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Abstract

Background: In contrast to the increasing number of the successful genome projects, there still remain many
orphan metabolites for which their synthesis processes are unknown. Metabolites, including these orphan
metabolites, can be classified into groups that share the same core substructures, originated from the same
biosynthetic pathways. It is known that many metabolites are synthesized by adding up building blocks to existing
metabolites. Therefore, it is proposed that, for any given group of metabolites, finding the core substructure and
the branched substructures can help predict their biosynthetic pathway. There already have been many reports on
the multiple graph alignment techniques to find the conserved chemical substructures in relatively small
molecules. However, they are optimized for ligand binding and are not suitable for metabolomic studies.

Results: We developed an efficient multiple graph alignment method named as MUCHA (Multiple Chemical
Alignment), specialized for finding metabolic building blocks. This method showed the strength in finding
metabolic building blocks with preserving the relative positions among the substructures, which is not achieved by
simply applying the frequent graph mining techniques. Compared with the combined pairwise alignments, this
proposed MUCHA method generally reduced computational costs with improving the quality of the alignment.

Conclusions: MUCHA successfully find building blocks of secondary metabolites, and has a potential to
complement to other existing methods to reconstruct metabolic networks using reaction patterns.

Background

Living organisms in nature use a variety of substances
that express both conserved and variable functions to
survive. For example, genes and proteins have conserved
sequences or motifs that usually express their essential
functions, and some variable regions are known to pro-
vide varieties to the functions including immunity. Simi-
larly, a variety of relatively small metabolites can be
grouped into those common to many different species
(primary metabolites) and those observed in a limited set
of species (secondary metabolites). Secondary metabolites
have been shown to be of great value in the classification
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and differentiation of fungal species [1]. For another
example, plants produce over 200,000 secondary metabo-
lites [2], some of which are known to function as toxins
defending the organisms against pathogens, parasites and
predators [3]. The physiological roles of many secondary
metabolites are still unknown; however, some of them
are important sources of drugs and industrial materials.
Many secondary metabolites are not yet known how
they are synthesized or degraded, which can be referred to
as “orphan metabolites” in metabolomic studies [4] by
analogy with orphan genes in genomic studies [5]. These
orphan metabolites can be divided into groups that share
the same core substructure, originated from the same bio-
synthetic pathways. It is also known that many metabolites
are synthesized by adding up the building blocks onto the
other existing metabolites. Therefore, finding common
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and branch substructures from a group of compounds
may narrow down the search space to identify their
biosynthetic pathway compared with the prediction of
pathway for each metabolite individually. This is our moti-
vation of developing novel multiple chemical alignment
(atom-atom mapping) algorithm, which is different from
the ones for motif finding.

Multiple sequence alignment algorithms are valuable in
finding conserved and variable patterns across a family of
nucleic or amino acid sequences, and have been shown
of major importance in bioinformatics. The concept of
multiple alignment can also be applied into graph struc-
tures. Graph is a general data structure where some pairs
of the objects are connected by links, and has been used
for modeling biological networks [6-9], three dimensional
structure of proteins [10-12], as well as molecular struc-
tures [13-21]. There have already been a number of mul-
tiple graph alignment or frequent subgraph mining
methods [22-24]. Those techniques have their own
strengths and weaknesses because of the variety of differ-
ent requirements of finding substructures. Therefore dif-
ferent strategies have to be designed depending on the
purpose of finding common substructures. For example,
the common substructure of a set of polypeptides is
obviously a peptide backbone. In most cases, however, “a
peptide backbone” is not the proper answer for the
researchers using the multiple alignment. The purpose of
the multiple alignment is usually finding the conserved
sequence of amino acid residues, which is why multiple
“sequence” alignment method is suitable rather than
multiple “graph” alignment.

On the other hand, some multiple graph alignment
methods were developed for finding functional groups or
substructures in chemical compounds responsible for
ligand binding. Graph-based methods have strengths in
identifying conserved substructures and generating atom-
atom alignments. Many researchers proposed graph-based
algorithms for obtaining the maximum common subgraph
(MCS) [25] using clique-finding [26] and backtracking
[27,28] techniques. The MCS problem is known as NP-
hard, so most algorithms are not universally applicable.
Therefore, the graph-based algorithms use some heuristics
to effectively reduce the computational amount, to provide
a specialized solution for the concrete properties of their
problems arisen from special requirements. Recently, an
evolutional algorithm-based approach has been proposed
to solve multiple graph alignment [12], although it was
optimized for three-dimensional protein structures and it
still required many computational time even for relatively
small molecules. More importantly, these multiple align-
ment methods perform 3D alignment (i.e., superposition)
of molecules to deduce pharmacophores or the sites of
molecular recognition, which should match different che-
mical groups with “similar” properties responsible for the
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binding to proteins that are usually oriented similarly
among the group of ligands. In this context, “similar”
chemical groups do not mean the chemical groups that
can be converted to each other by enzyme reactions, but
they typically mean electrostatic properties such as polar
positive, polar negative, or hydrophobic. This strategy is
apparently not suitable for finding metabolic building
blocks.

