
SOFTWARE Open Access

CDAO-Store: Ontology-driven Data Integration for
Phylogenetic Analysis
Brandon Chisham, Ben Wright, Trung Le, Tran Cao Son and Enrico Pontelli*

Abstract

Background: The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and
EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data
and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology
enable the description of phylogenetic trees and associated character data matrices.

Results: Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a
RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a
programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as
well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum
spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In
addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both
character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities,
enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be
imported and their CDAO representations added to the triple-store.

Conclusions: CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To
the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with
domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

Background
The CDAO-Store is a novel portal aimed at facilitating
the storage and retrieval of phylogenetic data. The
novelty of CDAO-Store lies in the use of a semantic-
based approach to the storage and querying of data,
building on established ontologies for the semantic
annotation of data. This approach enables scientists to
overcome the restrictions imposed by the use of specific
data formats-thus, facilitating inter-operation among
phylogenetic analysis applications-and makes it possible
to design and implement more meaningful domain-spe-
cific queries.
Phylogenetic trees have gained a central role in mod-

ern biology. Trees provide a systematic structure to
organize evolutionary knowledge about diversity of life.
Trees have become fundamental tools for building new
knowledge, thanks to their explanatory and

comparative-based predictive capabilities. Evolutionary
relationships provide clues about processes underlying
biodiversity and enable predictive inferences about
future changes in biodiversity (e.g., in response to cli-
mate or anthropogenic changes). Phylogenies are used
with increasing frequency in several fields, e.g., com-
parative genomics [1], meta-genomics [2], and commu-
nity ecology [3].
Below we highlight some of the core technologies that

have facilitated the use of phyloinformatics solutions in
various areas of biology and some of the issues faced.
Phylogenetic Repositories: the development of new

knowledge relies on the ability to share and reuse data
and results. To meet this goal, several large repositories
of phylogenetic data have been developed and deployed.
These repositories accepts submissions of diverse types
of phylogenetic data, including different types of trees
(e.g., trees of genes, trees of species) along with the data
(e.g., character data) used to generate them. Repositories
like Tree-BASE [4] store phylogenetic data along with

* Correspondence: epontell@cs.nmsu.edu
Department of Computer Science, New Mexico State University, Las Cruces,
New Mexico, USA

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

© 2011 Chisham et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.cs.nmsu.edu/~cdaostore
mailto:epontell@cs.nmsu.edu
http://creativecommons.org/licenses/by/2.0

metadata describing publications and published analyses,
and offer querying capabilities to retrieve data from dif-
ferent studies, for comparison, combination, and reuse.
TreeBASE accepts submissions of phylogenies and asso-
ciated data in NEXUS format
Another related project is the Tree of Life Web project

[5], a collaborative web portal that provides a hierarchi-
cal organization, in the form of an evolutionary tree of
life, to web pages providing information about charac-
teristics and biodiversity of different groups of
organisms.
Data Inter-operation: Data reuse however is not prac-

tically possible without data inter-operation. Data tied to
a particular tool, or worse, a particular version of a
given tool, provides limited value to users of a reposi-
tory. Ideally, repositories should supply their clients with
results in a maximally compatible format that does not
limit the client to the use of a particular piece of soft-
ware. This issue is of particular interest to the evolu-
tionary biology community. Several competing formats,
e.g., NEXUS [6], nexml[7], phyloxml[8], PHYLIP [9],
exist for representing phylogenies and the underlying
molecular and morphological character data. Addition-
ally, there are no commonly accepted methods for
applying annotations to branches in a phylogeny, or for
describing evolutionary models. Also, other meta-data,
such as provenance, are not commonly handled.
Observe that the use of automated techniques for

addressing the data inter-operation problem requires the
availability of the semantics of data, i.e., a formally speci-
fied description of the meaning of data. The semantics
of data allows software tools to correctly map data items
encoded in different formats.
Semantics, Ontologies, Triple-Stores: In order to gain

full effectiveness, data inter-operability cannot be
restricted to exchange of data, but it needs to rely on
the exchange of semantics. While data formats capture
the syntax of data (e.g., for data exchange), explicit
semantics is necessary (e.g., [10]) for interpretation,
repurposing and application of phylogenetic data. The
presence of an explicit representation of the semantics
of data enables the develoment of of provably correct
tools to perform data exchange between different data
formats, and the integration of data arising from diverse
sources. In recent years, semantic descriptions in the
biomedical domains have predominantly built on the
use of domain-specific ontologies [11,12]-enabling the
formalization of domain knowledge in terms of domain
concepts and relations among concepts.
A domain ontology for the field of phylogenetic analy-

sis, called the Comparative Data Analysis On-tology
(CDAO), has been recently introduced [10].
A number of technologies and standards have been

introduced to enable the representation and use of

ontologies. The Web Ontology Language (OWL) [13] is a
formal language that has been developed for publishing
and sharing ontologies on the web. OWL enables the
description of an ontology in terms of a collection of
classes of entities (commonly referred to as concepts),
organized in a taxonomy, and a collection of relations
among entities (commonly referred to as properties).
Properties are binary relations among two concepts. For
example, the CDAO ontology contains, among the
others, two concepts used in the description of phyloge-
nies, called Edge-representing one edge of a phylogeny-
and EdgeLength-representing the length of an edge;
these two concepts are related by a property called
has_Annotation, which associates an element of
EdgeLength to each element of Edge.
The instances of an ontology-i.e., the concrete objects

belonging to the classes described in the ontology and
the specific connections created by the properties-are
typically described in the form of triples-depicting two
entities being linked by a property. For example, the tri-
ple (node_Arabidopsis_thaliana_AAD31,
instance_of, Node) describes the fact that the entity
named node_Arabidopsis_thaliana_AAD31
belongs to the class Node; similarly, the triple
(node_Arabidopsis_thaliana_AAD31, belong-
s_to_Edge_as_Child, edge_AAD31_15) describes
the fact that the entity node node_Arabidop-
sis_thaliana_AAD31 is associated to to the edge
named edge_AAD31_15 in the phylogeny, and it is in
the descendant position of the edge.
The World Wide Web consortium has formalized an

