
METHODOLOGY ARTICLE Open Access

Learning genetic epistasis using Bayesian
network scoring criteria
Xia Jiang1*, Richard E Neapolitan5, M Michael Barmada4 and Shyam Visweswaran1,2,3

Abstract

Background: Gene-gene epistatic interactions likely play an important role in the genetic basis of many common
diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic
relationships from data. A well-known combinatorial method that has been successfully applied for detecting
epistasis is Multifactor Dimensionality Reduction (MDR). Jiang et al. created a combinatorial epistasis learning method
called BNMBL to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated
data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and
includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL
learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that
influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs.
Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions
even better than BNMBL.
Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them
in this domain until we determine which scoring criteria work best or even well when we try learning the correct
model without knowledge of the number of SNPs in that model.

Results: We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real
Alzheimer’s GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a
hyperparameter called a performed best. This score performed better than other BN scoring criteria and MDR at
recall using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at
substantiating previous results using the real Alzheimer’s data set.

Conclusions: We conclude that representing epistatic interactions using BN models and scoring them using a BN
scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring
criterion with large values of a hyperparameter a appears more promising than a number of alternatives.

Background
The advent of high-throughput genotyping technology has
brought the promise of identifying genetic variations that
underlie common diseases such as hypertension, diabetes
mellitus, cancer and Alzheimer’s disease. However, our
knowledge of the genetic architecture of common diseases
remains limited; this is in part due to the complex rela-
tionship between the genotype and the phenotype. One
likely reason for this complex relationship arises from
gene-gene and gene-environment interactions. So an

important challenge in the analysis of high-throughput
genetic data is the development of computational and
statistical methods to identify gene-gene interactions. In
this paper we apply Bayesian network scoring criteria to
identifying gene-gene interactions from genome-wide
association study (GWAS) data.
As background we review gene-gene interactions,

GWAS, Bayesian networks, and modeling gene-gene
interactions using Bayesian networks.

Epistasis
In Mendelian diseases, a genetic variant at a single locus
may give rise to the disease [1]. However, in many com-
mon diseases, it is likely that manifestation of the
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disease is due to genetic variants at multiple loci, with
each locus conferring modest risk of developing the dis-
ease. For example, there is evidence that gene-gene inter-
actions may play an important role in the genetic basis of
hypertension [2], sporadic breast cancer [3], and other
common diseases [4]. The interaction between two or
more genes to affect a phenotype such as disease suscept-
ibility is called epistasis. Biologically, epistasis likely arises
from physical interactions occurring at the molecular
level. Statistically, epistasis refers to an interaction
between multiple loci such that the net affect on pheno-
type cannot be predicted by simply combining the effects
of the individual loci. Often, the individual loci exhibit
weak marginal effects; sometimes they may exhibit none.
The ability to identify epistasis from genomic data is

important in understanding the inheritance of many
common diseases. For example, studying genetic interac-
tions in cancer is essential to further our understanding
of cancer mechanisms at the genetic level. It is known
that cancerous cells often develop due to mutations at
multiple loci, whose joint biological effects lead to
uncontrolled growth. But many cancer-associated muta-
tions and interactions among the mutated loci remain
unknown. For example, highly penetrant cancer suscept-
ibility genes, such as BRCA1 and BRCA2, are linked to
breast cancer [5]. However, only about 5 to 10 percent
of breast cancer can be explained by germ-line muta-
tions in these single genes. “Most women with a family
history of breast cancer do not carry germ-line muta-
tions in the single highly penetrant cancer susceptibility
genes, yet familial clusters continue to appear with each
new generation” [6]. This kind of phenomenon is not
yet well understood, and undiscovered mutations or
undiscovered interactions among mutations are likely
responsible.
Recently, machine-learning and data mining techniques

have been developed to identify epistatic interactions in
genomic data. Such methods include combinatorial
methods, set association analysis, genetic programming,
neural networks and random forests [7]. A well-known
combinatorial method is Multifactor Dimensionality
Reduction (MDR) [3,8-10]. MDR combines two or more
variables into a single variable (hence leading to dimen-
sionality reduction); this changes the representation
space of the data and facilitates the detection of nonlinear
interactions among the variables. MDR has been success-
fully applied to detect epistatic interactions in diseases
such as sporadic breast cancer [3] and type II diabetes
[8], typically in data sets containing at most a few hun-
dred genetic loci.

GWAS
The most common genetic variation is the single
nucleotide polymorphism (SNP) that results when a

single nucleotide is replaced by another in the genomic
sequence. In most cases a SNP is biallelic, that is it has
only two possible values among A and G or C and T
(the four DNA nucleotide bases). If the alleles are A
and G, a diploid individual has the SNP genotype AA,
GG, or AG. The less frequent (rare) allele must be pre-
sent in 1% or more of the population for a site to qua-
lify as a SNP [11]. The human genome contains many
millions of SNPs. In what follows we will refer to
SNPs as the loci investigated when searching for a cor-
relation of some loci with a phenotype such as disease
susceptibility.
The advent of high-throughput technologies has

enabled genome-wide association studies (GWAS).
A GWAS involves sampling in a population of indivi-
duals about 500,000 representative SNPs. Such studies
provide researchers unprecedented opportunities to
investigate the complex genetic basis of diseases. While
the data in a GWAS have commonly been analyzed by
investigating the association of each locus individually
with the disease [12-16], there has been application of
pathway analysis in some of these studies [15,16].
An important challenge in the analysis of genome-wide

data sets is the identification of epistatic loci that interact
in their association with disease. Many existing methods
for epistasis learning such as combinatorial methods
cannot handle a high-dimensional GWAS data set. For
example, if we only investigated all 0, 1, 2, 3 and 4-SNP
combinations when there are 500,000 SNPs, we would
need to investigate 2.604 × 1021 combinations. Research-
ers are just beginning to develop new approaches for
learning epistatic interactions using a GWAS data set
[17-24]; however, the successful analysis of epistasis
using high-dimensional data sets remains an open and
vital problem. Cordell [25] provides a survey of methods
currently used to detect gene-gene interactions that con-
tribute to human genetic diseases. Most GWAS studies
so far have been about “agnostic” discovery. Thomas [26]
suggests combining data-driven approaches with hypoth-
esis-driven, pathway-based analysis using hierarchical
modeling strategies.