We propose in this study that the techniques for pre-
dicting metabolic origins require different strategy than
that for motif finding or ligand binding. We thus devel-
oped the multiple chemical alignment (MUCHA) algo-
rithm for assisting the metabolic pathway prediction. Our
method was shown to be efficiently quick to apply for
finding the core and branch substructures from large
number of compounds. The main procedures in the
MUCHA algorithm are: (1) obtain the longest common
string of atoms, (2) extend the string to obtain the core
substructure, (3) apply the similar strategy to the periph-
eral atom strings (Figure 1). We propose this method as
the powerful tool to classify metabolites based on the
building blocks and to facilitate the prediction of their bio-
synthesis pathways.

Materials

Chemical structures of metabolites were obtained from the
KEGG LIGAND database [29] (Figure 2a). C00482 and
C05855 are the KEGG Compound IDs for the example
molecules, sinapic acid and p-coumaryl alcohol 4-O-gluco-
side, respectively. KEGG Chemical Function (KCF) format
represents chemical compounds as graphs G(V, E), where
V and E are the sets of vertices and edges, i.e., the sets of
atoms and bonds found in each molecule, respectively.
The vertices (atoms) do not only contain atomic species
information but are labeled by the KEGG Atom types [20],
which describe the detailed information of atomic proper-
ties such as functional groups (Figure 2b). KEGG atom
label consists of three letters, such as “Cla” meaning a
methyl carbon. The first and second letters represent
atom species and orbital environments, respectively. The
third letter describes the surroundings of a given atom in
terms of its bonded neighbors. The list of the KEGG atom
typing is given in the Supporting Information. In this
study, we refer to the full KEGG atom types consisting of
the three letters as the “KEGG atoms”, up to the first two
letters as the “atom classes”, and the first letter as the
“atom species”. Note that hydrogen atoms are not usually
described as the vertices, unless it is necessary to represent
the stereochemistry, but the involvement of the hydrogen
atoms is implicitly represented in the KEGG atoms. Also,
the numberings of the atoms in the molecules we used, as
described in Figure 2a, were not base on the IUPAC rules
but were automatically assigned by the chemical structure
drawing tools including ChemDraw and KegDraw.
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Query molecules

Stage 2: Obtain the core substructure

Stage 3: Obtain the branch substructures

Figure 1 Overall procedure for the multiple chemical alignment.
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Methods

In this section, we first introduce the naive extension of
SIMCOMP [20], the effective pairwise alignment method,
for the comparison. Consequently, we defined the two key
methods for the proposed MUCHA method in this study,
DMAID (distance matrix-based atom identifier) and
DECAF (distance-embedded common atom fingerprint).
Using these two, the MUCHA calculates the multiple che-
mical alignment through the process as described in
Figure 1: [Stage 1] to obtain the longest common atom
strings (LCAS), [Stage 2] to extend LCAS to obtain the
core alignment, and [Stage 3] to conduct the similar strat-
egy to the branch structures.

MULCOMP as the naive multiple chemical alignment tool

We designed the naive version of the multiple chemical
alignment method by assembling the SIMCOMP pairwise
chemical alignments for all combinations of the

molecules given as a query. We refer to this naive
method as MULCOMP. Since a SIMCOMP pairwise
alignment is calculated independently from other align-
ments, there occurred many cases where the atom-atom
mappings in some alignments conflicted to each other. In
such cases, we removed the conflicting atom-atom map-
pings. This removing process is also applied to the
branch alignment in MUCHA, and was thus explained in
the later section in this paper.

Distance matrix-based atom identifier (DMAID)

