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Abstract

Background: One of the most important goals of the mathematical modeling of gene regulatory networks is to
alter their behavior toward desirable phenotypes. Therapeutic techniques are derived for intervention in terms of
stationary control policies. In large networks, it becomes computationally burdensome to derive an optimal control
policy. To overcome this problem, greedy intervention approaches based on the concept of the Mean First
Passage Time or the steady-state probability mass of the network states were previously proposed. Another
possible approach is to use reduction mappings to compress the network and develop control policies on its
reduced version. However, such mappings lead to loss of information and require an induction step when
designing the control policy for the original network.

Results: In this paper, we propose a novel solution, CoD-CP, for designing intervention policies for large Boolean
networks. The new method utilizes the Coefficient of Determination (CoD) and the Steady-State Distribution (SSD)
of the model. The main advantage of CoD-CP in comparison with the previously proposed methods is that it does
not require any compression of the original model, and thus can be directly designed on large networks. The
simulation studies on small synthetic networks shows that CoD-CP performs comparable to previously proposed
greedy policies that were induced from the compressed versions of the networks. Furthermore, on a large 17-gene
gastrointestinal cancer network, CoD-CP outperforms other two available greedy techniques, which is precisely the
kind of case for which CoD-CP has been developed. Finally, our experiments show that CoD-CP is robust with
respect to the attractor structure of the model.

Conclusions: The newly proposed CoD-CP provides an attractive alternative for intervening large networks where
other available greedy methods require size reduction on the network and an extra induction step before
designing a control policy.

Introduction
A key purpose of modeling gene regulation via gene regu-
latory networks (GRNs) is to derive strategies to shift
long-run cell behavior towards desirable phenotypes. To
date, the majority of the research regarding intervention in
GRNs has been carried out in the context of probabilistic
Boolean networks (PBNs) [1]. Assuming random gene
perturbation in a PBN, the associated Markov chain is
ergodic, and thus it possesses a steady-state distribution

(SSD), and (from a theoretical standpoint) one can always
change the long-run behavior using an optimal control
policy derived via dynamic programming [2,3]. In practice,
however, the computational requirements of dynamic pro-
gramming limit this approach to small networks [4,5]. As
an alternative to such optimal intervention, greedy control
approaches using mean-first-passage time (MFPT-CP
algorithm) or the steady-state distribution directly (SSD-
CP algorithm) have been proposed (CP denoting control
policy) [6,7]; nonetheless, these algorithms have their own
computational issues owing to their need to use the state
transition matrix (STM) of the Markov chain. To over-
come the computational problems associated with the
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design of control policies for larger PBNs, previous studies
have proposed reduction mappings that either delete
genes [8] or states [9]. Deletion of network components
compresses large networks, but at the cost of information
loss. Furthermore, reduction mappings themselves can be
computationally demanding [8,9].
The control approach taken in this paper circumvents

many of the computational impediments of previous
methods by basing its intervention strategy directly on
inter-predictability among genes. Referring to a gene that
characterizes a particular phenotype as a Target (T) gene
and a gene used to alter the long-run behavior of the net-
work by controlling the expression of T as a Control (C)
gene, the method proposed herein relies on the predictive
power of a small group of genes, which includes the con-
trol gene, and designs a stationary control policy that
alters the steady-state distribution of the model. The
algorithm is designed for the specific class of networks
where there is a path from the control to the target gene
– an assumption having a natural interpretation in terms
of the biochemical regulatory pathways present in cells.
Our method simplifies the procedure of designing the
stationary control policy and eliminates the need to have
a complete knowledge about the STM. Most importantly,
the new algorithm can be used to design stationary con-
trol policy directly on large networks without deleting
any genes/states. It only requires knowledge about the
SSD of the network which can be estimated without
inferring the STM. The coefficient of determination
(CoD) is used for measuring the power of gene interac-
tions [10]. Thus, our new algorithm is optimized for and
performs especially well on network models that are
inferred from data using CoD-based approaches, e.g. the
well-known seed-growing algorithm [11]. The proposed
algorithm, called CoD-CP because the CoD is the main
tool, uses the marginal probabilities of the individual
genes obtained from the steady-state distribution of the
network to calculate the CoDs.
The most important advantage of the proposed CoD-CP

is that it can be designed on networks with many genes,
and without any compression of the model. All of the pre-
viously proposed methods for working with large GRNs,
e.g. CoD-Reduce[8] or state reduction [9], require ‘deletion’
of network components to achieve a compressed model,
which allows for the design of the control policy. An
induction step is then required in order to induce those
control policies back to the original networks. In this
paper, we propose a new approach, which designs control
policies directly on the original network and requires
neither reduction/compression nor induction.
We performed a series of simulation studies to validate