Bayesian Networks
Bayesian networks [27-33] are increasingly being used
for modeling and knowledge discovery in genetics and
in genomics [34-41]. A Bayesian network (BN) is a prob-
abilistic model that consists of a directed acyclic graph
(DAG) G, whose nodes represent random variables, and
a joint probability distribution P that satisfies the Mar-
kov condition with G. We say that (G,P) satisfies the
Markov condition if each node (variable) in G is condi-
tionally independent of the set of all its nondescendent
nodes in G given the set of all its parent nodes. It is a
theorem [31] that (G,P) satisfies the Markov condition
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(and therefore is a BN) if and only if P is equal to the
product of the conditional distributions of all nodes
given their parents in G, whenever these conditional dis-
tributions exist. That is, if the set of nodes is {X1, X2,...,
Xn}, and PAi is the set of parent nodes of X1, then

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi|PAi).

BNs are often developed by first specifying a DAG
that satisfies the Markov condition relative to our belief
about the probability distribution, and then determining
the conditional distributions for this DAG. One com-
mon way to specify the edges in the DAG is to include
the edge X1 ® X2 only if X1 is a direct cause of X2 [32].
Figure 1 shows an example of a BN. A BN can be used
to compute conditional probabilities of interest using a
BN inference algorithm [32]. For example, we can com-
pute the conditional probability that an individual has
lung cancer and the conditional probability the indivi-
dual has bronchitis given that the individual has a his-
tory of smoking and a positive chest X-ray.
Both the parameters and the structure of a BN can be

learned from data. The Data consists of samples from
some population, where each sample (called a data
item) is a vector of values for all the random variables
under consideration. Learning the structure of a BN is
more challenging than learning the parameters of a spe-
cified BN structure, and a variety of techniques have
been developed for structure learning. One method for
structure learning, called constraint-based, employs sta-
tistical tests to identify DAG models that are consistent

with the conditional independencies entailed by the data
[42]. A second method, called score-based, employs
heuristic search to find DAG models that maximize a
desired scoring criterion [32]. Pierrier et al. [43] provide
a detailed review of the methods for BN structure learn-
ing. Next we review scoring criteria since these criteria
are the focus of this paper.

BN Scoring Criteria
We review several BN scoring criteria for scoring DAG
models in the case where all variables are discrete since
this is the case for the application we will consider. BN
scoring criteria can be broadly divided into Bayesian and
information-theoretic scoring criteria.
Bayesian scoring criteria
The Bayesian scoring criteria compute the posterior
probability distribution, starting from a prior probability
distribution on the possible DAG models, conditional
on the Data. For a DAG G containing a set of discrete
random variables V = {X1, X2,...,Xn} and Data, the fol-
lowing Bayesian scoring criterion (or simply score) is
derived under the assumption that all DAG models are
equally likely a priori [44,45]:

scoreBayes(G : Data) = P(Data|G)

=
n∏

i=1

qi∏

j=1

�(
∑ri

k=1 aijk)

�(
∑ri

k=1 aijk +
∑ri

k=1 sijk)

ri∏

k=1

�(aijk + sijk)

�(aijk)
,

(1)

where ri is the number of states of Xi, qi is the num-
ber of different values the parents of Xi in G can jointly
assume, aijk is the prior belief concerning the number of
times Xi took its kth value when the parents of Xi took
their jth value, and sijk is the number of times in the
data that Xi took its kth value when the parents of Xi

took their jth value.
The Bayesian score given by Equation 1 assumes that

our prior belief concerning each unknown parameter in
each DAG model is represented by a Dirichlet distribu-
tion, where the hyperparameters aijk are the parameters
for this distribution. Cooper and Herskovits [44] suggest
setting the value of every hyperparameter aijk equal to 1,
which assigns a prior uniform distribution to the value
of each parameter (prior ignorance as to its value). Set-
ting all hyperparameters to 1 yields the K2 score and is
given by the following equation:

scoreK2(G : Data) =
n∏

i=1

qi∏

j=1

�(ri)

�(ri +
∑ri

k=1 sijk)

ri∏

k=1

�(1 + sijk).

The K2 score does not necessarily assign the same
score to Markov equivalent DAG models. Two DAGs are
Markov equivalent if they entail the same conditional
independencies. For example, the DAGs X®Y and X ¬
Y are Markov equivalent. Heckerman et al. [45] show
that if we determine the values of the hyperparameters

Figure 1 An example BN. A BN that models lung disorders. This
BN is intentionally simple to illustrate concepts; it is not intended to
be clinically complete.
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from a single parameter a called the prior equivalent
sample size then Markov equivalent DAGs obtain the
same score. If we use a prior equivalent sample size a
and want to represent a prior uniform distribution for
each variable (not parameter) in the network, then for all
i, j, and k we set aijk = a/riqi, where ri is the number of
states of the ith variable and qi is the number of different
values the parents of Xi can jointly assume. When we use
a prior equivalent sample size a in the Bayesian score,
the score is called the Bayesian Dirichlet equivalent
(BDe) scoring criterion. When we also represent a prior
uniform distribution for each variable, the score is called
the Bayesian Dirichlet equivalent uniform (BDeu) scoring
criterion and is given by the following equation:

scoreα(G : Data) =
n∏

i=1

qi∏

j=1

�(α/qi)

�(α/qi +
∑ri

k=1 sijk)

ri∏

k=1

�(α/riqi + sijk)

�(α/riqi)
.

