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Abstract

Given prior human judgments of the condition of an object it is possible to use these judgments to make a
maximal likelihood estimate of what future human judgments of the condition of that object will be. However, if
one has a reasonably large collection of similar objects and the prior human judgments of a number of judges
regarding the condition of each object in the collection, then it is possible to make predictions of future human
judgments for the whole collection that are superior to the simple maximal likelihood estimate for each object in
isolation. This is possible because the multiple judgments over the collection allow an analysis to determine the
relative value of a judge as compared with the other judges in the group and this value can be used to augment
or diminish a particular judge’s influence in predicting future judgments. Here we study and compare five different
methods for making such improved predictions and show that each is superior to simple maximal likelihood
estimates.

Introduction
Human relevance judgments of a document in answer
to a query are important as a means of evaluating the
performance of a search engine and as a source of train-
ing data for machine learning methods to improve
search engine performance [1,2]. Because human judg-
ments are difficult, time consuming and expensive to
obtain, it is important to extract as much advantage or
information from human judgments as possible. If one
is fortunate enough to have multiple judgments for the
same query-document pair, the question arises as to
how these multiple answers can best be used. It is the
purpose of this paper to argue that ideally all available
data should be used. It is not uncommon that relevance
judgments are made on an ordinal scale consisting of
{0,1,2,…,k} categories of relevance where k is as large as
four[3,4]. We will not concern ourselves here with why
a particular application might benefit from judgments
on a scale with k greater than 2, but will simply assume

that if this is important then it is important to predict
the relevance of documents on this same scale. We pro-
pose that all available judgment data should be used to
produce the most accurate assignment of probabilities
to the different relevance categories for a document in
answer to a query. The meaning of these probabilities
must be the probabilities that these categories would be
assigned by some new unseen judge (or user). Such
probabilities will then provide optimal training data for
improving system performance. But this leads to the
important question, how shall we measure the quality of
the probabilities produced from the human judgments?
Our answer is to leave out one judge’s judgments and
measure the quality of the predicted probabilities by
how well they predict the held out judge’s judgments.
Before we proceed further with our discussion it is

important to point out a distinction between what we
are doing and work that has been done on a related
problem. There are many examples of classification pro-
blems for which the true class of any object definitely
exists. For example a patient either is or is not fit to
undergo anaesthesia [5], a certain number of volcanoes
are present in a given region of the surface of venus or
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that many are not present [6], a mushroom is either
known to be edible or not known to be edible [7] , etc.
For such data where it is known that there is a ground
truth it makes sense to study models of the labeling pro-
cess that incorporate an estimate of the reliability of
labelers and an estimate of the ground truth for a task.
Several such models have been developed and applied to
a variety of data [5,7-14]. Such models are generally
tested on how well they predict the ground truth which
is known independently of the labeling process and
labels being studied. This situation is fundamentally dif-
ferent than the problem we are interested in. Our data
consist of multiple judgments of relevance of a query to
a document and we consider each of these judgments to
be legitimate and valuable. Judgments of relevance are
generally understood to be highly subjective and their
diversity represents different interests and insights of
the judges [15-22]. Search services and online merchants
are interested in what interests their customers and how
to predict this interest and to the question of interest
there is generally no one correct answer. Thus we make
no assumption regarding correctness, but only seek how
best to predict what some new searcher will find
relevant.
Given the goal of producing probabilities of relevance

categories from multiple human judgments, the next
question is what are the options to do this? Clearly the
simplest and most obvious approach is to compute the
maximal likelihood estimates of class probabilities for
each document. As an example suppose we have a
document d retrieved by a query q and we require judg-
ments to be made from the set of numbers {0,1,2,3,4}
where 0 means clearly irrelevant and 4 means clearly
relevant and the other options represent grades between
these two extremes. Suppose we have ten prior human
judgments {2,3,1,2,4,2,3,2,2,0}. Then the maximal likeli-
hood predictions for future human judgments are
p0 = 1/10, p1 = 1/10, p2 = 5/10, p3 = 2/10, and p4 = 1/10
and are proportional to the number of times each dif-