CoD-CP performance. Our experiments show that in
small networks, where it is possible to derive the

currently available greedy MFPT-CP [6] and SSD-CP [7]
policies, CoD-CP achieves a similar performance. Most
importantly, when the size of the network is large and
MFPT-CP or SSD-CP cannot be designed directly on the
original model, CoD-CP is easily constructed and applied
to the network without any reduction mappings and
induction of the control policy from the reduced network
back to the original model. Section describes our simula-
tions results. When the network is large, a reduction step
is needed before designing the MFPT-CP or SSD-CP. In
these cases, CoD-CP can be designed directly on the
large networks and performs better than the induced
MFPT-CP and SSD-CP on average for networks with sin-
gleton attractors only or models where cyclic attractors
are allowed. We examined CoD-CP performance for two
different perturbation probabilities and the results show
consistent patterns. Furthermore, we examined the per-
formance of the three algorithms on a 17-gene gastroin-
testinal cancer network derived from microarray data.
CoD-CP designed on that model network outperforms
the stationary MFPT-CP and SSD-CP policies induced
from the reduced versions of the 17-gene model. Thus,
our new approach provides an attractive alternative to
the methods that require network reduction and an extra
induction step before designing a control policy.

Background
Boolean networks
A Boolean network with perturbation p, BNp = (V, f), on
n genes is defined by a set of nodes V = {x1, …, xn} and a
vector of Boolean functions f = [f1, …, fn]. The variable xi
Î {0,1} represents the expression level of gene i, with 1
representing high and 0 representing low expression [12].
f represents the regulatory rules between genes. At every
time step, the value of xi is predicted by the values of a
set, Wi, of genes at the previous time step, based on the
regulatory function fi. Wi = {xi1, …, xiki.} is called the pre-
dictor set and the function fi is called the predictor func-
tion of xi. A state of the BNp is a vector s = (x1, …, xn) Î
{0, 1}n, and the state space of the BNp is the collection S
of all possible network states. The perturbation probabil-
ity p Î (0,1] models random gene mutations, i.e. at each
time point there is a probability p of any gene changing
its value uniformly randomly. The underlying model of a
BNp is a finite Markov chain and its dynamics are com-
pletely described by its 2n × 2n state transition matrix,
P p i j i j

n

= =( ( , )) ,s s 1
2 , where p(si, sj) is the probability of the

chain undergoing the transition from the state si to the
state sj. The perturbation probability p makes the chain
ergodic and therefore it possesses a steady-state probabil-
ity distribution π which satisfies [13]:

p pT TP= (1)
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Coefficient of determination (CoD)
The coefficient of determination (CoD) measures how a
set of random variables improves the prediction of a tar-
get variable, relative to the best prediction in the
absence of any conditioning observation [10]. Let X =
(X1, X2, …, Xn) be a vector of binary predictor variables,
Y a binary target variable, and f a Boolean function such
that f(X) predicts Y. The mean-squared error (MSE) of f
(X) as a predictor of Y is the expected squared differ-
ence, E[|f(X) – Y|2]. Let εopt(Y, X) be the minimum
MSE among all predictor functions f(X) for Y and ε0(Y)
be the error of the best estimate of Y without any pre-
dictors. The CoD is defined as

CoD Y
Y Y

Y
opt

X
X

( )
( ) ( , )

( )
.=

−e e

e
0

0
(2)

Letting x1, x2, …, x2n denote the 2n possible values for
X, running from (0, 0, …, 0) to (1, 1, …, 1), the relevant
quantities are given by

e opt j

j

j jY P P Y P Y

n

( , ) ( )min[ ( | ), ( | )]X X x x x= = = =
=

∑
1

2

0 1 (3)

and

e 0 0 1( ) min[ ( ), ( )]Y P Y P Y= = = (4)

[10]. The CoD can be used to measure the strength of
the connection between a target gene and its predictors
and has been used since the early days of DNA microar-
ray analysis to characterize the nonlinear multivariate
interactions between genes [14]. More recently, CoD was
used to characterize canalizing genes [15] and contextual
genomic regulation [16]. We have restricted ourselves to
the Boolean case, thereby arriving at the preceding repre-
sentations of εopt(Y,X) and ε0(Y); however, the basic defi-
nition for CoDX(Y) is not so restricted [10].

MFPT control policy (MFPT-CP)
Optimal intervention is usually formulated as an optimal
stochastic control problem [4]. We focus on interven-
tion via a single control gene c, and stationary control
policies µc : S ® {0,1} based on c. The values 0/1 are
interpreted as off/on for the application of the control: 1
meaning that the current value of c is flipped, and 0
meaning that no control is applied.
The mean-first-passage-time (MFPT) policy is based on

the comparison between the MFPT of a state s and its
flipped (with respect to c) state s c [6]. When considering
intervention the state space S can be partitioned into
desirable (D) and undesirable (U) states according to the
expression values of a given target set T of genes. For
simplicity, we assume T = {t}, the target gene t is the

leftmost gene in the state’s binary representations, i.e. x1
= t, s = (t, x2, …, xn), and the desirable states correspond
to the value t = 0. With these assumptions, the state tran-
sition matrix P of the network can be written as

P
P P

P P
DD DU

UD UU
=

⎛

⎝
⎜

⎞

⎠
⎟ (5)