The Bayesian score does not explicitly include a DAG
penalty for network complexity. However, a DAG pen-
alty is implicitly determined by the hyperparameters aijk.
Silander et al. [46] show that if we use the BDeu score,
then the DAG penalty decreases as a increases. The K2
score uses hyperparameters in a way that can be related
to a prior equivalent sample size. When a node is mod-
eled as having more parents, the K2 score effectively
assigns a higher prior equivalent sample size to that
node, which in turn decreases its DAG penalty.
Minimum description length scoring criteria
The Minimum Description Length (MDL) Principle is an
information-theoretic principle [47] which states that
the best model is one that minimizes the sum of the
encoding lengths of the data and the model itself. To
apply this principle to scoring DAG models, we must
determine the number of bits needed to encode a DAG
G and the number of bits needed to encode the data
given the DAG. Suzuki [48] developed the following
MDL scoring criterion:

scoreSuz(G : Data) =
n∑

i=1

di
2
log2m − m

n∑

i=1

qi∑

j=1

ri∑

k=1

P(xik, paij)log2
P(xik, paij)

P(xik)P(paij)
, (2)

where n is the number of nodes in G, di is the num-
ber of parameters needed to represent the conditional
probability distributions associated with the ith node in
G, m is the number of data items, ri is the number of
states of Xi, xik is the kth state of Xi, qi is the number of
different values the parents of Xi can jointly assume, paij
is the jth value of the parents of Xi, and the probabilities
are estimated from the Data. In Equation 2 the first
sum is the DAG penalty, which is the number of bits
sufficient to encode the DAG model, and the second
term is the number of bits sufficient to encode the Data
given the model.

Other MDL scores assign different DAG penalties and
therefore differ in the first term in Equation 2, but
encode the data the same. For example, the Akaike
Information Criterion (AIC) score is an MDL scoring cri-

terion that uses
∑n

i=1
di as the DAG penalty. We will

call this score scoreAIC. In the DDAG Model section
(acronym DDAG is defined in that section) we give an
MDL score designed specifically for scoring BNs repre-
senting epistatic interactions.
Minimum message length scoring criterion
Another score based on information theory is the Mini-
mum Message Length Score (MML) that is described in
[30]. In the case of discrete variables it is equal to

scoreMML(G : Data) =
n∑

i=1

di(log2
e3/2π

6
) − log2scoreK2(G : Data)

where di is the number of parameters stored for the
ith node in G and scorek2 is the K2 score mentioned
previously.
To learn a DAG model from data, we can score all DAG

models using one of the scores just discussed and then
choose the highest scoring model. However, when the
number of variables is not small, the number of candidate
DAGs is forbiddingly large. Moreover, the BN structure
learning problem has been shown to be NP-hard [49]. So
heuristic algorithms have been developed to search over
the space of DAGs during learning [32].
In the large sample limit, all the scoring criteria favor

a model that most succinctly represents the generative
distribution. However, for practical sized data sets, the
results can be quite disparate. Silander et al. [46] pro-
vide a number of examples of learning models from var-
ious data sets showing that the choice of a in the BDeu
scoring criterion can greatly affect how many edges
exist in the selected model. For example, in the case of
their Yeast data set (which contains 9 variables and
1484 data items), the number of edges in the selected
model ranged from 0 to 36 as the value of a in the
Bayesian scores ranged from 2 × 10-20 to 34,000.
Although researchers have recommended various ways
for choosing a and sometimes argued for the choice on
philosophical/intuitive grounds [32], there is no agreed
upon choice.

Detecting Epistasis Using BNs
BNs have been applied to learning epistatic interactions
from GWAS data sets. Han et al. [50] developed a Mar-
kov blanket-based method that uses a G2 test instead of
a BN scoring criterion. Verzilli et al. [51] represent the
relationships among SNPs and a phenotype using a
Markov network (MN), which is similar to a BN but
contains undirected edges. They then use MCMC to do
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approximate model averaging to learn whether a parti-
cular edge is present. Both these methods model the
relationships among SNPs besides the relationship
between SNPs and a phenotype.
Jiang et al. [52] took a different approach. Since we

are only concerned with discovering SNP-phenotype
relationships, they used specialized BNs called DDAGs
to model these relationships. DDAGs are discussed in
the DDAG Model subsection of the Results section.
They developed a combinatorial epistasis learning
method called BNMBL that uses an MDL scoring criter-
ion for scoring DDAGs. They compared BNMBL to
MDR using the data sets developed in [10]. Each of
these data sets was generated from a model that associ-
ates two SNPs with a disease and includes 18 unrelated
SNPs. For each data set, BNMBL and MDR were used
to score all 2-SNP models, and BNMBL learned signifi-
cantly more correct models. In another study, Viswes-
waran et al. [53] employed a K2-based scoring criterion
for scoring these same DAG models that also outper-
formed MDR.
In real data sets, we ordinarily do not know the num-

ber of SNPs that influence phenotype. BNMBL may not
perform as well if we also scored models containing
more than two SNPs. Although BNs are a promising
tool for learning epistatic relationships from data, we
cannot confidently use them in this domain until we
determine which scoring criteria work best or even well
when we try learning the correct model without knowl-
edge of the number of SNPs in that model. We provide
results of experiments investigating this performance in
the Results section.

Diagnostic BNs Containing SNP Variables
BN diagnostic systems that contain SNP information
have also been learned from data. For example, Sebas-
tiani et al. [54] learned a BN that predicts stroke in indi-
viduals with sickle cell anemia, while Meng et al. [55]
learned a BN that predicts rheumatoid arthritis. In these
studies candidate SNPs were identified based on known
metabolic pathways. This is in contrast to the agnostic
search ordinarily used to analyze GWAS data sets (dis-
cussed above). For example, Sebastiani et al. [54] identi-
fied 80 candidate genes and analyzed 108 SNPs in these
genes.