ferent judgment was seen in the past. Based on these
predictions it seems much more likely that some future
judge will assign a label of 2 than a label of 4 to the
question of d ’s relevance to q. The maximal likelihood
approach treats all the judges as of equal value, i.e., we
have assumed that all make judgments that are equally
predictive of what a future judge would do. However,
there is already in the data {2,3,1,2,4,2,3,2,2,0} a hint
that some judges might be more valuable than others.
There is a consensus in the data that 2 may be more
likely as the value of a future judgment than other
values. Thus a judge who chose the value 2 may be
more useful than a judge who chose a different value.
Of course we cannot really rate the usefulness of judges
based on their judgment of a single object. But with

judgments over a reasonable sized collection of objects
it becomes quite feasible to rate judges for usefulness.
To put this approach into practice, methods must be
designed which account for the predictive value of
judges.
As far as we have been able to ascertain, little work

has been done in this area. Yu and colleagues [23,24]
proposed a method to estimate the hidden intrinsic
values of a set of objects that have been evaluated by a
group of judges. They argue that the intrinsic value of
an object judged by a group of judges is a suitably
weighted average over the judgments of those judges
where the weights represent the rating power of the
judges. The intrinsic values determined in this way are
interpreted as the consensus values of the group and
each individual judge j’s mean squared deviation s j

2

from the consensus values over the set of objects repre-
sents the reputation of the judge. They propose that the
weight for judge j should be proportional to 1/sj and by
normalizing one obtains the weights. Beginning with
uniform weights one may calculate intrinsic values and
then a more refined set of weights. This procedure may
be iterated to convergence. They then suggest using the
final intrinsic value for an object as the mean of a Gaus-
sian distribution representing the distribution predictive
of future judgments. This requires determining the var-
iance of this predictive distribution, but this can be
done using held out data. We evaluate this approach
and compare it with our proposed methods and find
that it performs well.
One of our approaches is related to the method pro-

posed by Yu, et al. [24] in that we assume there are
weights that represent the value of the individual judges.
However, our approach differs from theirs in several
respects. First, we are dealing with a small discrete set
of possible judgments (five in number). In this setting it
is convenient to combine prior judgments in a weighted
manner to approximate a distribution predictive of
future judgments. Instead of obtaining the weights by
some iterative procedure we take a machine learning
approach and learn optimal weights based on predicting
held out data from the training set. We obtain our best
results with this approach.
Our second approach is to treat the problem of pre-

dicting future judgments as a multiclass (five classes)
classification problem. It is then natural to apply the
maximum entropy classifier to this problem as it readily
allows the computation of probabilities for multiple
classes. In this approach the features are judgments of
the training set judges and each training judge takes a
turn at being held out to provide labels used to learn
the weights for the features derived from the other
training judges. When the training is completed the
learned weights are then suitable for prediction. While
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this method works well it seems to be somewhat less
reliable than the other methods.
The paper is organized as follows. Section 2 describes

the judgment data we study and how it was obtained.
Section 3 presents the six different methods of predict-
ing future judgments that we tested. The results are in
section 4 and the discussion of these results comprises
section 5. Section 6 presents conclusions and possible
directions for future work.

Judgement data
The data that we study are human judgments of rele-
vance between a query document q and a second
document d where both documents were extracted
from approximately a million MEDLINE documents
dealing with aspects of molecular biology [25]. There
are one hundred q ’s that were selected at random and
for each q a generic cosine retrieval algorithm [26,27]
was used to find the top 50 documents d in relation to
q. The resulting set of 5,000 query-document pairs will
be denoted here by DP. The human judge was asked
to judge for each pair in DP whether they would want
to read d if they had to write the paper represented by
q. They were asked to make their judgments on a scale
of 0-4 where 0 means the document is clearly not rele-
vant; 1, the document has a 0.25 probability of rele-
vance to writing the query document; 2, a 0.50
probability of relevance; 3, a 0.75 probability of rele-
vance; 4, the document is certainly relevant to the
query-writing task [28]. Initially, a panel of seven
judges trained in the area of molecular biology was
hired to judge the set DP. Multiple judges were asked
to perform the task because of the known variability in
human judgments [18,29]. Later, because of questions
raised by the work of the first panel [25,28], a panel of
six untrained judges was hired to judge the 5000
query-document pairs of DP. One of the interesting
findings coming from the work of the second panel
was that while the untrained judges on average did not
perform as well as the trained judges, some of the
untrained judges were competitive and the pooled
results of the untrained judges were almost as good as
the pooled results for the trained judges and better
than any single trained judge. Here we study the full
set of thirteen judges who have judged DP.
Let us define notation for our study as:
J: set of 13 judges where J = {0,1,2,3,4,5,6,7,8,9,

10,11,12}.
dp: a query-document pair.
DP: set of 5,000 query-document pairs.
C : set of possible judgment values, i.e., C = {0,1,2,3,4}.
z k

dp : judgment value of the query-document pair dp
Î DP made by the judge k.