XML format for the description of triples, called the
Resource Description Framework (RDF) [14]; being an
XML format, RDF provides an unambiguous format for
storing and exchanging triples. We refer to a repository
of ontology instances, expressed as triples, as a triple-
store.
Domain-specific Querying: Domain-specific querying

is also an important feature of a phylogenetic reposi-
tory (see, e.g., [15])-i.e., the ability of the repository to
provide direct access to queries that are specific to a
given application domain, without requiring the user
to encode them using a domain-independent query
language (e.g., SQL). This level of query support helps
investigators to easily pose questions to the repository
that might be otherwise difficult or impossible to
express in a general purpose query language. Several
approaches have been proposed to support domain-
specific querying in the domain of phylogenetic analy-
sis. TreeBASE provides six predefined types of searches
of their repository- i.e., search by taxon, by author, by
citation, by study accession number, by matrix acces-
sion number, and by structure. These searches are
mostly based on the syntactic content of the data, and

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 2 of 11

not dissimilar from traditional relational database
queries.
The study described in [15] identifies six main areas of

studies that involve the use of phylogenetic data-gen-
eral/casual uses, visualization studies, database studies,
super-tree algorithmic studies, simulation and contests
studies, and comparative genomic studies. A set of stan-
dard query types necessary to support the needs of
these six classes of investigations have been identified
and discussed by the authors of [15].

CDAO
The Comparative Data Analysis Ontology (CDAO)
http://www.evolutionaryontology.org[10] provides a for-
mal ontology for describing phylogenies and their asso-
ciated character state matrices. CDAO has been
developed as part of the Evolutionary Informatics
(EvoInfo) https://www.nescent.org/wg_evoinfo/Main_-
Page working group, sponsored by the National Evolu-
tionary Synthesis Center.
CDAO provides the semantic component of a data

representation and inter-operation stack for phyloinfor-
matics, known as the EvoIO stack [16]-along with a data
exchange format, called nexml[7], and a phyloinfor-
matics web services API, known as PhyloWS [17].
CDAO forms the base of this stack, defining the seman-
tics for the data represented in nexml files, or other-
wise supplied by services implementing this set of
standards. Figure 1 illustrates the EvoIO stack.
CDAO is implemented as a formal ontology encoded

in OWL. It provides a general framework for talking
about the relationships between taxa, characters, states,
their matrices, and associated phylogenies. The ontology
is organized around five central concepts (see also
Figure 2): OTUs, characters, character states, phyloge-
netic trees, and transitions. The key concepts and their
mutual relationships within CDAO are illustrated in
Figure 3. A phylogenetic analysis starts with the identifi-
cation of a collection of operational taxonomic units
(OTUs), representing the entities being described (e.g.,
species, genes). Each OTU is described, in the analysis,
by a collection of properties, typically referred to as
characters. In phylogenetic analysis, it is common to

collect the characters and associated character states in
a matrix, the character state matrix, where the rows
correspond to the different OTUs and the columns
correspond to the characters.
In evolutionary biology, phylogenetic trees and net-

works are used to represent paths of descent-with-modi-
fication, capturing the evolutionary process underlying
the considered OTUs. Since evolution moves forward in
time, the branches of a tree are typically directed. The
terminal nodes are anchored in the present, as they
represent observations or measurements made on exist-
ing organisms. The internal nodes represent common
ancestors, with the deepest node as the root node of the
tree. The restriction that each node has at most one
immediate ancestor reflects the assumption that evolu-
tionary lineages, once separated, do not fuse (e.g.,
because of the assumption of the biological species con-
cept based on reproductive isolation). Branching is con-
sidered to be a binary process of splitting by speciation
(or gene duplication, in the case of molecular
sequences). Even with terminal nodes anchored in the
present, it may be impossible to infer the direction of
each internal branch, in which case the tree may be
referred to as an unrooted tree or as a network. Even
the restriction of single parentage may be occasionally
abandoned (e.g., in the case of lateral transfer or reticu-
late evolution).
As a general framework, CDAO supplies general

classes and relations between those classes that can be
further specialized to meet the needs of a specific appli-
cation-Beak length might be introduced as a new con-
cept that specializes CDAO’s Standard character type.
nexml
nexml[7] is a file format for exchanging data contain-

ing character state data matrices and phylogenies. Its
syntax is defined in terms of an XML schema (i.e., a
grammar describing the legal structure of an XML
document) and the semantics of its elements are defined
in terms of CDAO classes-thus allowing an easy map-
ping of data files to CDAO instances. This property is
also important to enable the effective use of nexml as a
data exchange medium, since its semantics can be
agreed upon by both the provider and recipient of a
dataset.
A typical nexml specification [18] is embedded within

the element <nexml>, and contains the description of
phylogenies and character data matrices. The elements
<otus> are analogous to the TAXA block in NEXUS,
and they are used to describe the identifiers and
(optionally) labels of all the relevant taxonomic units
employed in the investigation. The elements <charac-
ters> play a role analogous to the CHARACTERS
block in NEXUS, allowing the description of the charac-
ter state matrices. nexml allows the use of different

Ontologies (CDAO)

NeXML NEXUS

PhyloWS API

...
Data Semantics

Data Syntax

Data Access

Figure 1 The EvoIO Stack. This is the structure of the EvoIO stack
developed by he EvoInfo working group of the National
Evolutionary Synthesis Center.

