Chen et al. BMIC Bioinformatics 2011, 12(Suppl 1):541
http://www.biomedcentral.com/1471-2105/12/S1/541

BMC
Bioinformatics

RESEARCH Open Access

Coregulation of transcription factors and
microRNAs in human transcriptional regulatory

network

Cho-Yi Chen'?? Shui-Tein Chen?, Chiou-Shann Fuh*, Hsueh-Fen Juan®’, Hsuan-Cheng Huang'

From The Ninth Asia Pacific Bioinformatics Conference (APBC 2011)

Inchon, Korea. 11-14 January 2011

Abstract

biological processes.

Background: MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the post-
transcriptional level. Recent studies have suggested that miRNAs and transcription factors are primary metazoan
gene regulators; however, the crosstalk between them still remains unclear.

Methods: We proposed a novel model utilizing functional annotation information to identify significant
coregulation between transcriptional and post-transcriptional layers. Based on this model, function-enriched
coregulation relationships were discovered and combined into different kinds of functional coregulation networks.

Results: We found that miRNAs may engage in a wider diversity of biological processes by coordinating with
transcription factors, and this kind of cross-layer coregulation may have higher specificity than intra-layer
coregulation. In addition, the coregulation networks reveal several types of network motifs, including feed-forward
loops and massive upstream crosstalk. Finally, the expression patterns of these coregulation pairs in normal and
tumour tissues were analyzed. Different coregulation types show unique expression correlation trends. More
importantly, the disruption of coregulation may be associated with cancers.

Conclusion: Our findings elucidate the combinatorial and cooperative properties of transcription factors and
miRNAs regulation, and we proposes that the coordinated regulation may play an important role in many

Background

Transcriptional regulatory networks describe the inter-
actions between transcriptional regulatory proteins and
their target genes [1-3]. These regulators, known as
transcription factors (TFs), are proteins that bind to spe-
cific DNA sequences and thereby control the transcrip-
tion of genetic information encoded in DNA sequences.
The interactions between TFs and target genes regulate
the transcriptional activities of genome and thus deter-
mine the global gene expression program of a living cell.
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In the last decade, microRNAs (miRNAs) have
emerged as another prominent class of gene regulators.
miRNAs are endogenous small RNA molecules that are
abundant in animals, plants, and some viruses. They can
reduce stability and/or translation activity of fully or
partially sequence-complementary messenger RNAs
(mRNAs), thus regulating gene expression at the post-
transcriptional level. It has been found that miRNAs
may control many biological processes in development,
differentiation, growth, and even cancer development
and progression [4-6].

Recent studies have suggested that miRNAs and TFs
are primary metazoan gene regulators, and they seem to
function in a similar regulatory logic, such as pleiotropy,
combinatorial and cooperative activity, regulation, and
even network motifs [7,8]. However, how miRNAs
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interplay and coordinate with TFs in the regulatory net-
work still remains unclear. Since combinatorial interac-
tions between miRNAs and TFs are complicated and
thus hard to be validated by high-throughput experi-
ments, computational modelling may provide a better
clue to understand such complex relationships.

Currently, to uncover the coregulation interactions
between miRNAs and TFs, researchers have to over-
come two challenges. One is the incomplete knowledge
of regulatory targets. Because the available experimen-
tally verified targets of miRNAs and TFs are far from
complete, the regulatory target datasets for global ana-
lysis were mainly from computational prediction. The
other challenge is about how to integrate transcrip-
tional and post-transcriptional layers to discover highly
confident coregulation relationships. To solve these
problems, previous studies have developed a bottom-
up strategy; that is, they inferred the coordination
between two upstream regulators from their down-
stream shared targets [9,10]. These inferences were
basically based on different probabilistic models and
statistical tests to measure the significance of shared
targets between regulators. Indeed, the methods suc-
cessfully eliminated those insignificant coregulation
interactions occurred merely by chance; however, the
biological meanings were ignored in the integration of
transcriptional and post-transcriptional regulation
interactions.

