Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

BMC
Bioinformatics

RESEARCH Open Access

Deploying mutation impact text-mining software
with the SADI Semantic Web Services framework

Alexandre Riazanov, Jonas Bergman Laurila, Christopher JO Baker’

From ECCB 2010 Workshop: Annotation interpretation and management of mutations (AIMM)

Ghent, Belgium. 26 September 2010

Abstract

pathways, and drugs.

Background: Mutation impact extraction is an important task designed to harvest relevant annotations from
scientific documents for reuse in multiple contexts. Our previous work on text mining for mutation impacts
resulted in (i) the development of a GATE-based pipeline that mines texts for information about impacts of
mutations on proteins, (ii) the population of this information into our OWL DL mutation impact ontology, and (iii)
establishing an experimental semantic database for storing the results of text mining.

Results: This article explores the possibility of using the SADI framework as a medium for publishing our mutation
impact software and data. SADI is a set of conventions for creating web services with semantic descriptions that
facilitate automatic discovery and orchestration. We describe a case study exploring and demonstrating the utility
of the SADI approach in our context. We describe several SADI services we created based on our text mining AP
and data, and demonstrate how they can be used in a number of biologically meaningful scenarios through a
SPARQL interface (SHARE) to SADI services. In all cases we pay special attention to the integration of mutation
impact services with external SADI services providing information about related biological entities, such as proteins,

Conclusion: We have identified that SADI provides an effective way of exposing our mutation impact data such
that it can be leveraged by a variety of stakeholders in multiple use cases. The solutions we provide for our use
cases can serve as examples to potential SADI adopters trying to solve similar integration problems.

Background

The annotation of mutants with their consequences is
central task for researchers investigating the role of
genetic changes on biological systems and organisms.
These annotations facilitate the reuse and reinterpreta-
tion of mutations and are necessary for the establish-
ment of a comprehensive understanding of genetic
mechanisms, biological processes and the resulting
mutant phenotypes. As a result, there are numerous
mutation databases, albeit perpetually out of date and
often with a latency of many years, which is an instance
of the general latency problem with genomic and pro-
teomic databases [1]. Automated mutation extraction

* Correspondence: bakerc@unb.ca

Department of Computer Science & Applied Statistics, University of New
Brunswick, Saint John, New Brunswick, E2L 4L5, Canada

Full list of author information is available at the end of the article

(BiolMed Central

systems based on text mining techniques can identify
and deliver mutation annotations for database curators
to review, or directly to end users. In this article we out-
line the publication of a mutation impact extraction sys-
tem in the form of semantic web services, and their
integration with other semantically described bioinfor-
matics services, based on the SADI framework.

In our previous work we developed the Mutation
Impact pipeline [2] - a program, based on a GATE [3]
pipeline, that makes it possible to extract mutation
impacts on protein properties from texts, categorising
the directionality of impacts as positive, negative or neu-
tral. Moreover, the system maps mentions of proteins
and mutations to their respective UniProt identifiers
and protein properties described in the Gene Ontology.

For example, consider these two excerpts from [4]:
“The haloalkane dehalogenase from the nitrogen-fixing

© 2011 Riazanov et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:bakerc@unb.ca
http://creativecommons.org/licenses/by/2.0

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

hydrogen bacterium Xanthobacter autotrophics GJ10
(Dh1A) prefers 1,2-dichloroethane (DCE) as substrate
and converts it to 2-chloroethanol and chloride” and
“Dh1A shows only a small decrease in activity when
Trp-125 is replaced with phenylalanine”. Our pipeline
(i) identified “haloalkane dehalogenase” as a protein, (ii)
mapped it to the UniProt ID P22643 by grounding it to
the identified organism “Xanthobacter autotrophicus”,
(iii) identified “Trp-125 is replaced with phenylalanine”
as the point mutation W125F, (iv) identified “activity” as
a protein property (GO_00188786 in the Gene Ontol-
ogy, and (v) identified “decrease” as the direction of the
impact of the mutation on the protein property.

