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Abstract

the assumed genetic model is not appropriate.

statistic has the best overall performance.

Background: The cost efficient two-stage design is often used in genome-wide association studies (GWASs) in
searching for genetic loci underlying the susceptibility for complex diseases. Replication-based analysis, which
considers data from each stage separately, often suffers from loss of efficiency. Joint test that combines data from
both stages has been proposed and widely used to improve efficiency. However, existing joint analyses are based
on test statistics derived under an assumed genetic model, and thus might not have robust performance when

Results: In this paper, we propose joint analyses based on two robust tests, MERT and MAX3, for GWASs under a
two-stage design. We developed computationally efficient procedures and formulas for significant level evaluation
and power calculation. The performances of the proposed approaches are investigated through the extensive
simulation studies and a real example. Numerical results show that the joint analysis based on the MAX3 test

Conclusions: MAX3 joint analysis is the most robust procedure among the considered joint analyses, and we
recommend using it in a two-stage genome-wide association study.

Background

The two-stage design is often adopted in genome-wide
association studies (GWASs) to search for genetic
variants underlying susceptibility for complex diseases.
The advantages of the two-stage design have been inves-
tigated extensively (see e.g., [1-12]). In a typical two-stage
design for GWASs, a proportion of the available samples
are genotyped at the initial stage on a large number of
single nucleotide polymorphisms (SNPs) using a com-
mercial genotyping platform. Based on association test
results obtained at this stage, a small percentage of SNPs
are selected and further genotyped on the remaining
samples in the second stage. To analyze data generated
from such a two-stage design, the joint analysis strategy
has been recommended, which combines the test statis-
tics from both stages as the final test statistic, and is
shown to be more powerful than the replication-based
analysis that only utilizes the second stage data [12].
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The efficiency of joint analysis based on the allele-
frequency-difference-based test (AFDT) was evaluated in
detail in comparison to the replication-based analysis [12].
It is commonly adopted as a single marker test in GWASs.
The AFDT is valid when Hardy-Weinberg equilibrium
(HWE) holds in the target population, and is powerful
when the underlying genetic models are additive or multi-
plicative. The Cochran-Armitage trend test (CATT)
[13,14] derived under the additive (in log scale) genetic
risk model is also used in single-maker analysis, which is
optimal when the underlying additive genetic model is
true. However, both tests are not so powerful compared
with other methods such as MAX3 [15] when the underly-
ing genetic model is not additive. Since in most cases there
is no evidence suggesting that the additive risk model is
most appropriate for the underlying disease model, espe-
cially in the typical GWASs where we most likely evaluate
only the tagging SNPs, but not the causal SNPs directly.
Thus, it is advantageous to adopt a more robust single
marker test that has a relatively good performance under
all possible disease models. To this end, two types of such
robust tests, the MERT (maximin efficiency robust test)
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[15,16] and MAX3 (the maximum values of CATTs under
recessive, additive and dominant models) have been
recently considered [15,17]. Nevertheless, their perfor-
mances under the two-stage design have not been thor-
oughly investigated.

In this report we propose two types of joint test statis-
tics for the two-stage design based on the two robust
tests, MERT and MAX3. We derive closed-form formula
to calculate the power of the MERT-based joint analysis,
and propose a computationally efficient Monte Carlo
procedure to evaluate the significance level of the
MAX3-based joint analysis. Facilitated by these two pro-
cedures, we evaluate the performances of the two robust
test based joint analyses, in comparison with the ones
based on AFDT, under various two-stage design setups
and disease models.

Methods

Notations

Suppose that r cases and s controls are randomly
sampled from the source population in a GWAS.
Denote the number of SNPs genotyped and the propor-
tion of the subjects in Stage 1 by m and 7, respectively.
Throughout, we only consider biallelic SNPs with two
alleles G and g, with G being the risk allele. Then there
are three genotypes: gg, Gg, and GG. Using the disease
risk at gg as the baseline, we define the relative risks of
Gg and GG as 4, = fi/fo and A, = fo/fo, respectively,
where fy = Pr(case|gg) > 0, fi = Pr(case|Gg), f» = Pr(case|
GG) are the penetrances. Let K = Pr(case) be the disease
prevalence. Denote the genotype frequencies in case
population as po = Pr(gg|case) = Pr(gg)fo/K, p1 = Pr(Gg|
case) = Pr(Gg)f,/K, py = Pr(GG|case) = Pr(GG)f;/K and
in control population as go = Pr(gg|control) = Pr(gg)
(1£0)/(1-K), @1 = Pr(Gg|control) = Pr(Gg)(1-f,)/(1-K),
q> = Pr(GG|control) = Pr(GG)(1-f3)/(1-K). Then the null
hypothesis of no association is Hy : p; = q; i = 0,1,2,
which is equivalent to Hy : 1; = A, = 1. The alternative
hypothesis is H; : A, > A; > 1 with 4, > 1. The com-
monly used three genetic models, recessive, additive and
dominant models are corresponding to A, > 1; = 1,
211 = Ay +1 and A; = A, > 1, respectively. We assume
that SNPs with p-values less than y in Stage 1 will be
further investigated in Stage 2 and o be the whole gen-
ome-wide type I error.