The first technique of MUCHA we applied was named as
the distance matrix-based atom identifier (DMAID),
which is used for characterizing the atom’s or atom
string’s relative position. In this context, “distance” means
the shortest path length between two atoms in a molecular
graph. Distance 0 refers to the current atom. Distance 1
refers to the atoms directly bonded to the current atom.
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(a) Molecular structure and numbering (b) KCF representation
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(c) DMAID
Self-DMAID(C00482, [1, 2, 3, 4, 51) = {[@, 1, 2, 3, 2], [1, o, 1, 2, 3],
(2,1,90,1,2),1(321,60,1),[023,2,1,0 }
Sel f-DMAID(C@S85S, [1, 2, 3, 4, 51) = {[@, 1, 2, 3, 2], [1, O, 1, 2, 3],
2, 1,e90,1,2],1I[321,601],[&,3,2,1,90 }
Anchored-DMAID(C@0482, [13, 14, 15], [1, 2, 3, 4, 5]) = {
2, 3,4,5,4]1, 3, 4, 5, 6, 5], [4, 5, 6, 7, 6]}
Anchored-DMATO(C@S855, [8, 9, 221, [1, 2, 3, 4, 51) = {
2, 3, 4, 5, 4], (3, 4, 5, 6, 5], [4, 5, 6, 7, 6]}
(d) LCAS
LCAS(CO0482, C@5855) = { Coe4s82 : [2, 1, 12, 13], [6, 1, 12, 13],
€os8ss : [2, 1, 7, 81, [6, 1, 7, 8] }
(e) DECAF
DEKAF((00482, 1)={ 0 : “C8" =1,
1: HC2C="1 S CaCh =t
2: Yccc” =1, “c8CC” =2,
3: “ceCcC” =1, fcscecc” =1, “o2ccC” =2,
4 : “Q0CCC” =2,  “01CCCCT =1, “06CCCCT =2}
DEKAF(C@5855, 1)={ @ : “C8" =1,
1 SCGEEwI R CAC -2
2 “ccc” =1, “c8CC” =2,
3: "CQCC” -1, [KCRCCORREIS
4 : Mpicccc” =12, “oz2cccc” =1,
5 : “c1occcc” =1,
6 : “cacoccec” =1, “o2cocccc” =1,
7 + “ciccoccecc” =1, “ciococccc” =1, “prccoccec” =1,
8 : “C1CCCoCCCc” - 1, “C100C0CCCC” = 1,
“o1cccoccec” =1, “cicococccc” =1,
9 : “01CCOCOCCCC™ = 2, “01CCCCOCCCC” =1}
(f) Chemical aligment (atom-atom mapping)
1 2 3 4 5 6 7 8 9 10
(00482 --6[C8x]--1[C8y]-12[C2b]-13[C2b]--5[C8y]--2[C8x]-14[C6a]--4[C8y]--3[C8y]-15[06a]
(05855 --6[(8x]--1[C8y]--7[(2b]--8[(2b]--5[C8x]--2[(8x]--9[C1b]--4[C8y]--3[(8x]-22[01a]
11
(00482 --9[01a]
(05855 -10[02a]
Figure 2 Examples of DMAID, DECAF, LCAS and the chemical alignment

Distance 2 refers to the atoms bonded to the distance 1
atoms, and so on.

Example DMAIDs are shown in Figure 2c. We defined
the two types of DMAIDs: self-DMAID and anchored-
DMAID. Self-DMAID basically has the same structure

as the distance matrix. The differences lie on that the
self-DMAID only considers the atoms included in the
given set of atoms (i.e., LCAS) in a molecule, and that
self-DMAID is used for the distinction of the atom
strings to obtain LCAS. Self-DMAID always becomes a
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square matrix. Take the atom string “1, 2, 3, 4, 5” of the
molecule C00482 for example, the shortest path lengths
from the atom 1 to the atoms 1, 2, 3, 4, 5 were O, 1, 2,
3, 2, respectively. This way, shortest path lengths from
the atoms in the atom string to their own were put in
an array, which made a square matrix enabling the
quick check of the topological identity among the atom
strings. For instance, as described in Figure 2c, self-
DMAID for the atom string “1, 2, 3, 4, 5” of the mole-
cule C00482 was the same as the one for “1, 2, 3, 4, 5”
of C05855. However, these two atom strings were not
regarded as LCAS, because they were not the same in
terms of the KEGG atom strings (“C8y-C8x-C8y-C8y-
C8y” and “C8y-C8x-C8x-C8y-C8x”, respectively). If all
the query molecules have the atom strings that are the
same in terms both of the self-DMAIDs and the KEGG
atom strings, then the atom strings were regarded as the
common atom strings to obtain the core substructure.
On the other hand, the anchored-DMAID for an atom
or atom string needs the other atom or atom string as
the anchoring point(s), and were used to obtain the
branch substructures using the LCAS as the anchor. An
anchored-DMAID is a distance matrix of an atom string
against another, therefore it is not necessarily a square
matrix. For example, the anchored-DMAID for the atom
string “13, 14, 15” of the molecule C00482 against the
anchor string “1, 2, 3, 4, 5” is shown in Figure 2c. The
calculation process is the same as that of the self-
DMAID. Figure 2c shows another anchored-DMAID that
was the same as the first one. After the core substructure
was obtained, the anchored-DMAIDs were calculated for
the short common atom string (SCAS) against the core.
Different from the core substructures, if the atom strings
are the same in terms both of the anchored-DMAIDs
and the atom species strings, then they were regarded as
the common strings to obtain the branch substructures.