Ξdp (J):set of judgment values of the query-document
pair dp Î DP made by the judge set J, i.e.,
Ξdp

k
dp

k J
J( ) = { }

∈
z .

Ξ(J):set of judgment values of all 5,000 query-docu-
ment pairs made by the judge set J, i.e., Ξ(J) = {Ξdp(J)}
dpÎDP.

Methods
Our approach is to consider a method M (F) that
depends on a set of parameters F and that can be
applied to a set of judgments Ξ(J) to make predictions
about the judgments of an as yet unseen judge k who
has also judged the members of DP. We require these
predictions to be in the form of probability distribu-
tionsPdp(c|M(F), Ξ(J)) where c Î C.
We can then evaluate the performance of M(F) by the

log probability that it assigns to k’s judgments

S k P M Jdp k
dp

dp DP
( ) = ( ) ( )( )⎡

⎣⎢
⎤
⎦⎥∈∑ log | ,z Φ Ξ (2)

Because our data is limited to 13 judges on the set
DP, we follow a standard leave-one-out cross validation
scheme for training and testing. We remove a judge k
from the set J and denote the remaining set byJk = J -

{k}.
(Hereafter, any judges marked as subscripts on the set

J are to be understood as removed from the set J. For
example, the set Jk,i means that the judges k and i have
been removed from the set J.)
Now there is a particular problem in applying a

method M(F) to data such as Ξ(Jk). The problem is how
to choose F to achieve good performance and yet avoid
overtraining. If we choose F according to

Φ Φ Ξ
Φ

∗
∈

= ( ) ( )( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭∑arg max log | ,

dp DP
dp k

dp
kP M Jz (4)

there is a serious risk of overtraining. In order to over-
come this issue, we apply a cross inductive learning pro-
cess to get optimal parameters F* as follows: Given a
test judge k let us exclude one more judge i ≠ k from
the set J. Cycling through all 12 judges i Î Jk, then the
induction process is to find the optimal F according to

Φ Φ Ξ
Φ

k
dp DPi J

dp k
dp

k i
k

P M J∗
∈∈

= ( ) ( )( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬∑∑arg max log | , ,z
⎭⎭

. (5)

Then the optimal parameters Φ k
∗ obtained from (5)

may be applied to training on Ξ(Jk) and the success S(k)
of the method M (F) is given by

S k P M J
dp DP

dp i
dp

i k( ) = ( ) ( )( )⎡
⎣⎢

⎤
⎦⎥∈

∗∑ log | ,z Φ Ξ (6)
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To perform the cross validation we compute S(k) in
(6) over all judges k Î J and average the results

Ave
J

S k
k J

= ( )
∈∑1

(7)

and use Ave as the measure of overall performance for
the method M in this study. We consider six different
methods to predict a probability distribution over the
possible judgment values of a query document pair dp
Î DP. Each method is applied to induce the associated
optimal parameters F* according to (5) and then evalu-
ated according to (6) and (7).
We proceed to a description of the individual meth-

ods. Here we present the basic ideas of the methods.
The mathematical details can be found online at: http://
www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/
research/methods.pdf

Method M1: direct probability estimation
We take as our estimate of the probability of a given
relevance category and a given query-document pair the
fraction of the training judges that assigned that cate-
gory to that pair, i.e., we take the maximal likelihood
estimate of the probability of that pair based on the
training judges. However, we must modify this estimate
slightly to avoid predicting zero for any category
because the test judge may have chosen a category that
no training judge chose. We do this by mixing in a
small fraction τ of the training judge probabilities of
choosing the categories over the whole set of query-
document pairs. We optimize the choice of τ by holding
out from the training each training judge in turn and
choosing the single τ that gives the best overall average
of predictions over all such experiments.