The notations for genotype frequencies in case popu-
lation and control population of Stage 1 and Stage 2 are
given in Table 1. It should be noted that p;; = p,; and
qi; = q2; for i = 0,1,2 in the table using the first sub-
script on behalf of Stage 1 or Stage 2 since they are the
population parameters. However, the estimates of p;
and ¢q;,; for i = 0,1,2 based on the data of Stage 1 and
those of p,; and ¢,; for i = 0,1,2 based on the data of
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Table 1 Genotype frequencies in case population and
control population for both stages

cases controls

99 Gg GG ele] Gg GG
Stage 1 Pio P P2 Gio an G12
Stage 2 P20 P21 P22 920 g2 G2

Stage 2 might be different although the data of Stage 1
and Stage 2 are drawn from the same source population.

Allele-Frequency-Difference-Based Joint Analysis

Denote the risk allele frequencies in case population and
control population by 8 and @, respectively. Let él and
@, be their maximum likelihood estimates in Stage 1,
respectively. Then the test statistic for Stage 1 is

0, -o,
1 1

2rm 2sm

Z, =

1
X\/[él‘g ‘Hﬁl(l_‘S)J[l_él‘: _151(1_‘5)]

, where & =
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The threshold for selecting SNPs in Stage 1 is b; =
®'(1-y/2), where ®(-) is the cumulative standard normal
distribution function. Similarly, we can get the maximum
likelihood estimates of the risk allele frequencies in case
population and control population using the data from
Stage 2, denoted by éz and @ ,. Then the test statistic
for Stage 2 can be written as
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\/21’(11—71') + 25(11—71']
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The joint statistic is Z, =/nZ; +J1-7Z,. The

Bonferroni correction threshold (b)) for Z; is the solu-
tion of the equation Pryy, (|Z1 |> b1,|Z, | >b, ) =a/m,
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So the power of the joint test under the alternative
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The calculation of Pry; (|Zl|>b1,|Z,|> b,) is based on

and

two-fold integration which can be computed using the
built-in function, “pmvnorm”, in the R package
“mvtnorm” [18-20].

The above approach is slightly different from the one
considered in [12], where the authors constructed the
test statistics by estimating the variance of the differences
of allele frequency between case population and control
population using the cases and controls separately under
the null hypothesis. In our joint analysis, we estimated
the variance using the combined data of case sample and
control sample. Results (not show here) show that the
two approaches have very similar performance.

Cochran-Armitage Trend Test under the Additive Model-
Based Joint Analysis

Cochran-Armitage trend test under the additive model
(CATTA) (see e.g., [13,15]) is often used in the genetic
association studies including GWASs. Denote CATTA for

both stages by T;* and T;', respectively. Then the thresh-
old for selecting SNPs in Stage 1 is d; = ®(1-y/2). The
joint test statistic is T]A =JnT +J1— 7T} The thresh-

old (d)) for T ]A can be obtained by solving the equation
A A _ -
Pryy, (|T1 |>d1,|T] | >d,; ) =a [/ m. The power of the joint

analysis is Pry, (|T1A| > d1,| T | >d,; ) , which can be calcu-
lated again using the R package “mvtnorm”. The joint dis-
tributions of (TlA,T]A )' under the null and alternative

hypotheses are given in Appendix A in Additional file 1.