Results
We first describe the BN model used to model SNP
interactions associated with disease. Next, we develop
a BN score tailored to this model and list the other
BN scores that are evaluated. Finally, we provide the
results of experiments that evaluate the various BN
scores and MDR using simulated data and a real
GWAS data set.

The DDAG Model
We use BNs to model the relationships among SNPs
and a phenotype such as disease susceptibility. Given a
set of SNPs {S1, S2, ...,Sn} and a disease D, we consider
all DAGs in which node D has only incoming edges and
no outgoing edges. Such DAGs have the causal interpre-
tation that SNPs are either direct or indirect causes of
disease. An example of a DAG for 9 SNPs is shown in
Figure 2. This DAG does not represent the relationships
among gene expression levels. Rather it represents the
statistical dependencies involving the disease status and
the alleles of the SNPs. Since we are only concerned
with modeling the dependence of the disease on the
SNPs and not the relationships among the SNPs, there
is no need for edges between SNPs. So we need only
consider DAGs where the only edges are ones to D. An
example of such a DAG is shown in Figure 3. We call
such a model a direct DAG (DDAG).
The number of DAGs that can be constructed is for-

biddingly large when the number of nodes is not
small. For example, there are ~4.2 × 1018 possible
DAGs for a domain with ten variables [56]. The space
of DDAGs is much smaller: there are 2n DDAGs,
where n is the number of SNPs. So if we have ten
SNPs, there are only 210 DDAGs. Though the model
space of DDAGs is much smaller that the space of
DAGs, it still remains exponential in the number of
variables. In the studies reported here, we search in
the space of DDAGs.

The BN Minimum Bit Length (BNMBL) Score
An MDL score called BNMBL that is adapted to
DDAGs is developed next. Each parameter (conditional
probability) in a DAG model learned from data is a
fraction with precision 1/m, where m is the number of
data items. Therefore, it requires O(log2 m) bits to
store each parameter. However, as explained in [57],
the high order bits are not very useful. So we need use

Figure 2 An example DAG. A DAG showing probabilistic
relationships among SNPs and a disease D.
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only 1
2 log2m bits and we arrive at the DAG penalty in

Equation 2.
Suppose that k SNPs have edges into D in a given

DDAG. Since each SNP has three possible values, there are
3k joint states of the parents of D. The expected value of
the number of data items, whose values for these k SNPs
are the values in each joint state, is m/3k. If we approximate
the precision for each of D’s parameters by this average, the

penalty for each of these parameters is
1
2
log2

m

3k
.. Since the

penalty for each parameter in a parent SNP is 1
2 log2m, the

total DAG penalty for a DDAG model is

3k

2
log2

m

3k
+
2k
2
log2m. (3)

The multiplier 2 appears in the second term because
each SNP has three values. We need store only two of
the three parameters corresponding to the SNP states,
since the value of the remaining parameter is uniquely
determined given the other two. No multiplier appears
in the first term because the disease node has only two
values. When we use this DAG penalty in an MDL
score (Equation 2), we call the score scoreEpi.

BN Scoring Criteria Evaluated
We evaluated the performance of MDR; three MDL
scores: scoreEpi, scoreSuz, and scoreAIC; two Bayesian
scores: scoreK2, and scorea; and the information-theoretic
score scoreMML. For scorea we performed a sensitivity
analysis over the following values of a = 1 3, 6, 9, 12, 15,
18, 21, 24, 30, 54, 162. We evaluated two versions of each
of the MDL scores. In the first version, all n SNPs in the
domain are included in the model, though only k of them
directly influence D and hence have edges to D in the
DDAG. In this case the contribution of the SNP nodes to
the DAG penalty is not included in the score because it
is the same for all models. We call this version 1, and

denote the score with the subscript 1 (scoreEpi1). In the
second version, only the k SNPs that have edges to D are
included in the model and the remaining n-k SNPs are
excluded from the model. In this case, the contributions
of the k SNP nodes to the penalty are included because
models with different values of k have different penalties.
We call this version 2, and denote the score with the sub-
script 2 (e.g., scoreEpi2). The penalty term for scoreEpi that
is given in Equation 3 is for version 2.
After describing the results obtained using simulated

data, we show those for real data.

Simulated Data Results
We evaluated the scoring criteria using simulated data sets
that were developed from 70 genetic models with different
heritabilities, minor allele frequencies and penetrance
values. Each model consists of a probabilistic relationship
in which 2 SNPs combined are correlated with the disease,
but neither SNP is individually correlated. Each data set
has sample size equal to 200, 400, 800, or 1600, and there
are 7000 data sets of each size. More details of the datasets
are given in the Methods section.
For each of the simulated data sets, we scored all

1-SNP, 2-SNP, 3-SNP, and 4-SNP DDAGs. The total
number of DDAGs scored for each data set was there-
fore 6195. Since in a real setting we would not know
the number of SNPs in the model generating the data,
all models were treated equally in the learning process;
that is, no preference was given to 2-SNP models.
We say that a method correctly learns the model gen-

erating the data if it scores the DDAG representing the
generating model highest out of all 6195 models.
Table 1 shows the number of times out of 7000 data
sets that each BN scoring criterion correctly learned the
generating model for each sample size. In this table, the
scoring criteria are listed in descending order according
to the total number of times the correct model was
learned. Table 1 shows a number of interesting results.
First, the AIC score performed reasonably well on small
sample sizes, but its performances degraded at larger
sample sizes. Unlike the other BN scores, the DAG pen-
alty in the AIC score does not increase with the sample
size. Second, the K2 score did not perform well, particu-
larly at small sample sizes. However, the MML1 score,
which can be interpreted as the K2 score with an added
DAG penalty, performed much better. This indicates
that the DAG penalty in the K2 score may be too small
and the increased penalty assigned by the MML1 score
is warranted. Third, MDR performed well overall but
substantially worse than the best performing scores.
Fourth, the best results were obtained with the BDeu
score at moderate values of a. However, the results
were very poor for large values of a, which assign very
small DAG penalties.