Here we proposed a novel framework utilizing func-
tional annotation information to identify significant
coregulation between transcriptional and post-transcrip-
tional layers. Based on this model, function-enriched
coregulation pairs were discovered, and the regulators
were subsequently linked by enriched functions. With
these functional linkages, we further constructed func-
tional coregulation networks between regulators and
investigated their characteristics. Next, we searched for
the network motifs consisting of those function-enriched
coregulation pairs, and found that an abundance of pairs
were closely connected in their upstream. Finally, the
expression patterns of function-enriched coregulation
pairs were analyzed. Different coregulation types showed
distinct expression correlation trends. More importantly,
we found that the disruption of coregulation may be
closely related to cancers.

Methods

Regulation relationships

The transcriptional regulation relationships between
human transcription factors and their target genes were
collected from TRED (Transcriptional Regulatory Ele-
ment Database) [11]. The database provides genome-
wide promoter annotation and transcription factor
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binding information from computational prediction and
experimental evidence.

To collect all human TF-target regulation relation-
ships in TRED, we firstly queried the list of all human
TFs in the database. A total of 178 human TFs were
obtained by this step. Next, we searched TF target genes
for each TF using default parameters (promoter quality
from “known, curated” to “with RNA” and “all” binding
quality). The results showed that only 133 TFs were
found to have at least one target gene by these criteria,
and the final number of unique TF-target relationships
was 6,764, which were used to construct the human
transcriptional regulatory network for our analysis.

Since the available experimentally verified human
miRNA targets are far from complete and thus not
enough for global analysis, we used predicted miRNA
targets from the TargetScan database (release 4.2) to
perform the analysis [12]. In addition, different mature
miRNAs may have identical seed regions and thereby
target the same binding sites. To eliminate those core-
gulation interactions among the miRNAs with identical
seed regions, we grouped mature miRNAs into families
based on the miRNA family information from TargetS-
can. A total of 162 miRNA families and 7,521 target
genes with 44,782 interactions were collected.

It is still difficult to predict the promoter region of
miRNA genes in the genome. But it has been known
that embedded miRNAs frequently coexpress with
their host genes [13,14]. Therefore, we extracted
miRNA host gene information from miRBase [15] and
integrated the embedded miRNAs biogenesis informa-
tion into the established transcriptional regulation net-
work. A total of 310 premature miRNAs were found
embedded in 259 host genes. Most of them (93%) were
resided in introns.

Identification of significant coregulation relationships
Combing all the potential targets of miRNAs and TFs,
we firstly constructed two adjacency matrixes describing
the regulator-target interaction for TFs and miRNAs,
respectively. Then the two matrixes were combined into
three cross-adjacency matrixes representing the shared
targets of TF-TF, miRNA-miRNA, and TF-miRNA core-
gulation pairs. An example of identification of TF-
miRNA coregulation pairs is shown in Figure 1.
Secondly, for each group of shared targets, the distri-
bution of Gene Ontology (GO) annotations [16] at the
second level in the biological process namespace was
calculated. We chose the second level ontology because
most of the genes were generally well-annotated at this
level and these annotations provided a good balance
between the sensitivity and the specificity in the follow-
ing functional enrichment test. The distributions were
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Figure 1 Example workflow for identifying significant coregulation.

considered as the functional profiles or fingerprints for
these coregulation pairs.

Next, we utilized a randomization method to perform
a permutation test for functional enrichment. For each
group of shared targets, we randomly selected a null
group of the same size from whole human genome as
background. After 10,000 iterations, the log-likelihood
score under multivariate hypergeometric distribution
was measured to quantify the significance of functional
enrichment. The correction for multiple comparisons

was made under 0.05 false discovery rate (FDR) [17].
The final results of significant coregulation pairs were
listed in additional file 1.

Functional linkages and networks

For each function-enriched coregulation pair, Fisher’s
Exact Test following FDR correction were conducted to
identify enriched GO terms. Similarly, we only focused
on the second level terms in biological process name-
space. A functional linkage was established if a GO term
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overrepresented in the shared targets of a coregulation
pair, implying that the two paired regulators may func-
tion coordinately in the specific biological process.
Based on these linkages, we further constructed the
functional coregulation networks (Figure 2). In order to
investigate the specificity of coregulation relationships
and provide a global view, only those linkages with rela-
tively high significance that passed FDR-BL correction
[17] were used to construct the networks.