MERT-Based Joint Analysis

MERT was originally proposed in [16] to find robust
test statistic in situations when multiple alternative
models are plausible. It was used to define a robust test
for single-marker analysis [15]. Here we apply the test
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to two-stage design. Similar to T/* and T}, we can
obtain CATTs T\® and T under the recessive model
and CATTs T and T, under the dominant model
for both stages. So MERT for both stages are

T+ 1P pmert _ Ty + Ty
/2 and ‘2 T 412,
[20+ 5] [20+p1")]

respectively, where pffP and pXP are the correlation
coefficients of TF and TP, and T/ and T, under
the null hypothesis, respectively, which are shown
in Appendix B in Additional file 1. The joint analysis
based on  MERT can be  defined as
/" = JaT™" +J1-zT)". The threshold for
selecting SNPs in Stage 1 is u; = ®(1-7/2). To control
the false positive rate of the joint analysis, we can obtain
the threshold u;, which is the solution to the equation

mert _
T, =

PrHo ( ‘ Tlmert

>, ‘ T]mert

>u,)=a/m.

The power of the test is given by

mert mert
Pry;, (‘T1 |> | T]

>u,), whose numerical

values can be calculated using the R package
“mvtnorm”. The joint distributions of (T{“”‘,T,’"”‘ ) under
the null and alternative hypotheses are derived in
Appendix B in Additional file 1.

MAX3-Based Joint Analysis

MAX3, the maximal value of CATT under three
genetic models, is another commonly used robust
test in the current GWASs (see e.g., [7,15,17]). Once

we have (TIR,TIA,TID) and (TZR,TZA,TZD), the test
statistic in Stage 1 is T\"* = max{‘TlRHTlA HTlD‘}
and the joint analysis based on MAX3 can be defined as
"™ = max{‘ T]R HT]A HT]D ‘}, where
T} =JrT* +V1-7T;, T/ =JaT{ +J1-7T3,
and T]D = \/;TlD + \/ETZD. For a given significance
level 7 in Stage 1, the threshold (v;) can be obtained by

solving the equation
Pry, (max{‘TlRHTlA HTlD‘} >, ) =y.
According to Chapter 6 of [21], we have
T = 0,,Tf + 0,7, where ®n :’W and
AD _ _RD _RA
@12 =M, with pR4 and pAP given in
1— ( leD ) 1 1
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Appendix C in Additional file 1.

T ‘ A Lopt? we can obtain v; usin
O e (O PP ) e

the R package “mvtnorm”. After that, we use the follow-
ing computationally efficient algorithm to approximate
the threshold (v)) for the joint analysis:

1) Generate B identical and independently distri-
buted  bivariate  normal random  variates

RD
(T1R1rT1L1))/r(T1l§rT1L2))/r"'r(TfJ{i/Tf];)lNNz[(g)/[’D}m Pll ]J. Then
1

calculate

Because

A _ R D
T = 0Ty + 0Ty and

Tf{‘a"=max{‘T1}f‘,‘Tl?‘,‘Tl?‘} for i = 1, 2, .., B.

Without loss of generality, we assume T,7™ >y, for i =

1,2, .,B and T <y, fori=B; +1,B; +2,.. B
2) Generate B, identical and independently distributed
bivariate normal random variates

RD
(szg)z(nmg)',.--,(T;*Bl,rz%l)'NNZ[[g}[ Lop H Then

P2 1

RA RD _AD
P2 =Py Py

calculate T£ =w21T§+a)22T2€?, @31 : ( D12
—\ P2 )

_p=ppat o
- rp\2 » With p3* and p7” given
1= ( P2 )

in Appendix C in Additional file 1. For i = 1, 2, ..., By,
calculate

and ®22

‘\/;Tl}f+\/1—7rT2ﬂ,
TP = max ‘\/ET{? +41 —nTzﬂ,
‘\/;Tl? +\/1—7TT21?‘

3) Find 17 that yields
#IT™* >v,,i=1,2,---,B
. ] Jr 1<y r 1
min { : } S with
B, my
max | — e
#{Tﬁ >vy,1=1,2, 'Bl}<L and
B, T my

vye{TP™i=1,2,B}.

Once we have v; and v;, we generate the data under
the alternative hypothesis to calculate the power
empirically. In the simulation studies, we generate
10,000 data sets under the alternative hypothesis. For
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the i data set (i = 1, 2. ..., 10000), we calculate T, max

and T;™, denote them again by T/ and T,

respectively. Then the empirical power is
#{TllinaX > vl,T]‘i“aX >v);i= 1,2,...,10000}