Method M2: direct probability estimation with weighting
parameters
It is not optimal to put each judge on an equal footing
for his class label judgments of query- document pairs
as the previous method M1 does since the predictive
value of judgments will differ among judges. To deal
with this we assign an arbitrary positive weight to each
judge and instead of counting as in the previous method
to obtain probabilities we add the weights of judges to
obtain probabilities. Thus if three training judges chose
category c Î C for a given query-document pair dp we
add the weights for the three judges and divide by the
sum of the weights for all the training judges to obtain
the probability assigned to c for dp. We also smooth in
the same way as for the previous method and for the
same reason. In fact we use the value of τ determined in
M1. Finally we optimize the choice of the weights by

leaving each training judge out in turn and predicting
his/her judgments based on the weights and optimizing
their choice base on the whole set of such experiments
at once. (The choice of τ here can be arbitrary since the
weights will always adjust themselves to produce the
same optimal results.)

Method M3: correlation matrix with weighting parameters
If a given judge j assigns a category c to a query-docu-
ment pair dp we can examine all the instances dp′ when
this judge assigned the category c. Based on all these
instances we can come up with probabilities
p(c′ assigned by any judge ≠ j|c assigned by j). This

matrix of probabilities should have predictive value and
may capture aspects not captured by the previous meth-
ods. Thus if for a particular dp if j has judged c we will
use the distribution
p(c′ assigned by any judge ≠ j|c assigned by j) as part

of our prediction for dp. If a different judge j′ has
assigned c′ we also want
p(c″ assigned by any judge ≠ j′|c′ assigned by j′) to con-

tribute to our prediction. Thus we take a weighted aver-
age over all these distributions to obtain our prediction
and we smooth as before for the same reason. For each
judge and each category there is assigned a weight and
these same weights are used whenever the corresponding
distribution is used in the predictions. Thus there are
more weights here than in the previous method. The
approach to optimization is the same as before.

Method M23: combining the methods M2 and M3

We can combine the methods M2 and M3 defining the
probabilities as a mixture of weighted terms coming
from each method plus the smoothing. The optimiza-
tion is then performed over all the weights at once.

Method M4: intrinsic judgments from a weighted average
Yu et. al. devised the method whereby a community
judgment can be obtained from a suitably weighted
average over judgments for any given item. Given the
judge set Jk,i and a query- document pair dp Î DP, one
defines the weighted average of judgments by

m zk i
dp

j j
dp

j J
r

k i
, .

,

=
∈∑ (8)

Here the numbers rj are a nonnegative normalized set
of weights and are designed to reflect the importance of
each judge’s judgments. A judge’s predictive capability is
reflected in the average quadratic error in her judging
history on all query-document pairs in DP:

e
DP

j Jj j
dp

k
dp

dp DP
k i

2 21= −( ) ∈
∈∑ z m  for any , . (9)
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Then the weights may be defined by

r
e

e
j

j

jj J k i

=
′′∈∑

1

1

2

2

/

/
.

,

b

b (10)

While b = 1 in (10) gives the optimal weighting for
statistical estimation [24,30], we use b = 0.5 for better
numerical stability [24].
Starting with uniform weighting, the algorithm iterates

eqs. (8), (9), and (10) to convergence to a solution. Once
the solution has been obtained and we have the intrinsic
class value mk i

dp
, for each dp, mk i

dp
, is taken as the mean

of a Gaussian distribution which is used to predict the
judgments of a test judge. There is one parameter and
that is the s for the predictive distributions and this is
taken to be the same number for all dp. The value of s
is optimized as in the previous methods by optimizing
the predictions for all i Î Jk simultaneously. Once s is
determined, then the method is evaluated by its predic-
tions for the judge k and the evaluation is completed by
averaging over all such k Î J.

Method M5: maximum entropy classifier
For details of the Maximum Entropy classifier we refer
the reader to Berger, Pietra, and Pietra [31]. Here data
points to be classified correspond to the query-docu-
ment pairs dp Î DP. In order to apply a maximum
entropy classifier we need to define a class label and fea-
tures for each instance. The basic approach is to use
one judge to supply the label for a pair dp and let other
judges paired with their judgments on dp serve as the
features. The same pair dp can serve repeatedly as an
instance with each judge in turn supplying the label and
the other judges and their judgments supplying the fea-
tures. Since the labels are treated as true it is not crucial
that they remain connected to the judges that produced
them. But for the features it is crucial that they are pairs
consisting of the judgment and the judge who produced
that judgment. In this way when the features are
weighted the weights reflect the predictive value of the
judges that are involved. The scheme that we use is
straightforward but a little complicated by several levels
of held out judges. First we hold out judge k for testing
leaving the set of judges Jk for training. Then we hold
out judge i for determining the regularization parameter
for the Maximum Entropy classifier leaving judges Jk,i
for training. Finally, we leave out judge j for labeling the
instances coming from all the pairs in DP and use the
judges remaining in Jk,i,j to provide the features for each
such instance. When we have created instances from all
of DP for each j Î Jk,i we train the classifier over all
these instances together and then evaluate performance
at predicting judge i ’s labels for different values of the