Figure 3 An example DDAG. A DDAG showing probabilistic
relationships between SNPs and a disease D. A DDAG differs from
the DAG in Figure 2 in that the relationships among the SNPs are
not represented.

Jiang et al. BMC Bioinformatics 2011, 12:89
http://www.biomedcentral.com/1471-2105/12/89

Page 6 of 12



The ability of the highest ranking score (the BDeu
scorea = 15) to identify the correct model was compared
to that of the next six highest ranking scores using the
McNemar chi-square test (see Table 2). In a fairly small
interval around a = 15 there is not a significant differ-
ence in performance. However, as we move away from
a = 15 the significance becomes dramatic, as is the sig-
nificance relative to the highest scoring non-BDeu score
(scoreMML1).
BDeu scores with values of a in the range 12 - 18 per-

formed significantly better than all other scores. If our
goal is only to find a score that most often scores the
correct model highest on low-dimensional simulated
data sets like the ones analyzed here, then our results
support the use of these BDeu scores. However, in prac-
tice, we are interested in the discovery of promising
SNP-disease associations that may be investigated for
biological plausibility. So perhaps more relevant than
whether the correct model scores the highest is the
recall of the correct model relative to the highest scor-
ing model. The recall is given by:

recall(S, T) =
# (S ∩ T)

# (S)
,

where S is the set of SNPs in the correct model, T is
the set of SNPs in the highest scoring model, and #
returns the number of items in a set. The value of the
recall is 0 if and only if the two sets do not intersect,
while it is 1 if and only if all the SNPs in the correct
model are in the highest scoring model. Therefore,
recall is a measure of how well the SNPs in the correct
model were are discovered. Recall does not measure,
however, the extent to which the highest scoring model
has additional SNPs that are not in the correct model
(i.e., false positives).
Table 3 shows the recall for the various scoring cri-

teria. The criteria are listed in descending order of total
recall. Overall, these results are the reverse of those in
Table 1. The BDeu scores with large values of a and the
AIC scores appear at the top of the list. Part of the
explanation for this is that these BDeu scores and AIC
scores incorporate small DAG penalties, which results
in larger models often scoring higher. A larger model
has a greater chance of containing the two interacting
SNPs. Not surprisingly scoreSuz1 and scoreSuz2, which
have the largest DAG penalties of the MDL scores,
appear at the bottom of the list. MDR again performed
well but substantially worse than the best performing
scores.
Perhaps the smaller DAG penalty is not the only rea-

son that the BDeu scores with larger values of a per-
formed best. It is possible that the BDeu scores with
larger values of a can better detect the interacting SNPs
than the BDeu scores with smaller values, but that the
scores with larger values do poorly at scoring the cor-
rect model (the one with only the two interacting SNPs)
highest because they too often pick a larger model con-
taining those SNPs. To investigate this possibility, we
investigated how well the scores discovered models

Table 1 Accuracies of scoring criteria

Scoring Criterion 200 400 800 1600 Total

1 scorea = 15 4379 5426 6105 6614 22524

2 scorea = 12 4438 5421 6070 6590 22519

3 scorea = 18 4227 5389 6095 6625 22336

4 scorea = 9 4419 5349 5996 6546 22313

5 scorea = 21 3989 5286 6060 6602 21934

6 scorea = 6 4220 5165 5874 6442 21701

7 scoreMML1 4049 5111 5881 6463 21504

8 scorea = 24 3749 5156 5991 6562 21448

9 scoreMDR 4112 4954 5555 5982 20603

10 scorea = 3 3839 4814 5629 6277 20559

11 scoreEpi2 3571 4791 5648 6297 20307

12 scorea = 30 3285 4779 5755 6415 20234

13 scoreMML2 3768 4914 5754 5780 20216

14 scoreEpi1 2344 5225 6065 6553 20187

15 scoreSuz1 3489 4580 5521 6215 19805

16 scorea = 36 2810 4393 5464 6150 18817

17 scorea = 42 2310 4052 5158 5895 17415

18 scoreK2 1850 3475 5095 6116 16536

19 scoreSuz2 2245 3529 4684 5673 16131

20 scorea = 54 1651 3297 4492 5329 14769

21 scoreAIC2 3364 3153 2812 2520 11847

22 scoreAIC1 2497 1967 1462 1126 7052

23 scorea = 162 26 476 1300 2046 3848

The number of times out of 7000 data sets that each scoring criterion
identified the correct model for sample sizes of 200, 400, 800, and 1600. The
last column gives the total accuracy over all sample sizes. The scoring criteria
are listed in descending order of total accuracy.