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 3 of 11

http://www.evolutionaryontology.org
https://www.nescent.org/wg_evoinfo/Main_Page
https://www.nescent.org/wg_evoinfo/Main_Page

formats, such as molecular sequences, categorical data,
or continuous data. A difference from NEXUS is that
more information per character can be specified; depe-
finding on the format, the matrices can be formed either
by <matrix><row> elements or by <states><-
state> elements. The <tree> element is used to
describe a phylogenetic tree, in a manner similar to
GraphML [19]-i.e., by describing each tree as a sequence
of <node> and <edge> elements. The <node> ele-
ments are used to describe the individual nodes of the
tree, while the <edge> elements provide an explicit
description of the connections among nodes. The edges
of the tree are directed-i.e., each edge has a start point
and an end point. A final element that deserves mention

is <dict>: this element allows one to set up general
attribute/value pairs, that can be attached to most ele-
ments of a nexml document, allowing the introduction
of arbitrary meta-data for different elements of the data
file.
An alternative XML format for the encoding of phylo-

genetic datasets is phyloxml[8]; this format allows the
description of phylogenies (using the element phylo-
geny) described through the recursive use of the ele-
ment clade. The format supports the description of
various specialized properties, such as evolutionary
events (e.g., duplication), and taxonomic information.
Although CDAO-Store supports predominantly nexml,
it includes a phyloxml converter, which allows

C

Phylogenies Character state data matrix Coordinate system
Tree Character 2

Tree Character 1

Consensual Tree

TU1 TU2 TU3 TU4 TU5

Taxonomic
Units

Characters

TU1
TU2
TU3
TU4
TU5

1........|.........|
ATGGACTGGGATGCGATACG GO:0012505 1.51 Y S
ATGGACTGGGATGCGACACG GO:0012505 1.13 Y S
----------ATGCGACACG GO:0005886 2.56 ? M
----------ATGCGCTACG GO:0005886 ???? N L
----------CTGTGCTACG GO:0016020 1.12 N -

Characters State Datum

Character Type Column Begin End
Ins1 Compound 1 1 10
Base11 Seq-Nct 1 11 11
Base14 Seq-Nct 1 14 14
Base16 Seq-Nct 1 16 16
Base17 Seq-Nct 1 17 17
CelComp GO 2 - -
Expr Cont 3 - -
Eat_fish Boolean 4 - -
Beak_size Morph 5 - -

Figure 2 The Principle View of OTUs and Characters. This figure summarizes the core concepts from phylogenetic analysis that are captured
by the CDAO ontology.

Topology Concepts

Characters Concepts Transformation
Concepts

Character
State

Datum

Taxonomic
Unit Character

State Coordinate

Coordinate
System

Annotation:
Alignment
procedure,...

Annotation:
TAXID, DB-
XREF...

part_of
part_of

has

has

has

has

has

belongs_tobelongs_to
Transformation State

Node

is_transformation_of

has_left_state

has_right_state

has_child_node
has_parent_node
has_left_node
has_right_node

Directed
Edge

EdgeUnrooted
Tree

Rooted
Tree

Network

Annotation:
Transformation,
Length,...

Annotation:
Tree procedure,
Model,...

has

has

is_a

is_a

is_a

part_of

part_of

has_ancestor
has_descendanthas_child

has_parent

has

Character
State Data

Matrix

represents_TU

Figure 3 Snapshot of the Key concepts of CDAO. This figure provides a very small summary of the core concepts and relations described in
CDAO.

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 4 of 11

exporting CDAO-Store data into phyloxml files,
enabling the use of some of the tools already developed
to process phyloxml data (e.g., the sophisticated Phy-
loBox visualization tool [20]).

PhlyoWS
PhyloWS (Phyloinformatics Web Services API) is a stan-
dard for exposing phylogenetic data as web services.
Web services are tools that can perform certain tasks,
and whose execution can be programmatically requested
using a standard Internet exchange protocol (i.e.,
HTTP) [21]. PhlyoWS specifically uses RESTful style
web services, and implements a few well-known opera-
tions to relay data [22,23]. This works in a similar way
as GET or POST for HTTP [23]. All PhlyoWS URIs
begin with/phylows/as the standard delimiter. Then,
based on the phylogenetic information being queried, a
data structure will be given, such as taxon, tree, or
study. This is followed by any specific identifiers needed
for the query. For example, http://purl.org/phylo/tree-
base/phylows/tree/TB2:Tr3099?format=rdf is a way to
access in-formation from TreeBASE using PhyloWS:
when this URL is accessed, it returns the tree with the
TreeBASE ID equal to ’Tr3099’ in RDF format [24].
A specification for PhyloWS can be found in [22].

CDAO-Store Implementation
CDAO-store builds on the EvoIO technology stack to
provide a semantic-based repository of phylogenetic
data, accessible through semantic web services and a
domain-specific query language. As such, CDAO-Store
primarily builds on the use of CDAO for the internal
semantic-based representation of data and for the pur-
pose of data querying, on the primary use of nexml for
data exchange, and on the use of PhyloWS for the pro-
grammatic use of the store. Nevertheless, as highlighted
next, CDAO-Store goes well beyond the EvoIO stack,
supporting other data formats and querying mechan-
isms. The CDAO-store platform is open-source and is
available as a SourceForge project, at http://sourceforge.
net/projects/cdaotools.
The implementation of CDAO-store is organized in

three interconnected modules, as illustrated in Figure 4:
a data importer module, a repository module, and an
exporter module.

Data Importer Module
The purpose of the data importer module is to import
phylogenies and their associated data into the repository,
automatically extracting their representations in terms
of instances of the CDAO ontology. The data importer
module can process phylogenetic data encoded in sev-
eral commonly used data formats. The current imple-
mentation provides sub-modules that can extract CDAO

instances from files encoded in NEXUS [6], nexml[7],
PHYLIP [9], and MEGA [25].
The various parsing sub-modules have been developed

either from scratch, using combinations of C++ and
XSLT style sheets, or using prebuilt libraries, such as
the NEXUS Class Library (NCL, http://sourceforge.net/
projects/ncl). The data importer module is also designed
to enable the processing of the content of the TreeBASE
http://www.treebase.org repository-a popular repository
of user-submitted phylogenies and associated generating
data-importing the corresponding CDAO instances into
the CDAO-store.
After reading each input file, the data importer mod-

ule maps data from these files to an object model that
mirrors CDAO classes, producing RDF/XML triples that
can be deposited in the CDAO-store repository (i.e.,
passed to the repository module). The data importer
module is also capable of mapping the object model
back into any of the acceptable input data formats; this
enables the use of the CDAO-store system for conver-
sion among data formats.

