
optimal. Nevertheless, the more realistic model of the
known codon reassignments shows a slightly better effi-
ciency of the canonical code with respect to the first
model, as revealed by the greater difficulty of the GA to
overcome the optimality value of the canonical code, as
Figures 2 and 4 indicate.
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