regularization parameter. We choose as optimal that
value of the regularization parameter that gives the best
average performance at prediction over all the i Î Jk at
once. When this regularization parameter is determined
we use it and repeat the training on all instances coming
from all j Î Jk and test the prediction of k’s labels. By
repeating this for all k Î J and averaging the results we
measure the method’s performance.

One parameter optimizations
The foregoing methods rigorously avoid overtraining in
choosing the optimal parameter set Φ k

∗ by equation (5).
This clearly has advantages. On the other hand for
methods where Fk involves only a single parameter, it is
reasonable to consider the optimization of that single
parameter for performance on the test data. This means
optimization of (7) by choice of a single parameter value
for all k. We have done this for the methods M1, M4,
and M5. The optimal parameters for these methods are
given in Table 1.

Results
For a baseline performance of the predicted probability
of human judgments for query document pairs in the
set DP, we assume the uniform distribution where all
pairs receive the probability 1/5 for all relevance cate-
gories. The measure (7) for this baseline method is

Averandom = ⋅ ⎛
⎝⎜

⎞
⎠⎟

= −5000
1
5

8047 19log . (11)

We applied each of the methods M1 – M5 to induce
the optimal parameters in (6) and the results are shown
in Table 2. We also applied the parameters given in
Table 1 for methods M1, M4, and M5 and the results
are shown in Table 3. Overall, one can observe that the
performances of all methods are almost always better
than the random level on each judge. The major excep-
tion is judge 0 where almost all methods make predic-
tions that are less accurate than random predictions.
Judge 12 is also challenging to predict and about half
the predictions are worse than random. In a comparison
of different methods we see that among the methods
based on a rigorous determination of Φ k

∗ method M23

performs best based on the average log probability mea-
sure. M4 is a close second. Using the same measure for
the single parameter optimizations in Table 3, the
method M5 performs best. If one considers the

Table 1 Optimal parameters associated with the methods
M1, M4 and M5 accurate to two digits.

τ*:M1 s*:M4 l*:M5

0.63 1.8 0.022
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predictions for individual judges the method M5

achieves the best result more than any of the other
methods in both Tables. However, the differences
between methods do not achieve statistical significance
by the sign test.
While the results in Tables 2 and 3 provide a useful

performance gauge, they do not allow meaningful statis-
tical testing of the differences seen. To allow statistical
testing we consider the 5,000 predicted probabilities for
the judgments of each test judge by the different meth-
ods under the same circumstances as those used to
obtain the results in Tables 2 and 3.
To compare methods M4 and method M5 on how well

they predict the judgments of judge 0 we examine judge

0’s assigned label for each dp Î DP and consider the
difference in the probability it receives from method M4

and the probability it receives from M5. If this difference
is positive it favors method M4, but if negative method
M5. Of course the magnitude of the difference is also
important as a large magnitude is more important than
a small magnitude. This leads us to apply the Wilcoxon
signed rank test [32] to determine the significance of
differences. For the conditions of Table 2 we find
method M4 makes the better prediction for judge 0’s
judgments in 2,197 cases and M5 for 2,803 cases and
there are no ties. We then apply the signed rank test to
see that the likelihood of the observed differences hap-
pening by chance if the two methods were equally good
at making such predictions would be a probability of
5.12 × 10-63. This indicates there is a very significant
difference in the ability of the two methods in predicting
this judge’s judgments over the 5,000 query-document
pairs.