Repository Module
The repository module provides two core functionalities:
storage and querying.
Storage
The repository module maintains a triplestore, used to
store all the CDAO instances created, either through
submitted user files or through processing of TreeBASE
content. The triple-store is implemented in Python and
uses the RDFlib http://www.rdflib.net module to store
the RDF serializations of CDAO instances in a relational
database (implemented using a MySQL database). The
repository modules supports the execution of queries
against the triple-store.
RDFlib provides an excellent balance between flexibil-

ity, simplicity, and power for CDAO-Store. It is flexible,
allowing nearly seamless loading of RDF data from a
variety of sources through a uniform interface. It also
has a very flexible query interface, providing not only a

Triple-Store

Im
po

rt
er

M
od

ul
e

E
xp

or
te

r
M

od
ul

e

NEXUS

nexml

PHYLIP

MEGA

P
hy

lo
ge

ne
tic

 D
at

a

TreeBASE

Repository
and

Query
Engine

C
D

A
O

Tr

ip
le

s

CDAO
Triples

Queries

Visualizers

PhyloWS

Figure 4 Structure of CDAO-store. This figure shows the overall
structure of the implementation of the CDAO-store.

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 5 of 11

http://purl.org/phylo/treebase/phylows/tree/TB2:Tr3099?format=rdf
http://purl.org/phylo/treebase/phylows/tree/TB2:Tr3099?format=rdf
http://sourceforge.net/projects/cdaotools
http://sourceforge.net/projects/cdaotools
http://sourceforge.net/projects/ncl
http://sourceforge.net/projects/ncl
http://www.treebase.org
http://www.rdflib.net

SPARQL query processor, but also the ability to perform
more complex operations, e.g., iteration over a graph.
The SPARQL interface is also particularly attractive, as
it offers very flexible output formatting features, allow-
ing us to customize the output format of each query by
simply changing a format string, rather than having to
write more extensive output processors. This is particu-
larly important, considering our intention of offering
different output formats (e.g., RDF, nexml).
Python is also an attractive choice as host language,

because of its expressiveness. Python allows for a very
terse implementation-for example, the entire query pro-
cessing script is far less than 100 lines. This eased the
implementation, helping us in moving quickly from con-
cept to a working model, and allowing us to focus our
efforts on the particular questions we sought to answer
and the features we sought to support. This choice also
kept us from getting locked into a particular language
or platform for the entire project. In our system, only
the query processing is written in Python. The user-visi-
ble web components are largely PHP, and a good deal
of the PhyloWS interface is coordinated by shell or Perl
scripts.
With regard to simplicity, RDFlib is a nearly zero-con-

figuration system, requiring only the type of database to
connect to and some connection information. It auto-
matically manages the creation of tables, indices, and
other entities, making it possible to treat the entire store
as a persistent graph with almost no custom code. In
spite of its simplicity, it also proved to be robust, allow-
ing us to import the entire TreeBASE, encoded in the
form of CDAO triples, without any difficulty and with
good performance.
In addition to RDFlib, we considered alternative plat-

forms for the implementation-in particular, we explored
the use of OWL-API [26], Jena [27], and AllegroGraph
[28]. The use of OWL-API and Jena would have
required a great deal more effort to manage the config-
urations and a more extensive implementation to sup-
port our queries. The load startup/load time for the
system would have made writing a custom server a
necessity in order to handle requests in a timely fashion.
An experimental comparison with OWL-API and Jena
represents future work, that we intend to perform as
soon as we have accumulated sufficient user queries
from users of the CDAO-Store.
AllegroGraph provides a variety of attractive features,

including built-in support for the Prolog programming
language, but in terms of configuration and licensing
was a less attractive option. Additionally, while it offers
excellent performance, it demonstrated a number of
bugs and configuration problems during some prelimin-
ary experiments conducted at the TDWG 09 meeting.

In our first implementation, we did not consider the
use of RDF processors that employ denormalized sche-
mas (e.g., RAP [29] and Jena); while denormalized sche-
mas provide efficiency, they also appear to increase
space consumption, which was one of our concerns-as
CDAO may lead to very refined and detailed representa-
tions (especially for character state matrices) and to a
large number of instances. RDFlib uses a normalized
schema, maintaining tables and views for all objects,
associative-box, identifiers, literal-properties, literals,
namespace binding s, relations, “relation or associative
box,” and “URI or literal object.” This break-down helps
in reducing redundant information and space, and facili-
tates the use of hashing to reduce column sizes. Never-
theless, the literature has recently reported significant
performance differences in favor of denormalized
approaches (e.g., Jena2), thus suggesting the need to
explore in the future one of these alternative platforms
[30]; observe that a platform like RAP can be introduced
in CDAO-Store with ease.
Querying
The querying capabilities of the repository module can
be accessed in two ways-through a web portal and
through a programmatic interface. The portal is accessi-
ble through a standard web browser and provides fill-
able fields. The programmatic interface is accessible
through the previously mentioned support for the Phy-
loWS web service interface. Both interfaces currently
support the set of queries discussed next.
This set of queries is primarily drawn from the

description given by Nakhleh et al. [15], that provides a
characterization of a relevant set of domain-specific
queries that are desirable for any repository of phyloge-
netic structures. The repository module supports all the
types of queries identified in [15] (with only two excep-
tions, as mentioned later). This is a diverse set of
queries, ranging from queries that require a simple data-
base search, to queries that involve complex reasoning
over tree structures. The domain-specific types of
queries are:

1. Determine all the phylogenies containing a given
set of taxa-e.g., locate all trees containing the taxo-
nomic units named Ilex anomala and Ilex glabra;
2. Determine the relationships among a set of taxa in
all phylogenies (query not supported);
3. Determine the minimum spanning tree/clade for a
given set of taxa-e.g., locate the minimum spanning
clade in the tree Tree3099 for the taxonomic units
Ilex anomala and Ilex glabra;
4. Determine all phylogenies constructed using a
given inference method-e.g., locate all the phyloge-
nies constructed using the program PAUP*;

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 6 of 11

5. Determine all the phylogenies containing a set
number of taxa-e.g., locate all the phylogenies with
at most 25 clades;
6. Determine all the phylogenies produced by a given
tool or author-e.g., locate all the phylogenies pub-
lished by W. Piel;
7. Determine all phylogenies satisfying a given prop-
erty-e.g., locate all the phylogenies that have dia-
meter equal to 5;
8. Given a phylogeny P , a measure m, and a quan-
tity q, determine all the phylogenies that are at dis-
tance q from P according to the measure m (e.g., for
the purpose of clustering phylogenies that are
“close” to a given tree);
9. Given a model of evolution, determine all the
phylogenies that have been constructed using such
model of evolution-e.g., identify all the phylogenies
that have been constructed using Jukes-Cantor
model for estimating distance;
10. Given a measure, return statistics about the mea-
sure in the phylogenies present in the repository-e.g.,
determine the distribution of tree lengths;
11. Given a type of data and a set of taxa, determine
all the phylogenies on the set of taxa that have been
constructed using the specified type of data-e.g.,
determine all phylogenies built using DNA
sequences.