Table 2 Statistical comparison of accuracies of scoring
criteria

Scoring Criterion p-value

1 scorea = 15 NA

2 scorea = 12 0.996

3 scorea = 18 0.076

4 scorea = 9 0.046

5 scorea = 21 4.086 × 10-8

6 scorea = 6 3.468 × 10-14

7 scoreMML1 1.200 × 10-20

P-values obtained by comparing the accuracy of the highest ranking scoring
criterion (scorea = 15) with the next six highest ranking scoring criteria using
the McNemar chi-square test. Each p-value is obtained by comparing the
accuracies for 28,000 data sets.
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55-59 (See Supplementary Table one to [10]). These
models have the weakest broad-sense heritability (0.01)
and a minor allele frequency of 0.2, and are therefore
the most difficult to detect.
Table 4 shows the number of times the correct hard-

to-detect model scored highest for a representative set of
the scores. Table 5 shows the p-values obtained when the
highest ranking score (BDeu scorea = 54) is compared to
the next five highest ranking scores using the McNemar
chi-square test. The BDeu score with large values of a
performed significantly better than all other scores.
The BDeu scores with large a values discovered the

difficult models best, though they perform poorly on the
average when all models were considered. An explana-
tion for this phenomenon is that these scores can
indeed find interacting SNPs better than scores with
smaller values of a. However, when the interacting
SNPs are fairly easy to identify, their larger DAG penal-
ties makes it harder for them to identify the correct
model relative to other scores. On the other hand, when
the SNPs are hard to detect, their better detection cap-
ability more than compensates for their increased DAG

penalty. Additional file 1 provides an illustrative exam-
ple of this phenomenon. We hypothesize therefore that
BDeu scores with larger values of a can better indentify
interacting SNPs, even if they sometimes include extra
SNPs in the highest scoring model.

GWAS Data Results
We evaluated the scoring criteria using a late onset Alz-
heimer’s disease (LOAD) GWAS data set. LOAD is the
most common form of dementia in the above 65-year-
old age group. It is a progressive neurodegenerative dis-
ease that affects memory, thinking, and behavior. The
only genetic risk factor for LOAD that has been consis-
tently replicated involves the apolipoprotein E (APOE)
gene. The ε4 APOE genotype increases the risk of

Table 3 Recall for scoring criteria

Scoring Criterion 200 400 800 1600 Total

1 scorea = 162 5259 6043 6566 6890 24758

2 scoreAIC2 5204 5969 6511 6849 24533

3 scoreAIC1 5186 5960 6481 6830 24457

4 scorea = 54 5223 5941 6473 6813 24450

5 scoreK2 5303 5962 6371 6747 24383

6 scorea = 42 5203 5902 6425 6794 24324

7 scorea = 36 5181 5866 6395 6768 24210

8 scorea = 30 5147 5816 6352 6754 24069

9 scorea = 24 5080 5767 6300 6725 23872

10 scorea = 21 5031 5733 6265 6704 23733

11 scoreMDR 4870 5710 6324 6748 23652

12 scorea = 18 4973 5681 6230 6681 23565

13 scorea = 15 4902 5622 6183 6647 23354

14 scoreEpi1 4984 5529 6105 6575 23193

15 scorea = 12 4786 5531 6119 6605 23041

16 scorea = 9 4649 5416 6026 6547 22638

17 scorea = 6 4383 5219 5901 6453 21956

18 scoreMML1 4151 5159 5903 6473 21686

19 scoreMML2 3881 4969 5780 6412 21042

20 scoreEpi2 3895 4901 5715 6329 20840

21 scorea = 3 3953 4862 5652 6285 20752

22 scoreSuz1 3618 4696 5595 6251 20160

23 scoreSuz2 2500 3712 4811 5737 17760

The sum of the recall for each scoring criterion over 7000 data sets for sample
sizes of 200, 400, 800, and 1600. The last column gives the total recall over all
sample sizes. The scoring criteria are listed in descending order of total recall.

Table 4 Accuracies of scoring criteria on most difficult
models

Scoring Criterion 200 400 800 1600 Total

1 scorea = 54 14 48 167 352 581

2 scorea = 162 1 21 146 355 563

3 scorea = 36 13 46 155 318 532

4 scorea = 21 12 43 106 289 450

5 scorea = 18 11 37 91 274 413

6 scoreMDR 3 25 79 245 352

7 scorea = 12 7 25 65 215 312

8 scoreAIC2 16 33 80 138 267

9 scorea = 9 5 20 48 186 259

10 ScoreEpi1 4 16 47 179 246

11 scoreMML1 2 7 23 140 172

12 scorea = 3 3 6 13 86 108

13 scoreEpi2 0 1 4 72 77

14 scoreSuz1 0 1 2 41 44

The number of times out of 500 that each scoring criterion correctly learned
the correct model in the case of the most difficult models (55-59) for sample
sizes of 200, 400, 800, and 1600. The last column gives the total accuracy over
all sample sizes. The scoring criteria are listed in descending order of
accuracy.

Table 5 Statistical comparison of accuracies of scoring
criteria on most difficult models

Scoring Criterion p-value

scorea = 54 NA

scorea = 162 0.610

scorea = 36 0.147

scorea = 21 4.870 × 10-5

scorea = 18 1.080 × 10-7

scoreMDR 7.254 × 10-14

P-values obtained by comparing the accuracy of the highest ranking scoring
criterion (scorea = 15) with the next five highest ranking scoring criteria using
the McNemar chi-square test. Each p-value is obtained by comparing the
accuracies for 2,000 data sets generated by the hardest-to-detect models.

Jiang et al. BMC Bioinformatics 2011, 12:89
http://www.biomedcentral.com/1471-2105/12/89

Page 8 of 12



development of LOAD, while the ε2 genotype is
believed to have a protective effect.
The LOAD GWAS data set that we analyzed was col-

lected and analyzed by Rieman et al. [16]. The data set
contains records on 1411 participants (861 had LOAD
and 550 did not), and consists of data on 312,316 SNPs
and one binary genetic attribute representing the apoli-
poprotein E (APOE) gene carrier status. The original
investigators found that SNPs on the GRB-associated
binding protein 2 (GAB2) gene interacted with the
APOE gene to determine the risk of developing LOAD.
More details of this dataset are given in the Methods
section.
To analyze this Alzheimer GWAS data set, for a

representative subset of the scores listed in Table 1 we
did the following. We pre-processed the data set by
scoring all models in which APOE and one of the
312,316 SNPs are each parents of the disease node