Longest common atom strings (LCAS)

We defined the longest common atom string (LCAS) to
use as a seed to start multiple alignment. Atom strings
were described as the paths consisting of the KEGG
atoms and the self-DMAID, of which the longest com-
mon (or shared) in the given set of molecules were taken
as the LCAS. The procedure of finding LCAS is as fol-
lows. First, every atom was regarded as an atom string
with the length = 1, and was put into a queue. These
atom strings were distinguished by the two properties:
the KEGG atom labels and their self-DMAIDs. If the
atom strings appeared not in all molecules, then they
were discarded. Each of the remaining atom strings was
picked out of the queue, and the neighboring atoms of
the terminal atom of the string were added to generate
all possible atom strings that were one-atom longer. All
these atom strings were stored into a new queue, and
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then the strings that appeared not in all molecules were
discarded. Each of the remaining atom strings was picked
out of the queue, the neighboring atoms of the terminal
atom were added to generate all possible atom strings
that were one-atom longer, and was stored in a new
queue. This process was iterated until the longer strings
shared by all molecules cannot be found any more.

If every one of the molecules had only one LCAS, then
the set of LCAS was represented as the “seed” alignment
to obtain the core substructure. If there were more than
one possible LCAS per molecule (as shown in Figure 2d),
the best combination of LCAS was selected as the repre-
sentative LCAS in the following way. The similarity
scores among LCAS were calculated according to the
DECAF scores (explained in the next section), and the
LCAS that show the best score with other molecules was
selected as the representative LCAS of the query mole-
cules. Since there may be too many combinations of
LCAS, the suboptimal combination was selected by
means of genetic algorithm. Figure 2d shows the LCAS
obtained from the two molecules C00482 and C05855.
There were two strings per molecule, which were not dis-
tinguishable because of the symmetry of the molecules.
In this case, any one of the strings could be selected as
the representative LCAS.

Distance-embedded common atom fingerprint (DECAF)
The distance-embedded common atom fingerprint
(DECAF) was defined for each vertex in the molecular
graphs, as described in Figure 2e. This fingerprint has
two attributes: distances d (shortest path length) and the
atom strings k. First, the shortest paths among atoms
were calculated using a simple width-first search (These
were calculated only a single time, and were also used in
calculating DMAID). Then the paths were represented as
the atom string in backwards, where only the destination
atom was described as the atom class. Taking the two
molecules in Figure 2 as example, DEKAF for the atom 1
of the molecule C00482 consists of 11 atom strings with
their occurrence numbers. Distance = 0 means the atom
1 itself, for which the atom class is “C8”. Distance = 1
refers to the 2-atom-length strings starting from the
atom 1, which terminate at the atoms 2, 6 and 12. Dis-
tance = 2 refers to the 3-atom-length strings from the
atom 1, terminating at 3, 5 and 13. This procedure con-
tinued until the width-first search ends, and iterated for
all atoms in the molecule.

We defined the following DECAF similarity score, the
similarity between atoms, based on the number of com-
mon atom strings at each length:

)= 3 3
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where nik,d and nj,k,d are the numbers of atom strings
k in the distance d (shortest path length) from the atoms i
and j, respectively. Two example DECAFs are shown in
Figure 2e, where the common attributes are highlighted in
gray. The DECAF scores between the atom 1 of C00482
and the atom 1 of C05855 becomes 1/1 + (1+2)/2 + (1+2)/
3+ 1/4 + 1/5 = 3.95. This score was used as a basis of
selecting the representative LCAS. This atom-to-atom
similarity scores do not have to be calculated between all
possible atom pairs in all molecules; they had to be calcu-
lated only once when needed at the first time, and then
stored in a hash table for the quick use next time.

Extending the core chemical alignments

All atoms in LCAS were represented in the form of the
alignment describing the part of the core substructure.
The neighboring atoms of LCAS were picked out, and
were grouped by the two properties: the atom species and
the anchored-DMAID against LCAS. The atom was dis-
carded if there were any molecule not having the same
atom in terms of the two properties. If the atom was
unique in a molecule in terms of the two properties, and if
the atoms having the same properties uniquely throughout
all the query molecules, then the atoms were regarded to
be in the core substructure and were added to the align-
ment. If there were some atoms in a molecule that could
not be distinct in terms of the two properties, then the
numbers of bonds within ring structures were taken into
account. If the atoms were not still distinguished, then the
atom classes were additionally considered. If the atoms
were not still distinct, then the full KEGG atom types were
taken into consideration. In the cases where some atoms
could not still be distinguished, occurring when the query
molecules contained symmetry, the atoms were distin-
guished by the order of the numbering. In this way, after
the atoms became unique in a molecule in terms of the
two properties, and were found in all molecules, then the
atoms were added to the core substructure. Among the
newly added alignment atoms, the neighboring atoms that
were not yet involved in the core alignment were picked
out, and the same process were iterated until there found
no more atoms.