To address these different types of queries, the query
system is divided into two primary modules:

• The RDFlib has been linked to a SPARQL [31]
engine and an OWL reasoner, Pellet http://pellet.
owldl.com/, enabling the execution of standard
SPARQL queries to access the data in the triple-
store. This allows the implementation of queries that
require simply searching the content of the reposi-
tory for triples containing a particular data item.
• Other types of queries are beyond the expressive
power of the standard SPARQL query language-due
to SPARQL’s inability to query hierarchical struc-
tures of unknown depth, to query transitive relations
(such as those used to describe paths in a phylo-
geny), the lack of support for some aggregate func-
tions (e.g., SUM, needed to implement statistical
queries like queries of type 10), and the relatively
limited support provided by reasoners like Pellet in
handling certain features of OWL ontologies (e.g.,
Pellet provides an inconsistent behavior in handling
property chaining, which is used in CDAO to define
the descendant relation within a phylogeny).
In order to support queries requiring these features,
the repository module has the capability of mapping
CDAO tree and network structures, stored in the

triple-store, to corresponding representations of
trees and networks in Prolog [32], a popular rule-
based programming language for knowledge repre-
sentation and reasoning. The choice of Prolog is
suggested by its natural ability to represent and
manipulate tree and graph structures, encoded as
logical terms, and the ability to elegantly and effi-
ciently address tasks involving transitive closures and
aggregations. Thus, the remaining types of queries
are implemented using Prolog rules.

Table 1 maps each type of query to the corresponding
implementation method-the interested reader is also
referred to [33] for details of how the various types of
queries are mapped to Prolog and SPARQL. For the
queries that are not supported, the primary cause is the
lack of a precise specification of the query, or the lack
of relevant data in the repository. For example, in the
discussion of queries of type 2, the set of relationships
one might be interested in having returned was not fully
specified in the original article [15]. Finally, the availabil-
ity of a SPARQL interface enables the user to submit
also arbitrary user-defined queries, as long as these are
expressible as SPARQL queries-through the PhyloWS
web service interface.

Exporter Module
The goal of the exporter module is to provide interac-
tions with the user. The module provides three main
interaction mechanisms: a web portal, a web service
interface, and a set of visualization tools.
The web portal offers an HTML interface to interact

with the repository. The interface allows the on-line
submission of queries, the ability to browse the content
of the triple-store, and forms to submit new data sets to
the triple-store. The web portal allows also one to make

Table 1 Implementation Methods for Queries

Query # Implementation Method

#1 SPARQL

#2 Not Supported

#3 Prolog

#4 SPARQL

#5 Prolog

#6 SPARQL

#7 Prolog

#8 Prolog

#9 Not Supported

#10 SPARQL

#11 Prolog

The table illustrates the implementation method employed for each one of
the various classes of queries discussed in [15].

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 7 of 11

http://pellet.owldl.com/
http://pellet.owldl.com/

annotations about a dataset, a general project space, a
set of data sets of interest. These annotations can be
from CDAO, Dublin-Core, or from a user-supplied
source of annotation types (i.e., another ontology).
The web service interface is an implementation of the

PhyloWS protocol; this is realized by a collection of
scripts, capable of generating the necessary SPARQL/
Prolog queries to be submitted to the repository module.
The visual interface, called CDAO-Explorer, provides

two graphical visualization tools; one tool is used to
provide a graphical representation of phylogenetic trees
and networks, while the second one pro-vides graphical
representations of character data matrices. The tools
have been implemented using Java and the Prefuse
visualization toolkit prefuse.org. Work is in progress to
link existing visualization tools (e.g., PhyloBox and Nex-
plorer 3) to CDAO-Store.
The results of the queries can be retrieved as files in

one of several data formats; currently, the repository
allows retrieval of data in RDF/XML format (i.e., CDAO
triples), nexml, NEXUS, phyloxml, Newick (for the
representation of trees), GraphML (for the representa-
tion of trees), and Prolog.

Results
Web-Tools
The web tools provide a variety of querying and data
access features for both human and programmatic
access to data. It allows one to retrieve data sets by
author name, tree identifier, taxon, algorithm, or
method. It also supports computing the minimum span-
ning clade or the nearest common ancestor of a set of
taxa. It also allows one to list trees conforming to cer-
tain measures. For example, finding all trees larger or
smaller than a given size.
Our PhyloWS implementation is the basis for all the

data access features of CDAO-Store. The other web
components, and the CDAO-Explorer tool use it to
access data. URI’s are divided into three conceptual
parts. The address of the store site, and path prefix
http://www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows, a
query type (e.g., tree, matrix, msc, nca, size), and a para-
meters list. The specific parameters depend on the
query type. For example, the msc ("Minimum Spanning
Clade”) and the nca ("Nearest Common Ancestor”)
query types expect a list of taxon id’s separated by ‘/’.
The listing query takes optional limit and offset para-
meters to paginate results. The size query takes a direc-
tion (greater, less, or equal), a criteria (node, internal, or
leaf) and a size (a numeral).

Performance
CDAO-Store, even though in its first release, has already
reached a stable and reliable state. The store currently

contains 93, 000, 153 triples, contributed by a porting of
TreeBASE and by additional user submissions. The per-
formance of the CDAO-Store on the various queries is
dependent on the specific type and parameters of the
query, but we have rarely encountered instances that
would lead to response times higher than 120 seconds-
and, for most of the queries provided to us by our
alpha-testers, we observed average response times
between 3 and 60 seconds. Table 2 reports some perfor-
mance results for some of such queries.