Discussion
It is evident from the results of Table 2 that each of the
six different methods of predicting relevance judgments
for the unseen judge are far better than random, i.e., the
-8047.19 given in (11). The method M1 which takes the
simplest approach of making the maximal likelihood
estimate under the assumption that all the judges are of
equal value in making predictions for what an unknown
judge would judge gives the poorest result. Improved
results come from making estimates of how to weight
individual judges in combining their judgments. When
these weights are learned by the iterative method of Yu,
et al. [24] we see that the result is very good. When the
weights are learned from the training judges using a
held out judge, methods M2, M3, and M23, we see our
best result in M23. The methods M2 and M3 each repre-
sent only a part of the solution and to get the best result
both methods have to be combined in M23. The method
M5, based on the maximum entropy method, comes in
fourth in the competition based on the summary figure
of -7320 for the average log probability of the judgments
computed over all judges. From one point of view this
summary figure is a little deceptive in that M5 actually
obtained the best score on six of the judges and this is a
greater number of best scores than even the method
M23 which achieved the overall best average. An exami-
nation of the scores for different judges shows that M5

would have done much better had it not done very
poorly predicting the judgments for judge 4. Analysis
for judge 4 shows the algorithm attempts to use a regu-
larization parameter l4

∗ that is much too small and
hence overtrains and makes poor predictions. This pro-
blem led us to ask what performance would be if opti-
mization were done to produce a single optimal l* for

Table 2 Log of Probability Measures for all the methods
using rigorous Φ k

∗ values. The best performance in each
row is marked with an asterisk

Judge M1 M2 M3 M23 M4 M5

0 -8897 -8884 -8384 -8704 -8501 -8202*

1 -7103 -7085 -7006 -6843 -6940 -6690*

2 -6900 -6884 -6889 -6687 -6701 -6371*

3 -6806 -6729 -6699 -6493 -6734 -6192*

4 -7694 -7637 -7501* -7560 -8121 -9350

5 -7131 -7045 -6912 -6872* -7259 -7514

6 -7044 -6993 -6884 -6814* -7026 -7237

7 -7110 -7149 -7035 -6876 -6557 -6446*

8 -7354 -7521 -7374 -7266 -6559* -6838

9 -7122 -7040 -7100 -6911* -7004 -7125

10 -8032 -8128 -7862 -7881 -7576 -7545*

11 -7281 -7123 -7071 -7008* -7450 -7593

12 -8153 -8305 -8044 -8047 -7694* -8056

Ave -7433 -7425 -7289 -7228 -7240 -7320

Table 3 Log of Probability Measures for test set
optimized single parameters. The best performance in
each row is marked with an asterisk.

Judge M1 M4 M5

0 -8902 -8425 -7805*

1 -7087 -6925 -6833*

2 -6872 -6641* -6674

3 -6760 -6675 -6462*

4 -7694* -8068 -7703

5 -7121 -7259 -6942*

6 -7032 -7015 -6913*

7 -7094 -6482* -6836

8 -7352 -6487* -7199

9 -7113 -6992 -6874*

10 -8041 -7576 -7442*

11 -7275 -7450 -6909*

12 -8160 -7694* -7784

Ave -7423 -7207 -7106
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all test data at once as given in Table 1. As seen in
Table 3, one obtains improved overall performance. Of
course there is a small risk of overtraining. The same
single parameter optimization for method M4 essentially
does not work. The reason for this failure is not clear.
For M1 the single optimization just involves the smooth-
ing parameter and has little effect, but does not degrade
performance. The methods M2, M3, and M23 all involve
multiple parameters and have a higher risk of overtrain-
ing and hence are not included in this analysis.
While the log probability of the judgments of an

unseen judge averaged over all judges in turn seems like
a reasonable way to rate overall performance, it does
not provide a method to determine whether an observed
difference between methods has statistical significance.
In order to compute such significance values we have
resorted to examining the difference in the probabilities
assigned by two methods to a judge’s judgments over
the whole set DP. We can apply the Wilcoxon signed
rank test to this data to ascertain statistical significance
in a comparison of two methods for each judge. Such
data is contained in Table 4 and Table 5 and is based
on the same calculations reported in Table 2 and Table
3, respectively. The results are interesting in that they
show that method M5 is superior in the comparison of
the rigorous approaches reported in Table 2 except for
its performance in predicting judge 4’s judgments. The

data in Table 5 do not support any conclusion regarding
the comparison of methods M4 and M5.
A natural question that may have occurred to the

reader is why not apply some of the techniques used in
studying noisy classification labels [5,6,9,10,13,33] to our
problem. Indeed this might be an interesting thing to
try. However, there are two reasons we have not done
it. First, all these models involve latent values of annota-
tor reliability and true labels and are more complicated
in concept and/or in application than the methods we
use. Second and more important, all these models are
constructed to predict the reliability of the judges and
the true labels for items and are evaluated on how well
they predict these true labels. Since we do not have true
labels and true labels are philosophically inconsistent
with our data and how it was obtained, we would not
be able to evaluate such an application of these models
to our data except in how well they could predict judg-
ments of held out judges. But it is not readily apparent
how such predictions could or should be derived in
these approaches. Therefore we consider this a question
beyond the scope of our current investigation.