As the result of the extension of LCAS, the chemical
alignment (atom-atom mapping) of the core substructure
was obtained. If the query contains only two molecules,
the calculation finished here, and output the atom-atom
mapping as shown in Figure 2f. If there were more mole-
cules, the search for the branch substructures began as
described in the following section.

Common atom strings for the branch substructures

The branch substructures were obtained with the similar
strategy as that for the core substructure. The first step
was to obtain many short common atom strings (SCAS)
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consisting of the atoms that were not involved in the
core substructure, instead of the LCAS for finding the
core substructure. These strings were distinguished by
the atom species and the anchored-DMAID against the
core substructure. Different from LCAS, SCAS did not
have to involve all the molecules given as a query. Note
that SCAS may involve the atom-atom mappings taken
from more than two molecules. The next step was to
extend the SCAS to obtain the common branch sub-
structure, by the means similar to the extension stage of
the LCAS. The difference was that the branch align-
ments only contains less numbers of molecules than
given in the query. The length of the SCAS was not
pre-determined, but started from 1 and extended as
much as it could go in a greedy fashion.

Removal of the conflicting atom-atom mapping

After many SCAS were generated independently, there
sometimes occurred the cases where different SCAS pos-
sessed the same atom. Therefore it was necessary to
remove these conflicts. The process of removing the con-
flicts was as follows: (1) Atom-atom mappings (the col-
umns in the alignment) were ordered randomly. (2) An
atom-atom mapping was picked out from the alignment,
and was put in a new array. (3) Next atom-atom mapping
was picked out, and if it conflicted with the mappings that
are already in the array, it was discarded. Otherwise it was
added to the array. (4) The step 3 was iterated until the
end. (5) The score was defined as the total number of the
atoms in the array. (6) The steps 1-5 were repeated
20 times and choose the array with the highest score.

Results

Output comparison

MUCHA output the text file that resembled a sequence
alignment (Figure 2f), which could be visualized on the
chemical structures as shown in Figure 3. The metabolites
in Figure 3 are monolignol and related compounds, which
are the key metabolite group for phenylpropanoids bio-
synthesis including lignins, lignans, flavonoids and cou-
marins. Different colors in Figure 3 indicate the different
substructures. It was clearly shown that MUCHA method
appropriately divided the query molecules into the
substructures, whereas the naive MULCOMP failed
(Figure 4). The naive method did not take into account
the relative distances or positions between the substruc-
tures, such as the one in the core substructure (colored in
gray) and the one in the sugar residues (colored in green),
which resulted in the misalignment of the sugar residue in
the different positions. The symmetry around the benzene
ring (and the phosphate in the CoA residues as well)
caused another problem in the naive method. Many mole-
cules have more than one atoms that are not distinguish-
able because of the symmetry. When conducting pairwise
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consistently with Figure 5, but not with Figure 4.

Figure 3 Example output of MUCHA alignment. Different colors represent different substructures or building blocks. The colors were given

chemical alignments, these atoms do not have to be dis-
tinct. Since the naive MULCOMP method iterated the
independent pairwise alignments, these atoms were
mapped without considering the consistency with the
other pairwise alignments. As the result, the naive method
failed to obtain the core structure. The proposed MUCHA
method did not conduct the alignment in a pairwise fash-
ion but focusing on finding the core substructure at first,
resulting in the better alignment that were consistent
throughout all the molecules given as the query. Another
advantage of the proposed method was that it discrimi-
nated the branch substructures that had the same chemi-
cal structure but are attached in different positions, which
could not be achieved by simply applying the frequent
subgraph mining technique.

Mapping the branch substructures to pathway

We also found that the alignment obtained by MUCHA
correlated well to each reaction step in the metabolic
pathway. Figure 5 shows an example pathway colored in

accordance with the colors in the branch substructures
in Figure 3. This pathway contains some transferase reac-
tions, where the transferred groups (building blocks)
were consistent with the branch substructures. It was
clearly shown that the branch substructures in the same
position were transferred at the similar position in the
grid-shaped pathway. These results suggest that the
MUCHA alignment gives valuable information to recon-
struct metabolic pathways when applied to orphan
metabolites.

Performance evaluation and comparison

Performance of the two methods has been evaluated in
terms of speed (Figures 6 representing the result for all
metabolite groups) and quality (Figures 7 for a “mono-
lignol” group of metabolites). The comparison experiment
was performed as following. A number of secondary meta-
bolites were retrieved from the KEGG COMPOUND data-
base, and were classified into 34 groups by the KEGG
BRITE hierarchical classification. From the obtained
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metabolite groups, the molecules that have less than 0.5
SIMCOMP similarity score against all other molecules
were removed. The resulted molecules contained 43.8 ver-
tices in the KCF representation, corresponding to about
74.0 atoms including hydrogen in average. Multiple che-
mical alignments by MUCHA and MULCOMP were cal-
culated for different numbers of molecules randomly
selected from the metabolite groups.