Using this representation, one can compute the mean-
first-passage-time required for a state s to reach the bound-
ary between desirable and undesirable states. Computation
of these average times is performed in the time scale used
for the state transitions of the network. If one uses the
states of the network to index the components of the
vectors in the 2n dimensional Euclidean space ℝ2n, then
one can form the vectors KU and KD that contain the
mean-first-passage-time needed for the states in D and U
to reach the undesirable and the desirable states, respec-
tively. For example, the co-ordinate KD(s) of KD gives the
mean-first-passage-time for the undesirable state s to reach
the set D of desirable states. The two vectors KU and KD

are of dimension 2n – 1, and, according to a well-known
result from the theory of Markov chains [13], are given as
solutions to the following system of linear equations:

K e P KU DD U= + (6)

K e P KD UU D= + (7)

where e denotes the vector of dimension 2n – 1 with
all of its co-ordinates equal to 1.
To understand the intuition behind the MFPT-CP

algorithm it is important to notice that, because the
control gene c is different from the target gene, every
state s belongs to the same class of states, D or U, as its
flipped state s c . With this in mind, if a desirable state s
reaches U on average faster than s c , it is reasonable to
apply control and start the next network transition from
its flipped state . Thus, the design of the stationary
MFPT-CP is based on the differences K KD D

c( ) ( )s s− 
and K KU

c
U( ) ( )s s− . The MFPT-CP algorithm uses a

tuning parameter g > 0, and these differences are com-
pared to the value of g, which is related to the cost of
applying control. For example, g is set to a larger value
when the ratio of the cost of control to the cost of the
undesirable states is higher, the intent being to apply
the control less frequently [6].
The MFPT concept could be used in two different

ways to design the intervention strategy. The first
approach is called “model-dependent” and needs the
state transition matrix of the Markov Chain. The time-
course measurements can be used to estimate the tran-
sition probabilities for all states. Then the STM is used
to find the KU and KD vectors to design the control
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policy. In the second approach, called “model-free,” the
MFPTs are directly estimated from the time-course data
and the inference of the STM is skipped. In this paper
we focus on the model-dependent MFPT-CP.

SSD control policy (SSD-CP)
The steady-state-distribution (SSD-CP) policy [7] uses the
steady-state distribution of a perturbed Markov chain
given in [17] to quantify the shift in the steady-state mass
after applying possible controls. A perturbation (change)
in the logic defining the Boolean network changes the
original transition probability matrix P and steady-state
distribution π to P and p , respectively. In [17], the fun-
damental matrix, Z, is used to represent p in terms of π.
Z = [I – P + eπT]–1, where T denotes transpose and e is a
column vector whose components are all unity [18]. For
a rank-one perturbation, the perturbed Markov chain has
the transition matrix P P abT= + , where a, b are two
arbitrary vectors satisfying bTe = 0, and abT represents a
rank-one perturbation to the original Markov chain P. In
the special case where the transition mechanisms before
and after perturbation differ only in one state, say state k,

p p
p

p
p
b

bT T
T

T
T T Te

b Ze
b Z= +

−
= +

−
( )

( )

( )
( )

k

k

k
k1 1

(8)

where bT = bTZ and e(k) is the elementary vector with
a 1 in the kth position and 0s elsewhere [17-19]. To
define the SSD-CP policy let s c be the flipped state (with
respect to control gene c) corresponding to state s (as
with MFPT-CP). Let πU be the original steady-state mass
of the undesirable states and let pU( )s and  pU

c( )s
denote the steady-state masses of the undesirable states
resulting from altering the original state transition matrix
by changing the starting state for the next transition
from s to s c and from s c to s, respectively. The SSD-CP
policy is defined on pairs of states, s and s c , in the fol-
lowing manner: if both pU( )s and  pU

c( )s are larger
than πU, then control is applied to neither; otherwise, if
  p pU U

c( ) ( )s s≤ , then control is applied to s, and if
  p pU U

c( ) ( )s s> , then control is applied to s c .

Two step design of control policy: reduction followed by
induction
The derivation of the optimal or greedy control policies
becomes infeasible as the number of genes in the GRN
increases. As a solution, deleting the genes is proposed
by methods outlined in [8]. The idea is to delete genes
sequentially until the size of the network is small enough
for designing the control policy. Because the dimension
of the control policy designed on the reduced network is
not compatible with the original network, it is necessary
to induce the control policy from the reduced network to
the original one. The best candidate gene for deletion is

selected by an algorithm that measures strength of gene-
connectivity using the CoD. Genes not predicting any
other genes or being predicted by any other genes are
called constant genes and are the first choice for deletion.
If there are not any constant genes, then the gene that has
minimum CoD for predicting the target gene is selected
as the best candidate, d, for deletion. After selecting d, a
reduction mapping is used to define the transition rules
for states in the reduced network [20]. The design of the
reduction mapping is based on the notion of a selection
policy[8]. A selection policy νd corresponding to the
deleted gene d is a 2n dimensional vector, νd Î {0, 1}2n,
indexed by the states of S and having components equal
to 1 at exactly one of the positions corresponding to each
pair ( , )s s d , s Î S. For each gene d there are 22 – n differ-
ent selection policies.
Since finding the optimal selection policy is computa-