Enriched network motifs

We searched for network motifs preferentially occurred
in function-enriched coregulation pairs rather than in
random pairs by a resampling process. The predicted
TF-targeting interactions for miRNA genes were col-
lected from miRBase [15] and from literature [9]. In
addition, we assumed that those embedded miRNA
genes have same transcription units as their host genes
and would be regulated together.

A total of 10,000 background sets of regulator pairs
that have the same size as the set of function-enriched
pairs were randomly selected from the global network.
For each type of network patterns (sub-graphs), the
observed frequency from the function-enriched coregu-
lation pairs was first calculated and compared to the
background distribution for assessment of significance.
Only those network patterns with occurrence probabil-
ities less than 0.001 were considered significant motifs
(see additional file 2 for these significant motifs).
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Analysis of expression profiles

The miRNA and mRNA expression profiles were
adopted from a previous study [18]. A total of 217 miR-
NAs and ~16,000 mRNAs across 8 human tissues
(colon, pancreas, kidney, bladder, prostate, uterus, lung,
and breast) were measured using miRNA bead-arrays
and mRNA microarrays. Both normal and tumor sam-
ples were profiled for each tissue. For each type of core-
gulation, we first generated background distribution by
calculating the Pearson’s correlation coefficients (PCCs)
of expression profiles between the two paired regulators
in all possible pairs (i.e., those pairs shared no targets
and/or those pairs not identified as function-enriched).
After that, the distribution of enriched coregulation
pairs was calculated and shown against the background.

Results

Functional coregulation pairs

After the integration of miRNA regulation into human
transcriptional regulation network, we adopted a novel
strategy utilizing functional information to identify func-
tion-enriched coregulation pairs, and establish function
linkages for each pair. Traditional analysis of functional
enrichment was aimed at elucidating the regulatory
roles of each individual regulator only, inevitably leaving
some significant coregulation hidden in the traditional
views. Instead, based on our model, different regulation
types involving single regulators or combinations of reg-
ulators can all be studied and compared.

Coregulation
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Figure 2 Example workflow for constructing functional coregulation network. For each coregulation pair, a function linkage was
established if a GO term enriched in their shared targets. The coregulation network was generated based on these function linkages. Nodes
represent regulators, and edge represents GO terms, marked with different colours.

Functional coregulation network
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The distributions of different regulation types were
grouped into two diagrams for comparing. Figure 3A
shows distributions of individual TF regulation and TE-
TF coregulation. The two distributions look similar;
however, two biological processes, pigmentation and
reproductive process, emerge when it comes to TF-
miRNA coregulation, implying that the two biological
processes may be the typical processes in which TFs
should coordinate with miRNAs to control the expres-
sion programs.

In contrast, miRNA-involving regulation shows diver-
gent distributions in Figure 3B. The top ranked biologi-
cal processes of individual miRNA regulation were
biological regulation, cellular process, and developmen-
tal process, which were the previously known miRNA-
involving processes [4-6]. On the other hand, biological
adhesion was relatively high in miRNA-miRNA coregu-
lation, suggesting that miRNAs may regulate this pro-
cess majorly in a coordination manner.

Moreover, many biological processes enriched in
TE-miRNA coregulation were relatively poor in the reg-
ulation involving miRNAs only. In other words, those
processes may be the typical processes needed to be
coordinately regulated by TFs and miRNAs, and the
coordination may provide a mechanism to switch
expression programs. More importantly, it suggested
that, by coordinating with TFs, miRNAs may engage in
a wider diversity of biological processes, and these
undiscovered processes were failed to be identified by
traditional analysis of functional enrichment for a single
regulator.
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Functional coregulation networks

In the previous section, different regulators were con-
nected by identified functional linkages, which repre-
sented that the two paired regulators may function in
coordination with each other in a specific biological pro-
cess. We further built up functional coregulation net-
works from these linkages and found interesting
properties in the networks.