Initially, the Mutation Impact pipeline was deployed as
a simple Java API and could only be used programmati-
cally. When the pipeline is executed on a document, it
computes a sequence of Java objects representing muta-
tion specifications. Every such object contains informa-
tion about a series of elementary mutations that are
studied together, the corresponding wildtype and mutant
proteins, and the discovered impacts of the mutations.
The Java object representing an impact contains the
direction of the impact, e.g., positive, negative or neutral,
and the type of the protein property being affected as a
Gene Ontology term ID, e.g., “GO_00188786".

Although the practical use of the system and its
results in this form is maximally flexible and may be
preferred by many programmers, having some program-
ming-free modes of use, e.g., based on Semantic Web
standards, could extend the usability. So in [2] we
explored the possibility of using semantic technologies
for exporting the text mining pipeline outputs according
to a domain specific knowledge representation. Cur-
rently, our system, like mSTRAP [5], delivers its results
in the form of an OWL ABox, i.e., as a collection of
logical statements characterising the extracted muta-
tions, proteins and impacts. The classes and property
predicates in these statements are defined in our Muta-
tion Impact ontology [6] in OWL, based on the earlier
mutation ontology from [7]. The ontology is briefly
described in the Methods section.

Representing text mining results as class and property
assertions with respect to the Mutation Impact ontology
already adds a great deal of flexibility — the results can
be used with any toolsets that work with OWL. The
most straightforward way of using semantically
described data is by querying it directly, so we estab-
lished a semantic database, in the form of a Sesame [8]
RDF triplestore, that stores the results of mining differ-
ent documents. For our experiments, the database is
populated with mutation information extracted from
756 journal articles, with 2993 extracted mentions of
point mutations and 519 extracted mentions of muta-
tion impacts on protein properties of 116 distinct types.

Page 2 of 18

Our users can query the populated database via a
SPARQL [9] end-point [10]. Since we keep the links
from the extracted entities and associations to the corre-
sponding publications, the database can also be consid-
ered a form of semantic index for texts.

As we would like to facilitate a multitude of data reuse
cases, the provision of a SPARQL endpoint as the sole
data access form is not sufficient. Consequently, we are
looking for additional ways to provide access to the
data. Our primary requirement is that the framework
should support integration with other software and data
for proteins, mutations, impacts and related biological
entities, such as pathways, and drugs. This criterion is
important because isolated mutation impact mining
results have limited reusability outside the domain of
protein engineering.

In this article we review the SADI framework [11,12]
as a candidate platform for providing access to our
semantically exposed mutation impact data. The choice
is based on the powerful integrative features displayed
by SADI services and client software, discussed in the
next section. This article describes an exploratory case
study using five biologically meaningful queries that
require (i) some data from our text mining pipeline and
the Mutation Impact DB, as well as (ii) some biological
knowledge from external sources. Furthermore, we test
the queries using the SHARE client [13] which is
designed to automatically discover and combine the
required SADI services.

The work presented here is a part of a bigger effort:
by doing extensive coherent case studies with SADI in
several biomedical domains we are (i) developing a
transferable methodology in the form of best practices
and recipes covering typical problems, so that future
SADI adopters can copy existing solutions and adapt
them to their needs, and (ii) trying to learn the extent
of the capabilities and the soft spots of the SADI frame-
work in the hope that this will help the future develop-
ment of SADI and related Semantic Web Services
techniques. As a valuable byproduct of the case study
presented here, we created a prototype semantic infra-
structure that provides the flexibility required by multi-
ple uses of our mutation mining software and the
Mutation Impact DB.

Methods

What is SADI?

The SADI framework [11,12] is a set of conventions for
creating Semantic Web Services that can be automati-
cally discovered and orchestrated. A SADI-compliant ser-
vice consumes a whole RDF document as input and
produces an RDF document as output. This convention
alone eliminates the problem of syntactic interoperability
because all SADI services “speak” the same language.

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

This is also convenient for client programs that can
leverage existing APIs for RDF to represent the data on
which SADI services operate.