10000
Results

Simulation Setup

In order to mimic the real GWAS, we choose the simula-
tion parameters similar to [12,22]. In a typical GWAS,
there are thousands of individuals randomly chosen from
the source population and the number of SNPs being
examined in Stage 1 is usually from 0.1 million to 1 mil-
lion. Based on the results of Stage 1 (p-values), the num-
ber of SNPs to be genotyped in Stage 2 is in tens or
hundreds. For example, in a diabetes mellitus GWAS (7],
there were 392,935 SNPs genotyped on 1,363 subjects in
Stage 1, and 57 SNPs were genotyped in Stage 2 after
removing those SNPs with p-values greater than 0.0001
based on the data of Stage 1. In a GWAS, the significance
level in the whole genome is often set to be 0.05, and the
Bonferroni-correction is often used to adjust for multiple
comparisons and to control the false positive rate. So, in
our simulation studies, we set the number of SNPs at
Stage 1 m = 500,000 and the p-value threshold for signifi-
cant SNPs to be 0.05/m = 1 x10”7. The proportion of
subjects genotyped in Stage 1 is set to be 0.5, 0.4 and 0.3,
and the p-value threshold for SNPs selection at the end
of Stage 1 be 0.0001 and 0.0002. The disease prevalence
is set to be K = 0.1. Throughout our simulation proce-
dures, we assume that Hardy-Weinberg equilibrium
(HWE) holds in the general population. Furthermore, the
risk allele is assumed to be the minor allele, with fre-
quency (MAF) equal to 0.15, 0.25, 0.35 and 0.45. The con-
sidered genetic models are the recessive, additive, and
dominant models. We specified different genotype relative
risks A; and A, for the three genetic models (see details in
Table 2, 3, 4 and 5). The critical values for MAX3 joint
analysis are simulated, while thresholds for other three
joint analysis are exactly calculated based on their asymp-
totic distributions under the null hypothesis where the
genotype probabilities (py, p1, p2) for cases and (qo, q1, ¢2)
for controls are calculated by po = g = Pr(gg) = (1-MAF)?,
p1=q1 = Pr(Gg) = 2 x MAF x (1-MAF) and p, = ¢, = Pr
(GG) = MAF2 Under the alternative hypothesis, the geno-
type frequencies can be obtained using the formulas given
in the Notations Subsection and f, = K/[Pr(gg) + 4, Pr(Gg)
+ Ay Pr(GG)]. More details could be referred to [23] and
[24]. The genotype counts in case sample and control
sample were generated from a multinomial distribution.



Pan et al. BMC Bioinformatics 2011, 12:9
http://www.biomedcentral.com/1471-2105/12/9

Table 2 Power comparison for MAF = 0.15 (K = 0.1, o =
0.05, m = 5 x 10°)
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Table 4 Power comparison for MAF = 0.35 (K = 0.1, o =
0.05, m = 5 x 10°)

n Y ALLEJ) CATAJ MERTJ MAX3J n Y ALLE) CATAJ MERTJ MAX3J
Recessive Model 0.5 0.0001 0070  0.058 0.385 0.759 Recessive Model 0.5 00001 0420 0384 0.536 0.824
r=-s= 5000 00002 0076 0064 0420 0.798 r=s = 4000 00002 0456 0418 0.578 0.860
M=11,=2 04 00001 0.049 0.042 0.273 0.583 A=12A,=15 04 00001 0302 0274 0.393 0.657
0.0002 0.058 0.048 0317 0.646 0.0002 0.348 0317 0447 0.717
03 00001 0029 0025 0.155 0.346 03 00001 0175 0.158 0.231 0436
00002 0036 0031 0.193 0423 00002 0216  0.196 0.282 0492
Additive Model 05 00001 0601 0613 0440 0.555 Additive Model 05 00001 0891 0900 0.882 0.864
r=-s=2000 00002 0643 0655 0477 0.599 r=s=2000 00002 0916 0925 0.909 0.895
A =141,=18 04 00001 0450 0460 0317 0406 A =14,A,=18 04 00001 0.760 0.773 0.747 0.715
0.0002 0.507 0517 0.364 0451 0.0002 0.809 0.821 0.797 0.767
03 00001 0271 0277 0.183 0.226 03 0.0001 0537 0.551 0522 0481
00002 0326 0334 0226 0.281 00002 0604 0618 0.590 0.548
Dominant Model 0.5 00001 0679 0711 0.356 0.726 Dominant Model 0.5 0.0001 0558  0.607 0464 0.758
r=-s=2000 00002 0720  0.752 0.388 0.768 r=s=2000 00002 0600 0649 0.502 0.806
AM=2A,=15 04 00001 0520 0.551 0.254 0.552 A =A,=15 04 00001 0413 0.455 0337 0.599
0.0002 0.579 0.611 0.293 0.621 0.0002 0468 0512 0.385 0.660
03 00001 0322 0.345 0.146 0339 03 0.0001 0246 0274 0.197 0374
0.0002 0.383 0408 0.181 0400 0.0002 0.298 0330 0.242 0437