Figure 4 shows the three subnetwork examples (the lar-
gest connected component) for different coregulation
types. Obviously, it appears that the TF-TF coregulation
network (Figure 4A) was in high density coregulation
(avg. 3.52 links per pair) and full of diversity in edge types
(avg. 5.70 edge types per regulator); in other words, TFs
may function together in many kinds of biological pro-
cesses. Likewise, the miRNA-miRNA coregulation net-
work (Figure 4B) showed similar high density coregulation
(avg. 3.12 links per pair) but the diversity of involving pro-
cesses was lower (avg. 3.92 edge types per regulator) than
TE-TF coregulation. In contrast, the TF-miRNA coregula-
tion network (Figure 4C) was in higher specificity (avg.
1.48 links per pair; avg. 2.22 edge types per regulator); that
is, a TF may coordinate with different neighbour miRNAs
in specific biological processes, and vice versa. These
results suggested that the cross-layer coregulation may
have higher specificity than intra-layer coregulation.

Network motifs for coregulation pairs

Many studies have been devoted to understanding net-
work structures in gene regulatory networks, and have
found that most networks seem to be largely composed
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Figure 3 Distributions of enriched biological processes for different regulation types. (A) Distributions for TF-involving regulation:
individual TFs, TF-TF pairs, and TF-miRNA pairs. (B) Distributions for miRNA-involving regulation: individual miRNAs, miRNA-miRNA pairs, and TF-
miRNA pairs. Note that the same TF-miRNA line are drawn in both (A) and (B) for comparison.
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of occurring patterns, called network motifs. The func-
tions associated with common network motifs, such as
auto-regulation and feed-forward loops (FFLs), were dis-
covered and revealed by several researches both theore-
tically and experimentally [1,9,10,19-22].
Unsurprisingly, the function-enriched coregulation
pairs also have preferentially recurring network motifs

as shown in Figure 5. Several types of motifs were found
in TE-TF coregulation; for example, bidirectional and
unidirectional FFLs were explored and these results
were consistent with previous studies on network biol-
ogy. In addition to FFLs, we went further to investigate
the upstream regulatory patterns of coregulation pairs
and found that the two paired regulators were closely
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Figure 5 Network motifs for TF-TF and TF-miRNA coregulation pairs. For each motif, the observation number and the percentage of pairs
that have this motif were reported, along with the P-value and one instance coregulation pair.

linked in their upstream. For instance, over half of the
pairs had common upstream TFs; a significant number
of pairs had common TFs and miRNAs; and almost all
pairs were cross-regulated in their upstream. Similar
results were also found in TF-miRNA coregulation.
However, no enriched motif was found in miRNA-
miRNA coregulation, probably due to the incomplete
knowledge of regulatory regions of miRNA genes.

Expression patterns of coregulation pairs

Expression data across human normal/tumor tissues
have recently become available. A previous study mea-
sured miRNA and mRNA expression profiles across 8
tissues (colon, pancreas, kidney, bladder, prostate,
uterus, lung, and breast) and each tissue contained both
normal and tumor samples [18]. By analyzing the
expression profiles, we investigated the correlations
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between the expression profiles of each coregulation
pair in both normal and cancer samples.

Figure 6 shows the expression correlations of different
coregulation types in normal and tumor samples. Inter-
estingly, the three coregulation types show distinct
trends in normal tissues. For example, TF-TF had a
zero-centered distribution similar to background;
TF-miRNA had two tendencies to highly-positive and
medium-negative correlations in comparison with its
background; miRNA-miRNA showed preference for
only positive correlation. The different trends may
reflect the diversity of function roles between TFs and
miRNAs; that is, TFs can act as activators (+) or repres-
sors (-) in gene regulation; however, miRNAs mainly act
as repressors (-) by translation inhibition or transcript
destabilization. Thus, it seems that these typical trends
may be mechanistically reasonable.
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On the contrary, all coregulation types turn into an
identical trend in tumor tissues. All of them show simi-
lar zero-centered distributions resembled to their back-
grounds. This trend suggests that the function-enriched
coregulation pairs lost their correlation in tumor tissues,
implying the disruption of coregulation may be closely
associated to cancers. Together these results may sup-
port the functionality of identified coregulation pairs.