Conclusions and future work
We have studied basically three methods of predicting
human judgments from known human judgments. We
find that method M23 gives the best overall predictions

Table 4 In order to measure which method best predicts
the individual class values made by a test judge between
two methods, we apply the signed rank test. We also
count query document pairs where the predicted
probability of the class value is bigger for each method
(and also ties). An asterisk marks the better result when
the difference has a p-value less than 0.05 by the signed
rank test. The optimal parameters are obtained through
the rigorous induction method as in Table 2.

Judge M23vs M4 M23vs M5 M4vs M5

M23 M4 = M23 M5 = M4 M5 =

0 2326 2674* 0 1763 3237* 0 2197 2803* 0

1 2576* 2423 1 1741 3259* 0 1808 3192* 0

2 2336* 2664 0 1580 3420* 0 1892 3108* 0

3 2637* 2363 0 1616 3384* 0 1592 3408* 0

4 3130* 1870 0 2817* 2183 0 2788 2212 0

5 2955* 2045 0 2463 2537* 0 2341 2659* 0

6 2692* 2308 0 2302 2698* 0 2301 2699* 0

7 1829 3171* 0 1504 3496* 0 1972 3028* 0

8 1398 3602* 0 1504 3496* 0 2313 2687* 0

9 2449* 2551 0 1964 3036* 0 2024 2976* 0

10 1970 3030* 0 1689 3311* 0 2337 2663* 0

11 3035* 1965 0 2199 2801* 0 2096 2904* 0

12 1965 3035* 0 1915 3085* 0 2452 2548* 0

Total 31298 33701 1 25057 39943 0 28113 36887 0

Table 5 In order to measure which method best predicts
the individual class values made by a test judge between
two methods, we apply the signed rank test. We also
count query document pairs where the predicted
probability of the class value is bigger for each method
(and also ties). An asterisk marks th better result when
the difference has a p-value less than 0.05 by the signed
rank test. The optimal parameters are the single
parameter optimizations of Table 1.

Judge M4vs M5

M4 M5 =

0 1992 3008* 0

1 2546 2454* 0

2 2864* 2136 0

3 2598 2402* 0

4 2148 2851* 1

5 2247 2753* 0

6 2527 2473* 0

7 3392* 1608 0

8 3798* 1202 0

9 2676 2324* 0

10 2802* 2198 0

11 2084 2916* 0

12 2938* 2062 0

Total 34612 30387 1
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for all judges. On the other hand the maximum entropy
method M5 gave the best results on twelve of the thir-
teen judges. However, it failed badly on one judge. As a
result we conclude that M5 is usually the best method,
but is subject to occasional large errors. It is possible
that such large errors could be prevented by setting a
lower limit for the regularization parameter which is fol-
lowed regardless of training. The method M4 we regard
as somewhere between M23 and M5 in that it does not
give quite as good results as M23 on the one hand and
did not experience the large error seen with M5 on the
other hand.
Several directions for further investigation are sug-

gested by our results. First, it is possible that the
method M4 of Yu, et al. [24] could be improved by
taking their same basic approach, but determining the
weights for individual judges as those that are optimal
for predicting held out data. Determining the weights
using their iterative algorithm works well, but there is
no theoretical reason why that approach should be
optimal for the purpose of making the desired predic-
tions. Second, it may be useful to explore the connec-
tions of our methods with methods for fusing multiple
classifiers [34-36] as both problems have solutions
involving weighting the individual members to be
combined or involving second stage machine learning
to learn how to combine individuals. On the other
hand the problems are distinct because combining
human judgments employs no gold standard and
attempts to predict what an unknown member typical
of the group would do, whereas the classification pro-
blem generally works with a gold standard set of
training data. Third, in a real application the predic-
tive value of judges could be used to control the judg-
ment process so that if less predictive judges judge
material, then more such judgments are needed to
obtain a certain level of assurance regarding the pre-
dictive value achieved. This suggests an active learning
scenario in which not only the entities to be judged,
but the judges, are controlled for maximum efficiency
much as has been done for the classification problems
[8,13,14].
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