CDAO-Explorer
CDAO-Explorer has achieved a basic level of functional-
ity. It provides search and visualization for both trees
and matrices and a set of additional features not cur-
rently available in other related tools.
Annotation is an important part of CDAO-Explorer. It

allows users to attach arbitrary an-notations to data
items, as well as collections of resources. These annota-
tions are expressed as instances of concepts drawn from
CDAO or from any user-specified ontology. CDAO-
Explorer also allows users to load or save custom data
not in the repository and to export pictures of visualiza-
tions of trees and matrices.
The CDAO-Explorer platform is flexible, and in the

long term it is expected to be an open platform for the
integration of other visualization tools. For example,
Nexplorer 3, which is capable of processing CDAO data,
will be integrated with CDAO-Store. We have also
demonstrated an integration of PhyloBox [20] as an
alternative visualization interface, made possible by the
ability to export data in phyloxml format.
Tree Viewer
Tree Viewer is the graphical application used to display
trees. It is built using the Prefuse visualization frame-
work. Data from the CDAO triple-store (provided by
the repository module) is converted into the GraphML
format [19] and then supplied to the visualization appli-
cation. Figure 5 shows a snapshot of the tree
visualization.
The Tree Viewer provides several interesting features.

The tool provides two different layouts for the tree to
be displayed. By default, the Tree Viewer uses a force
layout, which allows the nodes of the tree to “bounce”
around as if pulled by strings until an equilibrium is
reached. The second layout is called node layout, which
resembles a more standard parent/child structured tree,
going from left to right.
Another feature provided by the Tree Viewer is the

ability to search the tree using the node and edge label
names, highlighting all that successful matches found.
For instance, a tree may have many nodes that have as
part of its name #Ilex_. When this search is per-
formed, all nodes with the label containing that will be

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 8 of 11

http://www.cs.nmsu.edu/~cdaostore/cgi-bin/phylows

highlighted. Labels for nodes are generally the taxa
name for the corresponding taxonomic unit or, if it is
an unknown internal node, will have the convention of
being named #nodeX where X is some number. Edge
labels are similar in that they are the labels of the two
nodes combined as ‘source_destination’.
It is also possible to view more specific details on a

specific node or edge. Currently, the only detailed infor-
mation available is the label. Finally, the Tree Viewer
provides the option to save the tree visualization as a
jpeg or png file.
Matrix Viewer
We have developed a custom framework for visualizing
matrices. It assigns color codes to character states,
allowing one to graphically appraise large matrices and

quickly discover patterns in the source data. It allows
users to scale matrices, select regions of a matrix to see
in greater detail, and attach annotations to particular
cells of a matrix. Figure 6 shows a snapshot of the
Matrix Viewer.

Related Work
TreeBASE
TreeBASE [4] is a relational database that stores phylo-
genies (of different nature), the associated alignments
and character data used to derive the phylogenies, and
several types of meta-data (e.g., authors and citations).
The content of TreeBASE is community contributed
and it is restricted to results of published studies. Tree-
BASE occupies a unique role, in providing access to
both description of trees as well as corresponding gener-
ating data matrices. The spirit of TreeBASE is to enable
retrieval of trees and data for study comparison, combi-
nation, and for reuse. The relational nature of the
underlying repository enables a set of standard queries
for accessing the repository. The original TreeBASE pro-
vided six forms of access to the repository (as discussed
earlier in this paper); the newest release has expanded
the submission formats (adding nexml as one of the

Table 2 Execution Times for Some Sample Queries

Query Type Description Time

Type 3 Minimum Spanning Clade in Tree3099 for the OTUs Ilex anomala and Ilex glabra 1.82

Type 4 Trees Built using Parsimony Algorithms 6.12

Type 1 Trees Containing OTUs Ilex anomala and Ilex glabra 2.44

Type 6 Trees Authored by William Piel 5.42

Type 4 Trees Constructed using PAUP* 6.19

Type 5 Trees with at most 25 Nodes 32.58

Type 3 Basal Node of a Minimum Spanning Clade of Ilex anomala and Ilex glabra in Tree3099 0.91

Type 7 Trees having Width Equal to 13 15.91

The table illustrates the times, in seconds, for a collection of sample queries provided to the developers by a group of beta-testers.

Figure 5 Tree Viewer with search . This is the TreeViewer
Application displaying the tree Tree3099 from TreeBASE and
searching for all nodes and edges with #Ilex_.

Figure 6 Matrix Viewer. This is a snapshot of the MatrixViewer
component; it shows a DNA matrix, using colors to identify
occurrences of identical nucleotides.

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 9 of 11

supported formats, along with NEXUS), added support
for the PhyloWS API, and connection to the PhyloWid-
get visualization tool.
Nexplorer
Nexplorer [34] is a tool developed to provide combined
visualization of phylogenetic trees and associated charac-
ter data matrices. The input to the Nexplorer is in
NEXUS format; this could be either provided as a user-
provided file or extracted via keyword search from a set
of pre-processed data sets (e.g., 684 KOGs families and
7226 families from Pandit). The strength of Nexplorer is
the ability to combine the visualization of phylogenies
and of the associated data matrices. Nexplorer offers the
ability to explore both leaves and internal nodes, and
customize the visualization focusing on user-selected
subsets of data. Differently from CDAO-Store, Nex-
plorer does not provide a direct connection to a reposi-
tory and does not support data querying.
The latest release of Nexplorer (version 3) is currently

under completion and it will be integrated with CDAO-
Store, being capable of processing data encoded using
CDAO.
PhyloWidget
PhyloWidget [35] is another application to visualize
phylogenetic trees; the input is provided in Newick,
NHX and NEXUS formats. The user interface enables a
large level of interactivity and customization, including
the ability to edit node labels and branch lengths, select
and copy subtrees, and re-root the tree w.r.t. a selected
node. The rendering engine can manipulate trees with
thousands of nodes, producing effective representations
(e.g., using rectangular, diagonal, and circular layouts).