Simulation Results

For convenience, we refer to the aforementioned four
joint analysis approaches as, respectively, ALLE] (allele-
frequency-difference-based joint analysis), CATA]J
(Cochran-Armitage trend test under the additive model-
based joint analysis), MERT] (MERT-based joint analy-
sis), MAX3] (MAX3-based joint analysis). Table 2, 3, 4
and 5 report powers of the four joint analysis methods

Table 3 Power comparison for MAF = 0.25 (K = 0.1, o =
0.05, m = 5 x 10°)

corresponding to MAF equal to 0.15, 0.25, 0.35 and
0.45, respectively. From these tables, we have the follow-
ing observations. Under the recessive model, MERT]
and MAX3]J are more powerful than ALLE] and CATAJ,
with MAX3]J being most powerful among the four meth-
ods under consideration. In some cases, the advantage of
MAX3]J is quite impressive. For example, in Table 2, with
= 0.5, y=0.0001, the powers of ALLE], CATA]J, MERT]

Table 5 Power comparison for MAF = 0.45 (K = 0.1, o =
0.05, m = 5 x 10°)

moy ALLEJ CATAJ MERTJ MAX3)J noy ALLEJ CATAJ MERTJ MAX3J
Recessive Model 05 00001 0075  0.066 0.220 0.517 Recessive Model 05 0.0001 0282  0.253 0.263 0.542
r=s= 5000 0.0002 0083 0073 0.242 0.546 r=s=2000 00002 0308 0277 0.288 0.572
Ar=12,=15 04 00001 0053 0047 0.154 0.365 A=1A=15 04 00001 0199 0178 0.184 0.380
0.0002 0062  0.055 0.180 0408 0.0002 0231 0.207 0.215 0442
03 00001 0.031 0.028 0.087 0.197 03 00001 0114 0101 0.104 0.220
0.0002 0039  0.035 0.110 0.254 00002 0142  0.127 0.131 0.263
Additive Model 0.5 00001 0835 0846 0.782 0.799 Additive Model 0.5 00001 088 089 0.8%4 0.854
r=s= 2000 00002 0868 0878 0.820 0.838 r=s=2000 00002 0912 0921 0919 0.881
Ar=141,=18 04 00001 0687 0700 0.625 0.639 A =142,=18 04 00001 0753 0767 0.765 0.701
0.0002 0742 0754 0.683 0.700 0.0002 0803 0815 0813 0.760
03 00001 0462 0474 0405 0413 03 00001 0529 0543 0.542 0473
0.0002 0530 0542 0472 0476 00002 0597 0610 0.609 0.545
Dominant Model 05 00001 0717  0.757 0.511 0.826 Dominant Model 05 0.0001 0279 0317 0.302 0.590
r=s= 2000 00002 0758  0.796 0.551 0.853 r=s=2000 00002 0305 0346 0329 0.626
Ar=A=15 04 00001 0557 0597 0.375 0.651 A=24,=15 04 00001 0197 0225 0214 0428
0.0002 0617 0656 0427 0.726 00002 0229  0.260 0.248 0483
03 00001 0350 0382 0.221 0425 03 00001 0112 0128 0.123 0.241
0.0002 0413 0447 0.270 0495 0.0002 0.140  0.160 0.153 0.291
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and MAX3]J are 0.070, 0.058, 0.385 and 0.759, respectively.
Under the additive model, CATA] and ALLE] have com-
parable power and are more powerful than the other two
tests. However, the power difference between CATA]J and
MAX3]J is mostly at the level of 6.6%, with the largest dis-
crepancy of 7%. Under the dominant model, CATAJ and
MAX3J are more powerful than ALLE] and MERT]J. Both
tests have comparable power when MAF = 0.15, and
MAX3]J is much more powerful than CATAJ] when MAF =
0.25, 0.35 and 0.45. In summary, it appears that MAX3J
has the best overall performance.