In Figures 6, the horizontal axis represent the numbers
of molecules in a query, and the vertical axis represent
the computational amount in seconds. In Figures 7, the
horizontal axes are the same as in the previous figures,

but the vertical axes are the relative alignment sizes,
which means the size of the core substructure in the mul-
tiple alignment divided by the average alignment size of
the independent SIMCOMP alignments. The comparison
was also represented in Figure 8, where each dot repre-
sents the average performances for each metabolite
group. In this figure, the relative computational time in
the horizontal axis means the average computational
time by MUCHA divided by that of MULCOMP. Simi-
larly, the relative alignment size in the vertical axis means
the average core alignment size calculated by MUCHA
divided by that of MULCOMP.
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As shown in Figures 6, runtimes of both methods
increased according to the numbers of molecules to be
aligned. MULCOMP ran stable in terms of the mini-
mum runtime, although some calculations exceptionally
took much time. On the other hand, the runtime of
MUCHA was not stable: i.e., it varied depending on the
metabolite group (as shown in Figure 8). The runtime
of MUCHA was generally less than that of MULCOMP.
This runtime may be comparable or a little better than
the work by Fober et al., resulted in about 1,000 seconds
to calculate multiple chemical alignment of 32 com-
pounds consisting of 48-100 atoms in average [15]

(although we cannot determine which is better because
their purpose of the multiple chemical alignment was
different from ours). Additionally, Figures 7 clearly
demonstrate the difference in finding the core substruc-
ture. The sizes of the obtained core substructures were
relatively stable in MUCHA, whereas they were not in
MULCOMP. There were some metabolite groups that
showed less performance than MULCOMP in terms of
computational time or the core alignment size. How-
ever, as a whole, our results indicated that MUCHA
alignments showed favorable in finding metabolic build-
ing blocks in many metabolite groups (Figure 8).
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Discussion

The SIMCOMP pairwise chemical alignment method was
optimized to find a small number of as large as possible
substructures, rather than finding a large number of rela-
tively small common substructures. Therefore, simply
combining the pairwise chemical alignment results was
not efficient for multiple alignment in both terms of com-
putational amount and quality. In this study, the MUCHA
method was designed for the multiple chemical alignment,
and showed relatively high performance compared with
the naive extension of the pairwise alignments. Apparent
performance trade-off exists in some stages, such as the
definition of the DECAF score similarity, the genetic algo-
rithm when choosing the representative LCAS, and
removing conflicting atom-atom mappings at the end of
the alignment. Optimization of these remains to be further
argued, although the algorithms and parameters in
this work produced reasonable results upon manual
inspection.

The performance of the multiple chemical alignment
depended upon the choice of the query molecules. As
shown in Figure 8, it has been shown that MUCHA did
not show better performance in some molecule groups
such as sesquiterpenoids, whose chemical structures are

highly diverse. If the structures of the given molecules
were too diverse, then there would be no common sub-
structures, or the program ended up finding inadequate
substructures. In fact, this has been also a problem
occurring in the multiple sequence alignment methods.
As it is important to exclude the sequences that are not
evolutionary close when conducting multiple sequence
alignments, it is important to exclude the molecules that
are not structurally close when conducting multiple che-
mical alignments. Multiple sequence alignment has a
long history, and many researchers have dealt with this
problem. This will be one of the problems to solve to bet-
ter use the multiple chemical alignment.

Although the method to collect the appropriate set of
metabolites still remains to be solved, MUCHA had the
strength in finding the building blocks for the metabolites
that are appropriately collected in advance. The naive
multiple alignment method had to compare the global
chemical structures N (N — 1) / 2 times (where N refers
to the number of the query molecules) based on the
time-consuming clique-finding technique, whereas the
MUCHA only needed to compare the local chemical
structures by the quick check of the differences among
the DECAF vectors, which had been pre-calculated based
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on the quick width-first search. Local features of graphs
can be described by paths or walks (random walks) [30],
however, calculation to obtain all random walks consume
large computational amount. In this paper, we demon-
strated the usefulness of the DECAF similarity scores as
the alternatives that can be quickly calculated. One can
also easily imagine that the pairwise alignment-based
approach would meet the combinatorial explosion with
the increasing number of the query molecules, and would
also meet the difficulty in keeping the consistency among
the pairwise alignments. MUCHA method effectively
dealt with these problems by applying the LCAS strategy:
the more molecules are given as the query, the less the
number of the common atom strings become.