Discussion
The CDAO-store poses itself as the first semantically
aware data repository for phylogenetic investigations. Its
connection with TreeBASE and the ability to import
arbitrary files from several different formats allows the
repository to dynamically grow through community-
contributed submissions; furthermore, the ability to pro-
vide additional annotations, driven by a formal ontology,
allows community curation of data and facilitates the
reuse of phylogenetic trees in different investigations.
The CDAO-store provides the ability to integrate data
from different experiments, through the use of a
domain-specific query interface. In addition, the ability
to convert to and from different data formats, using a
intermediate semantic-based representation, guarantees
semantically correct data format inter-conversion
services.
Through these features, CDAO-store poses itself as a

unique tool for data storage, reuse and inter-operation,
overcoming limitations imposed by data formats and
facilitating the development of workflows and (semi-)

automated protocol implementations. The CDAO-store
has been validated in preliminary community-driven
experimentations (e.g., in the context of the first NES-
Cent Phyloinformatics VoCamp, http://www.evoio.org/
wiki/VoCamp1); several inter-operability demonstration
projects are in progress, e.g., demonstrating inter-opera-
tion between TreeBASE and several visualization
environments.

Conclusions
Current State
The CDAO-store tool set provides a robust foundation
for a semantically aware, phylogeny resource. The query
and translation services are well developed and based on
an easily extensible framework to easily address addi-
tional development of features. The CDAO-Explorer
portion of the store has achieved a good base-line func-
tionality and provides a set of useful features to advance
the current state of visualization of large data sets in
this field. Also it provides a good proof-of-concept for
integrating semantic information and other meta-data in
a seam-less and natural way.

Future Directions
Several features are currently being implemented to
extend the capabilities and applicability of CDAO-store.
For the web we plan to allow users to submit and exe-
cute their own SPARQL queries to our triple-store,
enabling a wider range of queries than those supported
by the current interface (currently this feature is sup-
ported only through the PhyloWS programmatic inter-
face). CDAO-Explorer will include tighter integration
between the tree and matrix visualizations, and also
phase in support for describing processes and work
flows, as part of its existing support for annotating sets
of tree and matrix files.
We are also exploring mechanisms to provide a more

direct integration between CDAO-store and TreeBASE,
enabling regular updates of CDAO-store based on sub-
missions to TreeBASE and enabling TreeBASE users to
locate and access CDAO-store.
Finally, as the size of the repository increases, we

intend to investigate whether RDFlib is an adequate tri-
ple-store system for the needs of CDAO-Store, or
whether alternative platforms (e.g., RAP or Jena) would
provide greater stability and performance.

Availability and Requirements
Project name: CDAO-Store
Project home page: http://www.cs.nmsu.edu/~

cdaostore/
Operating system(s): Linux, MacOS X, Unix
Programming language: C++, Java, Perl, PHP,

Python, Prolog

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 10 of 11

http://www.evoio.org/wiki/VoCamp1
http://www.evoio.org/wiki/VoCamp1
http://www.cs.nmsu.edu/~ cdaostore/
http://www.cs.nmsu.edu/~ cdaostore/

Other requirements:
License: GPL
Any restriction to use by non-academics:

Acknowledgements
We thank A. Stoltzus, H. Lapp, and R. Vos for their support, advice, and
comments. The National Evolutionary Synthesis Center (NESCent) was
instrumental in the development of CDAO and in inspiring this project. This
project is currently partially supported by NSF CREST grants HRD-0420407
and NSF IGERT grant DGE-0504304, and by a grant from the Army High
Performance Computing Research Center.

Authors’ contributions
BC focused on development of the web and database tools, and the
integration of the tree and matrix and tree visualizers into the CDAO-
Explorer application.
BW developed the tree viewer portion of the CDAO-Explorer tool, as well as
updating the translator tool to accommodate the latest changes to the
CDAO standard.
TL developed the MEGA format reader for the translator tool, as well as the
matrix visualization tool.
TCS guided the development of the project.
EP led the development of the CDAO ontology and supervised the
development of the project.
All authors read and approved the final version of this manuscript.

Received: 8 September 2010 Accepted: 15 April 2011
Published: 15 April 2011

References
1. Ellegren H: Comparative Genomics and the Study of Evolution by

Natural Selection. Molecular Ecology 2008, 17(21):4586-4596.
2. Wu M, Eisen J: A Simple, Fast, and Accurate Method of Phylogenomic

Inference. Genome Biology 2008, 9(10):R151.
3. Webb C, Ackerly D, McPeek M, Donoghue M: Phylogenies and Communtiy

Ecology. Annu Rev Ecol.Syst 2002, 33.
4. Piel W, Donoghue M, Sanderson M: TreeBASE: a database of phylogenetic

knowledge. To the interoperable “Catalog of Life” with partners Species 2000
Asia Oceanea, 171, Research Report from the National Institute for
Environmental Studies 2002, 41-47.

5. Maddison D, Schulz K, Maddison W: The Tree of Life Web Project. Zootaxa
2007, 1668:19-40.

6. Maddison D, Swofford D, Maddison W: NEXUS: an Extensible File Format
for Systematic Information. Syst Biol 1997, 46(4):590-621.

7. Vos R: nexml: Phylogenetic Data in XML. 2008 [http://www.nexml.org].
8. Han M, Zmasek C: phyloXML: XML for Evolutionary Biology and

Comparative Genomics. BMC Bioinformatics 2009, 10:356.
9. Felsenstein J: PHYLIP: Phylogeny Inference Package. Cladistics 1989,

5:164-166.
10. Prosdocimi F, Chisham B, Pontelli E, Thompson J, Stoltzfus A: Initial

Implementation of a Comparative Data Analysis Ontology. Evolutionary
Bioinformatics 2009, 5:47-66.

11. Schulze-Kremer S: Ontologies for Molecular Biology and Bioinformatics. In
Silico Biology 2002, 2(17).

12. Sklyar N: Survey of Existing Bio-Ontologies. Tech rep., University of Leipzig;
2001.

13. Bechofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-
Schneider P, Andrea Stein L: OWL Web Ontology Language Reference.
Tech Rep REC-owl-ref-20040210, World Wide Web Consortium; 2004.