LOAD. The SNPs from the top 100 highest-scoring
models were selected along with APOE. Using these
101 loci, we then scored all 1, 2, 3, and 4 parent mod-
els making a total of 4,254,726 models scored. We
judged the effectiveness of each score according to
how well it replicated the results obtained by the origi-
nal investigators in [16] that the GAB2 gene is asso-
ciated with LOAD. We did this by determining how
many of the score’s 25 highest-scoring models con-
tained a GAB2 SNP. Table 6 shows the results. The
number in each cell in Table 6 is the number of SNPs
in the model, and the letter G appears to the right of
that number if a GAB2 SNP appears in the model. The
second to the last row in the table shows the total
number of models in the top 25 that contain a GAB2
SNP. The last row in the table shows the total number
of different GAB2 SNPs appearing in the top 25
models.

Table 6 Evaluation of scoring criteria concerning detection of GAB2 SNPs

Rank a = 3 a = 12 a = 21 a = 54 a = 162 a = 1000 K2 MML1 MDLn Suz1 Epi2 MDR

1 4 4 4 4 G 4 G 4 4 G 4 G 4 G 3 4 G 4

2 4 4 4 4 G 4 G 4 4 G 4 G 4 G 3 G 4 G 4

3 4 4 4 G 4 G 4 4 4 G 4 G 4 G 3 G 4 G 4

4 4 4 4 4 G 4 G 4 4 4 4 G 3 4 G 4

5 4 4 4 4 4 4 4 3 4 G 3 3 4

6 4 4 4 4 4 G 4 4 4 4 3 G 4 G 4 G

7 4 4 4 4 G 4 4 4 4 4 3 G 4 4

8 4 4 4 4 4 4 4 4 4 G 3 G 4 4 G

9 4 4 4 4 G 4 4 4 4 4 G 3 G 4 G 4

10 4 4 4 4 G 4 G 4 4 3 G 4 2 4 G 4 G

11 4 4 4 G 4 G 4 G 4 G 4 G 4 4 3 4 4

12 4 4 G 4 G 4 4 G 4 G 4 G 4 4 3 G 4 4 G

13 4 4 4 4 G 4 G 4 G 4 4 G 4 G 3 G 4 4

14 4 4 4 4 4 G 4 4 G 4 G 4 3 3 G 4

15 4 4 4 G 4 G 4 G 4 4 G 3 G 4 3 G 4 G 4 G

16 4 4 4 G 4 G 4 G 4 G 4 G 4 4 3 G 3 G 4

17 4 4 4 4 G 4 G 4 4 G 3 4 G 3 4 4 G

18 4 4 4 G 4 G 4 G 4 G 4 4 G 4 G 3 G 4 4

19 4 4 4 G 4 G 4 G 4 G 4 4 G 4 G 3 G 4 4

20 4 4 4 4 G 4 G 4 G 4 4 G 4 3 G 4 G 4 G

21 4 4 4 4 G 4 4 G 4 4 G 4 G 3 G 4 G 4 G

22 4 4 G 4 4 G 4 G 4 G 4 4 4 G 3 4 G 4

23 4 4 G 4 4 G 4 4 G 4 G 4 4 G 3 G 4 4

24 4 4 4 G 4 G 4 G 4 4 4 4 G 3 G 4 G 4

25 4 4 4 4 4 G 4 4 4 4 G 3 G 3 4

Total # G G##GGG 0 3 7 19 18 10 10 11 16 17 14 8

# Diff G 0 2 3 7 6 4 4 4 8 8 8 6

Information about the 25 highest scoring models for a variety of scoring criteria. The number on the left in a cell is the number of SNPs in the model, and the
letter G appears to the right of that number if a GAB2 SNP appears in the model. The second to the last row shows the total number of models in the top 25
that contained a GAB2 SNP. The last row shows the total number of different GAB2 SNPs appearing in the top 25 models.
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We included two new scores in this analysis. The first
score is the BDeu score with a = 1000. We did this to
test whether we can get good recall with arbitrarily high
values of a. The second new score is an MDL score
with no DAG penalty (labelled MDLn in the table). We
did this to investigate the recall for the MDL score
when we constrain the highest scoring model to be one
containing four parent loci.
These results substantiate our hypothesis that larger

values of a (54 and 162) can better detect the interact-
ing SNPs. For each of the BDeu scores, the 25 highest-
scoring models each contain 4 parent loci. However,
when a equals 54 or 162, 19 and 18 respectively of the
25 highest-scoring models contain a GAB2 SNP,
whereas for a equal to 12 only 7 of them contain a
GAB2 SNP, and for a equal to 3 none of them do. The
results for a equal to 1000 are not very good, indicating
that we cannot obtain good results for arbitrarily large
values of a. The MDL scores (MDLn, Suz1 and Epi2) all
performed well, with the Suz1 score never selecting a
model with more than 3 parent loci. This result indi-
cates that the larger DAG penalty seems to have helped
us hone in on the interacting SNPs. All the MDL scores
detected the highest number of different GAB2 SNPs,
namely 8. In comparison, MDR did not perform very
well, having only 8 models of the top 25 containing
GAB2 SNPs and none of the top 5 containing GAB2
SNPs.