It should be noted that we have to be careful when
interpreting the alignment result of orphan metabolites
for the metabolic pathway prediction, since the obtained
substructures may vary depending on the numbers of the
molecules in a query. For example, Figures 1 and 3 show
the alignments obtained from the different numbers of
the molecules in the same group of the secondary meta-
bolites. Whilst some substructures are the same in these
two figures, the substructures of O-methyl groups were
divided differently. Looking only at Figure 1, one might
think that the O-methyl groups are possibly added to the
benzene rings in a single reaction, however, such an
enzyme reaction was not found in the KEGG database
nor the IUBMB’s Enzyme List. It is more natural that a
hydroxy group is induced in the benzene ring first, fol-
lowed by the methylation. This knowledge is consistent
with the result shown in Figure 3, where the oxygen
atoms and the methyl carbons belong to the separate
substructures. This knowledge regarding to the reaction
patterns have not been implemented in MUCHA but has
implemented in many methods for the metabolic path-
way prediction such as E-zyme [31,32], UMPPS [33],
GREP [4] and PathPred [34]. Thus we propose that
MUCHA and the other methods could complement each
other to improve the pathway prediction.

Conclusion

We provided the method to divide a given set of many
molecules into some substructures with descriminating
the positions, which has the potential to help automati-
cally classify the metabolites based on the possible origin
pathways. The continuous improvement of this method
could lead to the reduction of the computational amount
when predicting the metabolic pathway, filling the gaps
between the metabolomics studies and other omics
including genomics, transcriptomics and proteomics.

Acknowledgements
This work was supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan, and the Japan Science and Technology

Page 12 of 13

Agency. Computational resources were provided by the Bioinformatics
Center and the Supercomputer Laboratory, Institute for Chemical Research,
Kyoto University.

This article has been published as part of BMC Bioinformatics Volume 12
Supplement 14, 2011: 22nd International Conference on Genome
Informatics: Bioinformatics. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/122issue=S14.

Author details

'Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji,
Kyoto 611-0011, Japan. Human Genome Center, Institute of Medical
Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639,
Japan.

Authors’ contributions

MKO conceived of the study, designed the algorithm, tested the
performance and drafted the manuscript. TT helped the manual inspection
of the output results and designed the algorithm. MKA participated in the
design of the study. SG helped to design the algorithm and application, and
to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
None declared.

Published: 14 December 2011

References

1. Frisvad JC, Andersen B, Thrane U: The use of secondary metabolite
profiling in chemotaxonomy of filamentous fungi. Mycological Research
2008, 112:231-240.

2. Smallwood M: The impact of genomics on crops for industry. J Sci Food
Agric 2006, 86:1747-1754.

3. Wink M: Plant breeding: importance of plant secondary metabolites for
protection against pathogens and herbivores. Theor App Genet 1988,
75:225-233.

4. Kotera M, McDonald AG, Boyce S, Tipton KF: Eliciting possible reaction
equations and metabolic pathways involving orphan metabolites.

J Chem Inf Model 2008, 48:2335-2349.

5. Blayo P, Rouzé P, Sagot M: Orphan gene finding - an exon assembly
approach. Theor Comp Sci 2003, 290:1407-1431.

6. Berg J, Lassig M: Local graph alignment and motif search in biological
networks. PNAS 2004, 101:14689-14694.

7. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C, Minokawa T,
Amore G, Hinman V, Arenas-Mena C, Otim O, Brown TC, Livi CB, Lee PY,
Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L,
Cameron RA, McClay DR, Hood L, Bolouri H: A genomic regulatory
network for development. Science 2002, 295:1669-1678.

8. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource
for deciphering the genome. Nucl Acids Res 2004, 32:D277-D280.

9. Salwinski XL, Duan X, Higney P, Kim S, Eisenberg D: DIP, the database for
interacting proteins: A research tool for studying cellular networks of
protein interactions. Nucl Acids Res 2002, 30:303-305.

10.  Leibowitz N, Nussinov R, Wolfson HJ: MUSTA-a general, efficient,
automated method for multiple structure alignment and detection of
common motifs: application to proteins. J/ Comp Biol 2001, 8:93-121.

11, Shatsky M, Nussinov R, Wolfson HJ: A method for simultaneous
alignment of multiple protein structures. Proteins Struct Func Bioinf
2004, 56:143-156.

12. Fober T, Mernberger M, Klebe G, Hullermeier E: Evolutionary construction
of multiple graph alignments for the structural analysis of biomolecules.
Bioinformatics 2009, 25:2110-2117.

13. Chen L, Nourse JG, Christie BD, Leland BA, Grier DL: Over 20 years of
reaction access systems from MDL: a novel reaction substructure search
algorithm. J Chem Inf Comput Sci 2002, 42:1296-1310.

14. McGregor JJ, Willett P: Use of a maximal common subgraph algorithm in
the automatic identification of the ostensible bond changes occurring in
chemical reactions. J Chem Inf Comput Sci 1981, 21:137-140.