14. Manola F, Miller E: RDF Primer. Tech Rep REC-rdf-primer-20040210, World
Wide Web Consortium; 2004.

15. Nakhleh L, Miranker D, Barbancon F, Piel W, Donoghue M: Requirements of
Phylogenetic Databases. Third IEEE Symposium on Bioinformatics and
Bioengineering, IEEE 2003, 141-148.

16. Stoltzfus A, Cellinese N, Cranston K, Lapp H, McKay S, Pontelli E, Vos R: The
EvoIO INTEROP Project. National Evolutionary Synthesis Center; 2009
[http://www.evoio.org/wiki/main_page].

17. Lapp H, Vos R: Phyloinformatics Web Services API: Overview. National
Evolutionary Synthesis Center; 2009 [https://www.nescent.org/wg/evoinfo/
index.php?title=phylows].

18. Vos R: Future Data Exchange Standard.[https://www.nescent.org/wg/
evoinfo/index.php?title=Future_Data_Exchange_Standard&diff=5937&
oldid=prev#Element_description].

19. Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS: GraphML
Progress Report - Structural Layer Proposal. 2002.

20. Hill A, Pick S, Guralnick R: PhyloBox. 2010 [http://phylobox.appspot.com].
21. Web Services Glossary. [http://www.w3.org/TR/ws-gloss/].
22. PhyloWS/REST. [http://www.nescent.org/wg_evoinfo/PhyloWS/REST].
23. Fielding RT, Software D, Taylor RN: Principled Design of the Modern Web

Architecture. ACM Transactions on Internet Technology 2002, 2:115-150.
24. SourceForge.net: API - treebase. [http://sourceforge.net/apps/mediawiki/

treebase/index.php?title=API].
25. Kumar S, Dudley J, Nei M, Tamura K: MEGA: A Biologist-centric Software

for Evolutionary Analysis of DNA and Protein Sequences. Briefings in
Bioinformatics 2008, 9:299-306.

26. Horridge M, Bechofer S: The OWL API: A Java API for Working with OWL
2 Ontologies. 6th OWL Experienced and Directions Workshop 2009
[http://owlapi.sourceforge.net].

27. Jena: A Semantic Web Framework for Java. 2010 [http://jena.sourceforge.
net].

28. AllegroGraph RDFStore. 2010 [http://www.franz.com/agraph/
allegrograph3.3].

29. Westphal D, Bizer C: Introduction to RAP. Tech rep., Software Environment
for the Advancement of Scholarly Research; 2004.

30. Das S, Srinivasan J: Database Technologies for RDF. Tech Rep Oracle Server
Technologies; 2009 [http://reasoningweb.org/2009/material/RW09-DB4RDF.
pdf].

31. Prud’hommeaux E, Seaborne A: SPARQL Query Language for RDF. Tech
Rep REC-rdf-sparql-query-20080115, W3C; 2008.

32. Shapiro E, Sterling L: The Art of Prolog. The MIT Press; 1994.
33. Chisham B, Pontelli E, Son T, Wright B: Logic Programming and Web

Service Querying for Phylogenetic Information. Tech Rep TR-CS-NMSU-1-
4-2011, New Mexico State University, Department of Computer Science;
2011.

34. Gopalan V, Qiu W, Chen M, Stoltzfus A: Nexplorer: phylogeny-based
exploration of sequence family data. Bioinformatics 2006, 22:120-121.

35. Jordan G, Piel W: PhyloWidget: web-based visualizations for the tree of
life. Bioinformatics 2008, 24(14):1641-1642.

doi:10.1186/1471-2105-12-98
Cite this article as: Chisham et al.: CDAO-Store: Ontology-driven Data
Integration for Phylogenetic Analysis. BMC Bioinformatics 2011 12:98.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Chisham et al. BMC Bioinformatics 2011, 12:98
http://www.biomedcentral.com/1471-2105/12/98

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/19140982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19140982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21572508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21572508?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11975335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11975335?dopt=Abstract
http://www.nexml.org
http://www.ncbi.nlm.nih.gov/pubmed/19860910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19860910?dopt=Abstract
http://www.evoio.org/wiki/main_page
https://www.nescent.org/wg/evoinfo/index.php?title=phylows
https://www.nescent.org/wg/evoinfo/index.php?title=phylows
https://www.nescent.org/wg/evoinfo/index.php?title=Future_Data_Exchange_Standard&diff=5937&oldid=prev#Element_description
https://www.nescent.org/wg/evoinfo/index.php?title=Future_Data_Exchange_Standard&diff=5937&oldid=prev#Element_description
https://www.nescent.org/wg/evoinfo/index.php?title=Future_Data_Exchange_Standard&diff=5937&oldid=prev#Element_description
http://phylobox.appspot.com
http://www.w3.org/TR/ws-gloss/
http://www.nescent.org/wg_evoinfo/PhyloWS/REST
http://sourceforge.net/apps/mediawiki/treebase/index.php?title=API
http://sourceforge.net/apps/mediawiki/treebase/index.php?title=API
http://www.ncbi.nlm.nih.gov/pubmed/18417537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18417537?dopt=Abstract
http://owlapi.sourceforge.net
http://jena.sourceforge.net
http://jena.sourceforge.net
http://www.franz.com/agraph/allegrograph3.3
http://www.franz.com/agraph/allegrograph3.3
http://reasoningweb.org/2009/material/RW09-DB4RDF.pdf
http://reasoningweb.org/2009/material/RW09-DB4RDF.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16267087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487241?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	CDAO
	PhlyoWS

	CDAO-Store Implementation
	Data Importer Module
	Repository Module
	Storage
	Querying

	Exporter Module

	Results
	Web-Tools
	Performance
	CDAO-Explorer
	Tree Viewer
	Matrix Viewer

	Related Work
	TreeBASE
	Nexplorer
	PhyloWidget

	Discussion
	Conclusions
	Current State
	Future Directions

	Availability and Requirements
	Acknowledgements
	Authors' contributions
	References