Discussion
We compared the performance of a number of BN scor-
ing criteria when identifying interacting SNPs from
simulated genetic data sets. Each data set contained 20
SNPs with two interacting SNPs and was generated
from one of 70 different epistasis models. Jiang et al.
[52] analyzed these same data sets using the BNMBL
method and MDR (both of these methods are discussed
in the Background section). However, that paper only
investigated models with two interacting SNPs. So the
1-SNP, 3-SNP, and 4-SNP models were not competing
and the learned model was restricted to be a 2-SNP
model. In real applications we rarely would know how
many SNPs are interacting. So this type of analysis is
not as realistic as the one reported here.
Table 1 shows that the BDeu score with values of a

between 12 and 18 was best at learning the correct
model over all 28,000 simulated data sets. However,
Table 3 shows that the BDeu score with large values of a
(54 and 162) performed better at recall over all 28,000
data sets. Table 4 shows that these large values of a yield
better detection of the models that are hardest to detect.
We evaluated the performance of a subset of the BN

scores used in the simulated data analysis on a LOAD
GWAS data set. The effectiveness of each score was

judged according to how well it substantiated the pre-
viously obtained result that the GAB2 gene is associated
with LOAD. As shown in Table 6, we obtained the best
results with the BDeu score with large values of a. The
various MDL scores also performed well.
Overall, our results are mixed. Although scores with

moderate values of a performed better at actually
scoring the correct model highest using simulated
data sets, scores with larger values of a performed
better at recall, at detecting models that are hardest
to detect, and at substantiating previous results using
a real data set. Our main goal is to develop a method
that can discover SNPs associated with a disease from
real data. Therefore, based on the results reported
here, it seems that it is more promising to use the
BDeu score with large values of a (54-162), rather
than smaller values.
The MDL scores also performed well in the case of

the real data set. An explanation for their poor perfor-
mance with the simulated data sets is that their DAG
penalties are either too large or too small. If we simply
used an MDL score with no DAG penalty we should be
able to discover interacting SNPs well (as indicated by
Table 6). Once we determine candidate interactions
using these scores, we can perform further data analysis
of the interactions and also investigate the biological
plausibility of the genotype-phenotype relationships.
However, additional research is needed to further inves-
tigate a DAG penalty appropriate to this domain.
Another consideration which was not investigated

here is the possible increase in false positives with
increased detection capability. That is, although the
BDeu score with large values of a performed best at
recall and at identifying hard-to-detect models, perhaps
these scores may also score some incorrect models
higher, and at a given threshold might have more false
positives. Further research is needed to investigate this
matter.
Additional file 1 provides an illustrative example and

some theoretical justification as to why a BDeu score
with large values of a should perform well at discover-
ing hard-to-detect SNP-phenotype relationships. How-
ever, further research, both of a theoretical and
empirical nature, is needed to investigate the pattern of
results reported here. In particular, additional simulated
data sets containing data on a large number of SNPs
(numbers appearing in real studies) should be analyzed
to see if the BDeu score with large values of a or some
other approach performs better in this more realistic
setting.

Conclusions
Our results indicate that representing epistatic interac-
tions using BNs and scoring them using a BN scoring
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criteria holds promise for identifying epistatic relation-
ships. Furthermore, they show that the use of the BDeu
score with large values of a (54-162) can yield the best
results on some data sets. Compared to MDR and other
BN scoring criteria, these BDeu scores performed sub-
stantially better at detecting the hardest-to-detect mod-
els using simulated data sets, and at confirming previous
results using a real GWAS data set.

Methods
Simulated Data Sets
Each simulated data set was developed from one of 70
epistasis models described in Velez et al. [10] (see Sup-
plementary Table one in [10] for details of the 70 mod-
els). These datasets are available at http://discovery.
dartmouth.edu/epistatic_data/.
Each model represents a probabilistic relationship in

which two SNPs together are correlated with the dis-
ease, but neither SNP is individually predictive of dis-
ease. The relationships represent various degrees of
penetrance, heritability, and minor allele frequency. The
models are distributed uniformly among seven broad-
sense heritabilities ranging from 0.01 to 0.40 (0.01,
0.025, 0.05, 0.10, 0.20, 0.30, and 0.40) and two minor
allele frequencies (0.2 and 0.4).
Data sets were generated with case-control ratio (ratio

of individuals with the disease to those without the dis-
ease) of 1:1. To create one data set they fixed the
model. Based on the model, they then generated data
concerning the two SNPs that were related to the dis-
ease in the model, 18 other unrelated SNPs, and the dis-
ease. For each of the 70 models, 100 data sets were
generated for a total of 7000 data sets. This procedure
was followed for data set sizes equal to 200, 400, 800,
and 1600.

GWAS Data Set
Several LOAD GWA studies have been conducted. We
utilized data from one such study [16] that contains
data on 312,316 SNPs. In this study, Reiman et al. inves-
tigated the association of SNPs separately in APOE ε4
carriers and in APOE ε4 noncarriers. A discovery cohort
and two replication cohorts were used in the study.
Within the discovery subgroup consisting of APOE ε4
carriers, 10 of the 25 SNPs exhibiting the greatest asso-
ciation with LOAD (contingency test p-value 9 × 10-8 to
1 × 10-7 ) were located in the GRB-associated binding
protein 2 (GAB2) gene on chromosome 11q14.1. Asso-
ciations with LOAD for 6 of these SNPs were confirmed
in the two replication cohorts. Combined data from all
three cohorts exhibited significant association between
LOAD and all 10 GAB2 SNPs. These 10 SNPs were not
significantly associated with LOAD in the APOE ε4
noncarriers.

Implementation
We implemented the methods for learning and scoring
DDAGs using BN scoring criteria in the Java program-
ming language. MDR v. mdr-2.0_beta_5 (available at
http://www.epistasis.org) with its default settings (Cross-
Validation Count = 10, Attribute Count Range = 1:4,
Search Type = Exhaustive) was used to run MDR. All
experiments were run on a 32-bit Server running Win-
dows 2003 with a 2.33 GHz processor and 2.00 GB of
RAM.

Additional material

Additional file 1: Illustrative Example of Better Large a
Performance. This file provides an illustrative example to demonstrate a
possible explanation for the better performance of the BDeu score at
larger values of a on hard-to-detect genetic models.
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