Discussion and conclusion

We proposed a novel strategy aimed at identifying
potential coordinated regulation by utilizing functional
annotation information and discovered many biological
processes that emerged only in coregulation. Compared
to traditional function enrichment analysis, our strategy
considered whole function profiles rather than single
annotations. In addition, it also solves the restriction of
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Figure 6 Distributions of expression correlation for different types of coregulation pairs. Left column for normal tissues; right column for
tumor tissues. Rows are in the order of TF-TF, TF-miR, and miR-miR coregulation pairs.
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traditional methods that only focus on single regulator.
For example, a miRNA can potentially regulate an abun-
dance of target genes. To find enriched functions of the
miRNA, all its potential targets will be tested for any
enriched function. However, since the target size of a
miRNA may be huge, some meaningful biological pro-
cesses involving only a small subset of genes will be hid-
den. In fact, these hidden processes may be significantly
impacted by miRNAs in coordination with other regula-
tors, namely, other miRNAs or TFs. After all, a bio-
logical process may be regulated not only at the
transcriptional layer, but also at the posttranscriptional
layer [7,8,23,24].

Interestingly, our results show that pigmentation and
reproductive process are two typical biological processes
specifically emerging in TF-miRNA coregulation. It is
suggested that miRNAs may provide genetic switch
mechanisms to essentially inactivate the target genes,
thus leading to detectable phenotypic consequences. In
model organisms, there have been many studies investi-
gating the switch-like role of miRNAs in pigmentation.
For example, miRNAs can regulate the eye pigmentation
genes in Drosophila [25]. The influence of miRNAs on
pigmentation in zebrafish was also reported [26].
Another study found that miR-434-5p may mediate skin
whitening and lightening in mouse [27]. And in mela-
noma cell lines, it is shown that miR-137 may target a
pigmentation regulator [28].

The analysis of functional coregulation networks pro-
vided other clues. We found that a TF may regulate in
coordination with different miRNAs in different biologi-
cal processes, and vice versa. It suggested that the cross-
layer coregulation may have higher specificity than
intra-layer coregulation.

We also performed network motif analysis to see if any
recurring pattern exists in coregulation network struc-
ture. Different types of feed-forward loops were found in
TE-TF and TF-miRNA coregulation, and these results
were consistent with several previous studies on tran-
scriptional network [1,9,10,19-22]. Among these FFLs, a
special kind of miRNA-mediated FFLs emerged in TE-
miRNA coregulation. In this kind of FFLs, a miRNA may
simultaneously repress a TF and its target genes, thus
contributing to a switch-like control of expression pro-
grams. More importantly, we go further this time to
investigate the upstream structure of coregulation pairs
and found closely interaction in their upstream. It implies
that the network structures of coregulation may have
extensive crosstalk in the higher levels.

Finally, the expression analysis of coregulation discov-
ered distinct trends in different coregulation types;
namely, TF-TF showed no correlation, whereas miRNA-
miRNA had a preference of positive correlation, and
TF-miRNA appeared both positive and negative
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correlation. A previous study investigated only TF-
miRNA correlation and found the same tendencies [9].
The authors rationalized this trend by pointing out the
distinct function roles that TFs and miRNAs may play.
We further supported this idea by showing the results
of TF-TF and miRNA-miRNA coregulation, which were
also consistent with the same interpretation. In addition,
TF activities are under control at protein level; that is,
TFs may be activated or deactivated by a number of
mechanisms including phosphorylation, ligand binding,
and interaction with other regulatory proteins. There-
fore, it is not surprising that co-function TFs may show
no correlation in mRNA expression level. Notably, a
large proportion of TF-miRNA pairs showed negative
correlation in expression profiles, which could be
explained by the structure of the miRNA-mediated-FFLs
discussed before, supporting the idea that many miR-
NAs in TF-miRNA coregulation contributed to switch-
like regulation.

More significantly, by comparing the expression corre-
lations between normal and tumor tissues, we found a
common trend in function-enriched coregulation pairs;
that is, the function-enriched pairs lost their correlation
in tumor tissues. It suggested that the disruption of cor-
egulation may lead to abnormal expression programs
and may be directly associated to cancers.

Our findings shed light on the coregulation of miR-
NAs in transcriptional regulatory network. Future
experimental works will provide more complete knowl-
edge in transcriptional network and miRNA regulation,
thus allowing the elucidation of more precise co-regula-
tory mechanisms.

Additional material

Additional file 1: List of all function-enriched coregulation pairs
http://idv.sinica.edu.tw/joeychen/APBC2011/AdditionalFile1.pdf

Additional file 2: List of network motifs for function-enriched

coregulation pairs http:/idv.sinica.edu.tw/joeychen/APBC2011/
AdditionalFile2.pdf
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