tionally impossible in large GRNs, an heuristic approach is
proposed by [8]: if either state s or sd is an attractor, then
the attractor state is chosen to determine the function
structure, but if neither is an attractor, then the transitions
of the state possessing larger steady-state probability mass
are kept as transitions for the reduced state.
Finally, after a control policy designed on the reduced

network, it is necessary to induce it back to the original
model. The induction procedure repeats the same control
action for the two states sd and s that collapsed together
to form the š states in the reduced network. The induc-
tion is formally defined as follows, where n is the number
of genes in the original model. Assume that after n – m
gene deletions the reduced network has m <n genes.
Then, for any state (x1, x2, …, xm) in the reduced net-
work, there are 2n–m states in the original network of the
form (x1, …, xm, z1, …, zn–m). If µred is the control policy
designed on the reduced network, then the induced pol-
icy on the original network is defined by

m mori m n m red mx x z z x x x( , , , , , ) ( , , )1 1 1 2  − = (9)

for any z1, …, zn–m Î {0,1}.

Proposed methodology
This section describes our new algorithm, CoD-CP. The
algorithm takes advantage of the predictive power of tri-
plets of genes that include the control gene to predict
the expression of the target gene with a small estimated
error. To achieve the best performance of the algorithm,
it is necessary to have a direct connection or a path
from the control gene to the target gene in the regula-
tory network. The algorithm uses the CoD to measure
that predictive power and to design a control policy.
CoD-CP is a greedy technique for designing a station-

ary control policy. The target gene defines the pheno-
type and divides states into two mutually disjoint sets, D

Ghaffari et al. BMC Bioinformatics 2011, 12(Suppl 10):S10
http://www.biomedcentral.com/1471-2105/12/S10/S10

Page 4 of 14



(desirable) and U (undesirable). The gene with the most
predictive power over the target gene T among the
genes connected with a path to T is used as the control
gene C. The goal of the algorithm is to increase the
total probability mass of desirable states in the long-run
by controlling C.
CoD-CP starts by generating all 3-gene combinations

that include C. We use three genes for predicting T
because, as Kauffman points out, the average connectiv-
ity of the model cannot be too high if its dynamics are
not chaotic [21] and 3-gene predictors are commonly
assumed in BN and PBN modeling [1]. CoD-CP uses the
CoDs for determining the strength of the connection
between a target gene and its predictors. The CoDs are
calculated using the SSD of the network and the respec-
tive conditional probability distribution (CPD) tables.
After examining all 3-gene combinations, they are sorted
based on their CoDs. The triple that has the maximum
CoD with respect to T and its corresponding CPD is
stored and used for designing the control policy. If there
is more than one such a triple, we can uniformly ran-
domly decide to use one of them. We refer to this triple
as MAXCOD and its CPD is called MAXCPD. Table 1
represents an example of a MAXCPD table, where the
first three columns contain the binary combinations of
the MAXCOD genes. Using T and the MAXCOD genes,
the state space of the network is broken down into
blocks with 2n – 4 states. All states in a block share the
same values for T and the MAXCOD genes. The details
about the entries of the MAXCPD table are given in the
Example 1, part a.
Example 1, part a: This example explains the entries

of the MAXCPD table using a 7-gene network with 128
states. Without loss of generality, assume that x1 and x2
are the T and C genes, respectively, and x1 = 0 defines
desirable states. After examining all the triples, MAX-
COD is found to be {x2, x3, x4}, which has maximum

CoD for predicting x1. The first three columns of the
MAXCPD table contain 8 binary combinations of x2, x3
and x4, as table 1 shows. The last two columns of the
table contain the summation of the SSD probabilities of
the states with common value for MAXCOD genes. The
only difference in columns four and five is the value
of the T gene. The size of each block of states is 2n– 4 =
23 = 8. The first block is Block(1) = {0000000, 0000001,
0000010, 0000011, 0000100, 0000101, 0000110,
0000111}, where all have {x2, x3, x4} = 000 and x1 = 0.
The second block is Block(2) = {1000000, 1000001,
1000010, 1000011, 1000100, 1000101, 1000110,
1000111}, where {x2, x3, x4} = 000 and x1 = 1. Each entry
of the forth and fifth columns of the CPD table are repre-
sented by Pij, where i Î {1, …, 8} represents a row and j Î
{0,1} is the T value. Each Pij is the summation of the SSD
probabilities of the states in a block. For columns four
and five of the first row (i = 1), we have to sum up all the
SSD probabilities for the states in Block(1) to find P10.
The summation of the SSD probabilities of Block(2)
forms P11. The rest of the Pijs are calculated similarly.
In the PBN setting, control of the network is achieved

by toggling the value of the control gene. The derivation
of a stationary control policy µ Î {0, 1}2

n

, means defining
control actions for each state s Î {StateSpace}. If the con-
trol action for the state s is set to 1, it means that the net-
work should transition from its flipped with respect to