A Real Example: Type 2 Diabetes Mellitus

Type 2 diabetes mellitus is one of the most common
diseases, and has been found to be associated with
environmental factors and genetic variants. A two-stage
GWAS for type 2 diabetes mellitus was reported in [7].
In this study, 392,935 SNPs were genotyped on 1,363
subjects in Stage 1. Based on the statistical significance
level of 1 x 10™%, 57 SNPs were selected and further
screened on 2,617 cases and 2,894 controls in Stage 2.
We applied the above four considered methods to two
SNPs, rs1005316 and rs2876711, which were not
reported in their Table 1, but were shown in their
Appendix. Table 6 gives the genotype counts and
p-values of these two SNPs. We found a genome-wide
significant association between rs2876711 and the out-
come. Although the association between rs2876711 and
type 2 diabetes mellitus has not been reported by [7],
our results show that we should be concerned with this
SNP and its neighborhood area. Additional experiments
should be further conducted to validate this association.

Discussion and Conclusions

In genetic association studies, the underlying genetic
inheritance model is often unknown, and thus hinders the
use of methods such as CATT, which has to be derived
under an assumed genetic model. Robust tests, such as
MERT and MAX3, had been proposed to relax the depen-
dence on the underlying genetic models. Extending these
tests to a two-stage setting, we construct two robust joint
analyses based on MERT and MAX3. Numerical results
show that MAX3] has the best overall performance among
the four considered joint analysis approaches. For type 2
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diabetes mellitus, based on MAX3]J, we found that SNP
rs2876711 was significantly associated with type 2 diabetes
mellitus besides their findings.

Pearson Chi-square test is a robust test that was used
in genetic association studies (see e.g., [25]). Recently, a
comprehensive power comparison between MAX3 and
Pearson Chi-square test and Cochran-Armitage trend
test under the additive model was conducted in [17].
They reported that MAX3 has the most robust perfor-
mances. The proposed joint analysis combing the test
statistics of both stages considers the between-stage het-
erogeneity. It is intractable for Pearson Chi-square test
to consider the relative risk heterogeneity of both stages,
especially when the relative risk in Stage 1 is larger than
one and that in Stage 2 is less than one.

Recently, a joint analysis based on genetic model
selection [26] to overcome the genetic model uncer-
tainty was proposed in [22]. Based on the data in Stage
1, they used Hardy-Weinberg disequilibrium trend test
studied in [27] to determine a score that corresponds to
a genetic model. This score was then used to construct
the trend test based on the data of Stage 2. Results (not
shown here) show that the proposed joint analysis has
comparable power. Therefore, the proposed MAX3] can
be used as an alternative procedure in two-stage gen-
ome-wide association studies.

Additional material

Additional file 1: Appendix for the main text. The file (including
Appendix A, B, C) is a Microsoft Word document. Appendix A gives a
detailed description of the joint distribution of the additive trend test
statistic TlA in Stage 1 and the joint additive trend test statistic T,A.
Appendix B gives a detailed description of the correlation coefficient
between the recessive trend test statistic and the dominant trend test
statistic under the null hypothesis, and the joint distribution of T
and T]"’e“. Appendix C gives a detailed description of the correlation
coefficient between the recessive trend test statistic and the additive
trend test statistic, and the correlation coefficient between the additive
trend test statistic and the dominant trend test statistic.

Abbreviations

GWAS: genome-wide association study; SNP: single nucleotide
polymorphism; MAF: minor allele frequency; AFDT: allele-frequency-
difference-based test; CATT: Cochran-Armitage trend test; MERT: maximin
efficiency robust test; MAX3: maximum values of Cochran-Armitage trend

Table 6 Genotype counts and p-values of SNPs rs1005316 and rs2876711 for type 2 diabetes mellitus

SNP ID ro r ry So $1 S5 ALLEJ CATAJ MERT)J MAX3J

rs1005316  Stage 1 13 224 457 44 211 399 6.13 x 107 778 x 10° 387 x10°  812x107
Stage 2 89 669 1708 89 913 1856

rs2876711 Stage 1 99 322 272 121 351 182 292 x 107 207 x 10°® 597 x 10® 310 x 10®
Stage 2 389 1191 989 484 1404 987

Note: 1o, 11, and r, denote the number of individuals carrying genotype gg, Gg, and GG in case sample, respectively; so, 51, and s, denote the number of

individuals carrying genotype gg, Gg, and GG in control sample, respectively.
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tests under recessive, additive and dominant models; ALLEJ: allele-frequency-
difference-based joint analysis; CATAJ: Cochran-Armitage trend test under
the additive model-based joint analysis; MERTJ: MERT-based joint analysis;
MAX3J: MAX3-based joint analysis.
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