15. Moock TE, Nourse JG, Grier D, Hounshell WD: The implementation of
atom-atom mapping and related features in the reaction access system
(REACCS). In Chemical Structures, The International Language of Chemistry.
Germany: Springer-Verlag;\Warr WA. Berlin 1988:303-313.


http://www.biomedcentral.com/1471-2105/12?issue=S14
http://www.ncbi.nlm.nih.gov/pubmed/18319145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18319145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15448202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15448202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11872831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11872831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12444726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12444726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12444726?dopt=Abstract

Kotera et al. BMC Bioinformatics 2011, 12(Suppl 14):S1 Page 13 of 13
http://www.biomedcentral.com/1471-2105/12/S14/51

16. Raymond JW, Willett P: Maximum common subgraph isomorphism
algorithms for the matching of chemical structures. J Comput Aided Mol
Des 2002, 16:521-533.

17. Raymond JW, Gardiner EJ, Willett P: RASCAL: Calculation of graph
similarity using maximum common edge subgraphs. Comput J 2002,
45:631-644.

18. Raymond JW, Gardiner EJ, Willett P: Heuristics for similarity searching of
chemical graphs using a maximum common edge subgraph algorithm.
J Chem Inf Comput Sci 2002, 42:305-316.

19.  Takahashi Y, Maeda S, Sasaki S: Automated recognition of common
geometrical patterns among a variety of three-dimensional molecular
structures. Analytica Chimica Acta 1987, 200:363-377.

20. Hattori M, Okuno Y, Goto S, Kanehisa M: Development of a chemical
structure comparison method for integrated analysis of chemical and
genomic information in the metabolic pathways. / Am Chem Soc 2003,
125:11853-11865.

21, Yamaguchi A, Aoki KF, Mamitsuka H: Finding the maximum common
subgraph of a partial k-tree and a graph with a polynomially bounded
number of spanning trees. Inf Process Lett 2004, 92:57-63.

22, Inokuchi A, Washio T, Motoda H: Complete mining of frequent patterns
from graphs: mining graph data. Machine Learning 2003, 50:321-354.

23. Koyuturk M, Grama A, Szpankowski W: An efficient algorithm for detecting
frequent subgraphs in biological networks. Bioinformatics 2004, 20:
i200-i207.

24. Nijssen S, Kok JN: The gaston tool for frequent subgraph mining.
Electronic Notes Theor Comput Sci 2005, 127:77-87.

25. Bunke H, Jiang X: Graph matching and similarity. Intel ligent systems and
interfaces 2000, 15:281-304.

26. Bron C, Kerbosch J: Finding all cliques of an undirected graph. Comm
ACM 1973, 16:575-577.

27. McGregor JJ: Backtrack search algorithms and the maximal common
subgraph problem. Software - Practice and Experience 1982, 12:23-34.

28. Schmidt DC, Druffel LE: A fast backtracking algorithm to test directed
graphs for isomorphism using distance matrices. J ACM 1976, 23:433-445.

29. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M: LIGAND: database of
chemical compounds and reactions in biological pathways. Nuc/ Acids
Res 2002, 30:402-404.

30. Gartner T: A survey of kernels for structured data. SIGKKD Explorations
2003, 5:49-58.

31. Kotera M, Okuno Y, Hattori M, Goto S, Kanehisa M: Computational
assignment of the EC numbers for genomic-scale analysis of enzymatic
reactions. J Am Chem Soc 2004, 126:16487-16498.

32. Yamanishi Y, Hattori M, Kotera M, Goto S, Kanehisa M: E-zyme: predicting
potential EC numbers from the chemical transformation pattern of
substrate-product pairs. Bioinformatics 2009, 25:1179-i186.

33, Ellis LBM, Roe D, Wackett LP: The University of Minnesota Biocatalysis/
Biodegradation Database: the first decade. Nucl Acids Res 2006, 34:
D517-D521.

34. Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S,
Kanehisa M: PathPred: an enzyme-catalyzed metabolic pathway
prediction server. Nucl Acids Res 2010, 38:W138-W143.

doi:10.1186/1471-2105-12-S14-S1

Cite this article as: Kotera et al. MUCHA: multiple chemical alignment
algorithm to identify building block substructures of orphan secondary
metabolites. BMC Bioinformatics 2011 12(Suppl 14):S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/12510884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12510884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14505407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14505407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14505407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752349?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15600352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15600352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15600352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20435670?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20435670?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Materials
	Methods
	MULCOMP as the naïve multiple chemical alignment tool
	Distance matrix-based atom identifier (DMAID)
	Longest common atom strings (LCAS)
	Distance-embedded common atom fingerprint (DECAF)
	Extending the core chemical alignments
	Common atom strings for the branch substructures
	Removal of the conflicting atom-atom mapping

	Results
	Output comparison
	Mapping the branch substructures to pathway
	Performance evaluation and comparison

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