C c: s . Otherwise the network transitions as specified by
its STM. The CoD-CP algorithm finds the MAXCPD
table in order to specify the control actions. It uses the
total probabilities Pij to define the control actions. Algo-
rithm 1 details all the steps of CoD-CP. In the binary
representation of each state s, we find the values of
MAXCOD genes. The decimal conversion of the values
of MAXCOD genes determines the row of the MAXCPD
table corresponding to state s. Then, the total probabil-
ities Pij are used to find D(.), as described by algorithm 1,
where D(.) defines the difference between the total prob-
ability of a block of states to be desirable from that of
being undesirable in the long run. Using this difference
we can define the control actions: if D D c( ) ( )s s>  , then
flip the value of C in s c to start the transition from s;
otherwise, flip the value of C in s and start the next tran-
sition of the Markov chain from s c . If D D c( ) ( )s s=  ,
then we can select one of them uniformly randomly.
Example 1, part b illustrates how control actions are
assigned to the states.
Example 1, part b: Following the same 7-gene exam-

ple, consider state s = 0000000. We calculate D(s) = P10
– P11. The flipped state with respect to the control gene
is s c = 0100000 . Looking at the MAXCOD genes in
the binary representation of s c , we have {C = 1, Predic-
tor1 = 0, Predictor2 = 0}, which maps to row 5 of
the MAXCPD table. Similarly, D P Pc( )s = −50 51 . If

Table 1 MAXCPD Table: the first three columns represent
the binary combinations of the three MAXCOD genes.
The last two columns are filled by summing up the SSD
probabilities of states in each corresponding block

MAXCOD T

C Predictor 1 Predictor 2 0 1

row 1 0 0 0 P10 P11

row 2 0 0 1 P20 P21

row 3 0 1 0 P30 P31

row 4 0 1 1 P40 P41

row 5 1 0 0 P50 P51

row 6 1 0 1 P60 P61

row 7 1 1 0 P70 P71

row 8 1 1 1 P80 P81
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s c , then it is beneficial to flip s c and force the Markov
chain to start the next transition from s, but if
D Dc( ) ( )s s> , then it is better to start the next transi-
tion from s c , in which case the control action for s is
set to 1. For all the states in Block(1) the same control
action is applied. This greatly simplifies the design of
the control policy. Figure 1 shows a numerical example
of how the CoD-CP can be designed on this 7-gene
example network.

Algorithm 1 CoD-CP                                                                                                                                

Find  genes and their MAXCOD ccorresponding  table

 all the states , 

    F

MAXCPD
for s do∈ S

iind its flipped state w.r.t. 

    Find row  of 

C

i

c: s
MAXCPDD MAXCOD MAXCPD table by mapping  genes in  to the  table

 

s

    Find row  of  table by mapping  genes in k MAXCPD MAXCOD s
if

c

T

 to the  table

      defines 

MAXCPD

Desirable State= 0 ss 

        

        

    

 

then

s

s

else

D P P

D P P

i i

c
k k

( )

( )

= −

= −
0 1

0 1

        

        

    

    

D P P

D P P

i i

c
k k

( )

( )

s

s

end if
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= −

= −
1 0

1 0

   

        

        

    

( ( ) ( ))

( )

( )

D D c

c

s s then

s

s

else

>
=

=




m

m

0

1

  if s s

s

s

e

  then

        

        

    

( ( ) ( ))

( )

( )

D Dc

c





>
=

=

m

m

1

0

llse

        uniformly randomly assign control actions for ss s

end if

end for

 and  such that only one has 

    

r

 c m(.) = 1

eeturn                                                 ( )m                                                                                              
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Performance comparison
In this section we compare the performances of CoD-
CP, SSD-CP, and MFPT-CP, first with respect to run
time and then to shift of the steady-state distribution.

Run-time comparison
The dynamics of a GRN and its associated Markov
chain are determined by its state transition matrix. The
STM provides the full knowledge about the states and
their transitions in the network; however, inferring the
STM is difficult, especially when available data about
the network are limited or the size of the network is
large. The main advantage of the CoD-CP algorithm is
that it can be directly designed on large networks with-
out inferring the STM and only needs an estimation of
the SSD of the Markov chain. This section provides a
comparison of CoD-CP with MFPT-CP [6] and SSD-CP
[7].
In the case of large GRNs, CoD-CP can be directly

designed on the model, while MFPT-CP and SSD-CP are
two-step procedures: first reducing the size of the net-
work so that the policy can be designed and then indu-
cing that control policy back to the original network.
These necessary steps increase the computational time
associated with MFPT-CP and SSD-CP. To compare the
three algorithms, we measured the running time needed

for designing control policies on gene networks contain-
ing 7, 8, 9, and 10 genes, averaged for 100 randomly
designed BNps. For MFPT-CP and SSD-CP, the best gene
for deletion was selected and then the original network
was reduced by deleting that gene, according to the
methodology introduced in [8]. Consequently, the con-
trol policies were designed on the reduced networks and
then induced back to the original networks. CoD-CP was
designed directly on the original network as described by
our new algorithm. All computations were performed on
a computer with 4GB of RAM and Intel(R) Core(TM) i5
CPU, 2.53 GHz. Figure 2 shows the average running
times for 100 BNps in seconds. The running times tend
to grow exponentially as the number of genes increases.
For comparing the performance of the three algorithms

one needs to keep in mind their important characteris-
tics. The CoD-CP algorithm needs the SSD to design the
control policy. In cases when the SSD is known, one can
directly proceed to the CoD calculations and design the
control policy for the network. When the SSD is not
known, it can be calculated using equation (1) or can be
estimated by methods described in [22]. The model-
dependent version of the MFPT algorithm requires an
extra step to infer the STM. It then uses matrix inversion
to find the mean-first-passage-time vectors KD and KU,
this step having the same time complexity as finding the

Highest CoD 
triple:

G2, G3, G4 T C
G1 G2 G3 G4 G5 G6 G7

s 0 0 0 0 1 0 1
ŝ c 0 1 0 0 1 0 1

Desirable Undesirable

G2 G3 G4 0 1

0 0 0 0 0.10195465 D1= 0 - 0.10195465

0 0 1 0 0.13656598 -0.10195465 CP

0 1 0 0 0.12166769 s 1

0 1 1 0 0.27253509 ŝ c 0

1 0 0 0 0.040226 D2= 0 - 0.040226

1 0 1 0 0.03687279 -0.040226

1 1 0 0.1901106 0

1 1 1 0.1000672 0

G1

D2 > D1

Figure 1 Deriving CoD-CP for a small 7-gene network. The x1 and x2 genes are the T and C genes, respectively. x1 = 0 defines Desirable states.
The MAXCOD genes are: {x2, x3, x4}. The control action for state s is 1 and the control action for state s c is 0, because D(2) >D(1).
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SSD. The model-free version of MFPT-CP requires time-
course measurements to estimate the necessary mean-
first-passage time vectors. In such a case the algorithm
can skip the inference of the STM, and the complexity of
estimating MFPT vectors is constant with respect to the
number of genes. However, the availability of time-course
data is very limited in practice. The other available greedy
approach, SSD-CP also requires the SSD and STM of the
network. Moreover, the SSD-CP algorithm needs to find
the perturbed SSD for each state, which increases the
time spent for designing the control policy.
As described in the section , CoD-CP uses the

MAXCPD table to design the control policy, which
divides the state space into blocks of size 2n– 4. These
blocks are used to assign the same control actions to all
of the states in a given block and the complement con-
trol action for the block of flipped states. This signifi-
cantly reduces the complexity of the control policy
design and leads to shorter run times.

Steady-state performance
This section provides simulation experiments to demon-
strate the performance of the CoD-CP algorithm with
respect to its main goal, to shift undesirable steady-state
mass to desirable steady-state mass. In the first part, the
algorithm is applied to randomly generated networks. In
the second part, we demonstrate CoD-CP on a real-

world-derived gastrointestinal cancer network with 17
genes, which can be considered large, given that even
with binary quantization, the dimension of its Boolean
network STM is 217 × 217.

Synthetic networks
CoD-CP has been designed for networks that are too
large for direct application of greedy algorithms such as
MFPT-CP and SSD-CP while at the same time not suf-
fering from loss of information when designing control
polices on reduced networks and then inducing them to
the corresponding original networks. Hence, our desire
is to demonstrate the improved performance of CoD-CP
in comparison to the induced greedy control policies
when reduction-inducement is necessary; otherwise, one
can simply use the previously developed greedy policies
directly. In this section, we discuss the results of a simu-
lation study that compares the performance of CoD-CP
to MFPT-CP and SSD-CP on a set of BNps that are ran-
domly generated using the algorithm from [23], for two
different perturbation probabilities: p = 0.1 and p =
0.01. The latter probability is the one most commonly
used in GRN control studies [2, 6, 7, 24]; nevertheless,
we also use p = 0.1 to see the effect, if any, of a less
stable network where less mass is concentrated in the
attractors. In order to examine how the attractor struc-
ture affects performance, we test the CoD-CP algorithm
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Figure 2 Comparing the average running times(in seconds) for designing stationary control policy for 100 randomly generated 10-gene, 9-gene,
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the number of genes increases.
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on two model classes: (1) networks with singleton
attractors only, and (2) networks that allow cyclic attrac-
tors. In the first class, we randomly choose 100 unique
attractor sets for a different number of genes n, where n
Î {7, 8, 9,10}. The attractor sets are restricted to be
evenly distributed between the desirable and undesirable
states. In the second class, the attractor sets are unique,
but the criteria for evenly distribution between D and U
is no longer required and attractors are allowed to be
cyclic and of unequal length. We used the absolute shift
of the SSD as the algorithm performance measure. It is
given by

l p p= −
∈ ∈
∑ ∑d
d D

d

d D

, (10)

Where p dd D∈∑ and p dd D∈∑ are the total probability
masses of the desirable states after applying control and
before applying any control, respectively, a larger l
being desirable. In real-world situations the target (T)
and control (C) genes are often pre-selected by the biol-
ogists/clinicians, the basis for choice being that a pheno-
typically related target is to be up- or down-regulated
and the control gene is known to be related to the tar-
get. However, in our simulation studies, where knowl-
edge about T and C does not exist, we have designed a
procedure to identify reasonable target and control
genes. The objective of the procedure is to select a (C,
T) pair such that there is a direct connection, or path,
from C to T, which would be a natural constraint in
applications. The strength of connection between C and
T is measured by the CoD. The selected pair is called
CoD-strongly-connected pair. To select this pair, we con-
sider all two-gene combinations such that each gene in
a given pair is treated as both the candidate target and
candidate control gene, and the CoD of the candidate C
for predicting candidate T is calculated. The pair with
the maximum CoD of C candidate for predicting candi-
date T is picked. Then the algorithm checks if there is a
path from C to the T. If such a path exists, then the
(C, T) pair is chosen. If no path exists, then the pair is
discarded and the next highest CoD pair is considered
as the candidate (C,T) pair. For checking the existence
of a path, we use the breadth-first-search (BFS) algo-
rithm [25]. For more information please refer to the
supplemental document (Additional file 1).
To compare CoD-CP to the reduction-inducement ver-

sions of MFPT-CP and SSD-CP, we use the reduction
method described in [8], called CoD-Reduce. The CoD-
Reduce algorithm is designed for the networks with
singleton attractors only because its selection policy
heuristically uses the singleton attractors to generate the
structure of the reduced network. Therefore, in this
paper, when reduction of the network is needed for

comparison of the control policies, we focus on the net-
works with singleton attractors only (we return to cyclical
attractors later). Figure 3 illustrates that the CoD-CP pol-
icy designed on the original network outperforms the
induced MFPT-CP and SSD-CP policies when there is
significant network reduction in the case of a 10-gene
network and p = 0.1. Each set of bars in the graph shows
the average SSD shifts for the three policies with different
amounts of reduction for the MFPT-CP and SSD-CP
policies, beginning no reduction-induction, then reduc-
tion to 9 genes and induction back to 10, and so on. The
performance of CoD-CP is invariant because it is
designed directly from the original network. Absent
reduction we see that CoD-CP is outperformed by the
induced polices and continues to be outperformed with a
2-gene reduction. But after that, for reductions of 3 ore
more genes, CoD-CP outperforms the induced policies,
with its superiority increasing as the extent of the reduc-
tion grows. This is precisely the behavior we desire.
While both the MFPT-CP and SSD-CP policies can be
used directly for 10-gene networks, they must be induced
from reductions for large networks and, as we observe,
the reduction-induction paradigm provides decreasing
SSD shift as the amount of reduction increases. Figure 4
shows a similar phenomenon with p = 0.01.
Having demonstrated the advantage of CoD-CP over

the induced polices as the degree of reduction (and,
therefore, induction) increases, we now turn to two
other aspects of CoD-CP: the effect of cyclic attractors
and the selection of target-control pairs. For each issue
we consider two cases. For attractors, as previously
noted, we have: (a) only singleton attractors and (b) cyc-
lic attractors allowed. Regarding target-control pairs, we
have: (a) CoD-strongly-connected target-control pairs
and (b) randomly selected target-control pairs. If we
combine these choices, we have four factors to consider:
network size (n), perturbation probability (p), attractor
structure, and target-control structure. Table 2 provides
the SSD shifts for network size n Î {7, 8, 9,10}, p Î
{0.1, 0.01}, and the two possibilities for attractors and
target-control pairs.
The first point to recognize is that using CoD-strongly-

connected target-control pairs is more realistic because
in practice one would control a target with gene that is
strongly connected to it via prediction and the CoD is a
measure of prediction. On the other hand, one could
hardly expect to achieve as good results by randomly
selecting targets and controls. We see this contrast
reflected in the SSD shifts in Table 2. In addition, we
see that using CoD-strongly-connected target-control
pairs results in decreasing SSD shift for increasing net-
work size, whereas this trend is replaced by sporadic
behavior for randomly selected target-control pairs.
Finally, we note the better performance for p = 0.01
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than for p = 0.1. This reflects the more random network
behavior for higher perturbation probability because the
control algorithm utilizes the predictive structure in the
network (as measured by the CoD) and this structure is
less determinative when perturbations are more likely.
In this regard we note that both MFPT-CP and SSD-CP
also perform better for p = 0.01 than for p = 0.1, in
both their non-induced and induced modes.

Gastrointestinal cancer network
This section accomplishes two purposes: to examine CoD-
CP performance on a real data-based network and on a
network sufficiently large that neither MFPT-CP nor SSD-
CP (nor, for that matter, dynamic programming) can be
applied in their non-induced forms. To do so, we use a
BNp derived from gastrointestinal cancer microarray data-
set [26] and initially inferred in [8]. The 17-gene network
has the genes OBSCN and GREM2 as target and control,
respectively. This selection is based on biological knowl-
edge and CoD-measured strength of the connectivity
between them. The 17 genes comprising the model are:
OBSCN, GREM2, HSD11B1, UCHL1, A_24_P920699,
BNC1, FMO3, LOC441047, THC2123516, NLN, COL1A1,

IBSP, C20or f166, KUB3, TPM1, D90075, and BC042026.
Figure 5 shows the connectivity graph of the 17-gene gas-
trointestinal cancer network.
The 17-gene network has a 217 × 217 state transition

matrix. The generation and manipulation of the STM
needed for the design of the MFPT-CP and SSD-CP is a
hard computational problem, thus, reduction and induc-
tion are necessary steps for obtaining the two control
policies. We use an estimation of the SSD because for
such a large network it is infeasible to derive it analyti-
cally. The approximation method proposed in [22] is
used to estimate the SSD of the network. Since CoD-CP
can use the estimated SSD of the network, it can be
used for directly designing the stationary control policy
on the 17-gene network. The estimation procedure uses
the Kolmogorov-Smirnov test to decide if the network
has reached its steady-state.
To apply MFPT-CP and SSD-CP, we reduce the net-

work via the gene reduction method introduced in [8]
and delete genes consecutively until only 10 genes are
left in the network. At that point it is possible to
design the MFPT-CP and SSD-CP policies, after which
they are induced back to the original 17-gene network.
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Figure 3 Comparing original CoD-CP to the original and induced MFPT-CP and SSD-CP for 100 randomly generated 10-gene BNps with half of
the attractors in D states. In the first set of bars, CoD-CP, MFPT-CP and SSD-CP are designed on the 10-gene networks. In the next sets, the
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The resulting performance comparison of the CoD-CP
policy with the induced MFPT-CP and SSD-CP poli-
cies is shown in Table 3. The difference is dramatic,
with the SSD shift for the CoD-CP far superior to the
shift for the induced MFPT-CP and SSD-CP policies,
which are about the same. The perturbation probability
used in this experiment is p = 0.1. More results using
p = 0.01 are shown by table 4. It is important to point
out that the small perturbation probability, p = 0.01,

makes such a large network to be very deterministic.
Thus, all of the three control policies produce signifi-
cant shifts in the network SSD towards the desirable
states. In addition, one can notice that the CoD-CP
performs extremely well which can be attributed to the
use of CoD to infer the network structure from data.
This results illustrates the importance of the proper
combination of network inference and control policy
design methods.

Table 2 CoD-CP performance for p Î {0.1, 0.01} and singleton or cyclic attractors, averaged for 100 BNps with 7, 8, 9
and 10 gene networks

Network Size

p C-T Pair Attractors 7 8 9 10

0.01 Connected Singleton 0.442813327 0.43722164 0.343500124 0.26431826

0.01 Connected Cyclic 0.438436274 0.309464685 0.288786759 0.204716543

0.01 Random Singleton 0.117863711 0.148585675 0.160006514 0.102484183

0.01 Random Cyclic 0.069442199 0.068265255 0.116798596 0.06892594

0.1 Connected Singleton 0.322014658 0.256250706 0.205475527 0.162102211

0.1 Connected Cyclic 0.315366842 0.237692755 0.191486782 0.132842645

0.1 Random Singleton 0.072929047 0.069787742 0.069085431 0.043901727

0.1 Random Cyclic 0.078443655 0.045092185 0.057163771 0.044105186
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probability is 0.01.

Ghaffari et al. BMC Bioinformatics 2011, 12(Suppl 10):S10
http://www.biomedcentral.com/1471-2105/12/S10/S10

Page 11 of 14



Conclusions
In this paper we propose a new algorithm, CoD-CP, for
designing a greedy stationary control policy that benefi-
cially alters the dynamics of large gene regulatory

networks. The proposed algorithm needs minimum
knowledge about the structure of the model and only uses
the steady-state distribution of the associated Markov
chain. This is particularly important for large networks,
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Figure 5 17-gene Gastrointestinal Cancer Network. Details about the network and this graphical display are provided in [8,9].
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where it is computationally prohibitive to use the pre-
viously proposed optimal or greedy approaches for design-
ing stationary control policies. The CoD-CP algorithm
uses CoD computations based on the steady-state distribu-
tion for measuring the strength of connection between the
target gene and its candidate predictor genes. CoD-CP is
particularly designed for the class of network models
where there is a path between the target and control
genes, a condition that is reasonable in practical applica-
tions. The control action for each state of the network is
defined based on the values of the strongest predictor set
for the target gene. Simulations demonstrate that CoD-CP
outperforms the induced versions of the MFPT-CP and
SSD-CP algorithms relative to shifting the steady-state dis-
tribution of the network toward more desirable states
when there is a significant amount of reduction, a require-
ment for large networks.

Additional material

Additional file 1: This is a file in PDF format and contains additional
and supportive material. It provides details about SSD estimation
methods, compares results from this paper to the previously
published results and outlines the method used for selecting CoD-
strongly-connected T-C pairs in the simulations. The link to the file
is: http://gsp.tamu.edu/Publications/supplementary/ghaffari11a/
ghaffari-cod-cp-supplemental-document.pdf
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