An input RDF document has some URI node desig-
nated as the central input node, and the whole input
graph is considered a description of the central node.
Exactly the same URI is always present in the output
graph as the central output node. The sole function of a
SADI service is to annotate this node with new proper-
ties and assert these properties in the output RDF docu-
ment, in contrast with more conventional Web services
that usually compute output without an explicit connec-
tion to the input.

The most important feature of SADI is that the predi-
cates for these property assertions are fixed for each ser-
vice. A declaration of these predicates, available online,
constitutes a semantic description of the service. For
example, if a service is declared with the predicate
myontology:isTargetOfDrug described in an ontology as a
predicate linking proteins to drugs, the user knows that
he can use the service to search for drugs targeting a
given protein.

The declaration of the service predicates is done by
specifying an OWL class for the output nodes. If this
output class entails an existential restriction for some
predicate R, i.e., it is postulated that every instance of
the output class is linked with R to some entity, it
means that the predicate is declared to be produced by
the service and the corresponding output data may be
available from the service. Registries of SADI services
can use such predicates to index the services providing
them, thus enabling service discovery based on required
functionality.

Another part of a service declaration is the input
(OWL) class that imposes restrictions on the kind of
input URIs the service can process. In particular, if this
class subsumes an intersection of property restrictions, a
well-behaved service will look for the corresponding
properties attached to an input node, and use the values
as parts of the input.

As an example, consider the SADI service [14] com-
puting the Body Mass Index of a person, which is
defined as the person’s weight divided by the square of
the persons height. Its InputClass is defined as the inter-
section of mged:has_height some mged:Measurement
and mged:has_mass some mged:Measurement, in Man-
chester Syntax [15] (for the meaning of frequently used
URI prefix abbreviations like mged the reader is referred
to Table 1), so the service expects the property predi-
cates mged:hasheight and mged:hasjmass attached to an
input node. The service’s OutputClass is a subclass of
bmi:BMI some xs:int, so the service provides the predi-
cate bmi:BMI (bmi corresponds to the service’s own
ontology that describes the input and output classes).

Page 3 of 18

Given the following RDF (presented here in the Nota-
tion 3 syntax [16] for readability) as input

@ prefix a_riazanov :< http : / / riazanov.com/ >.

a_riazanov:
mged : has_height a_riazanov : height ;
mged : has_mass a_riazanov : mass .
a_riazanov : height
mged : has value "1.7""*xs:float ;
mged : has_units mged : m.
a_riazanov : mass
mged : has value "85"" *xs:float ;
mged : has_units mged : kg .

the service generates this RDF as output:
a_riazanov: bmi:BMI "29.4"" ~xs:float .

The declaration of the input and output classes of a
SADI service constitutes a semantic description of the
service. Importantly, such semantic descriptions allow
completely automatic discovery and composition of
SADI services (see, e.g., [11,13]). In our settings, using
SADI services to provide access to the Mutation Pipe-
line and DB will allow automatic integration with hun-
dreds of external databases and programs dealing with
mutations, proteins and related biomedical entities, e.g.,
pathways and drugs, so long as there are SADI services
for these resourses. These are desirable features of SADI
motivating us to deploy our mutation impact software
with this framework.

Finally, let us mention some important technicalities.
SADI services are defined on top of the HTTP protocol.
A SADI service is requiredto implement HTTP GET
and POST. A valid response to an HTTP GET is a
description of the service in RDF. It specifies the input
and output classes and provides some additional infor-
mation about the service, such as a brief textual
description. The class URIs must resolve to the corre-
sponding OWL ontology files. Service invocation is
done with POST: the client sends the input RDF docu-
ment as the content of a POST message, and the ser-
vice returns the output RDF graph in the response. It is
convenient to implement such services using standard
Java servlets which are supported by a number of robust
server implementations, e.g., Apache Tomcat. For
greater convenience, the SADI framework provides a
Java API that specialises javax.servlet.Servlet so that the
SADI service programmer only needs to deal with RDF
in the input and the output. A similar Perl library also
exists.

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Table 1 URI prefixes used in the paper

Page 4 of 18

abbreviation URI prefix

bibo http://purl.org/ontology/bibo/

dbsnp http://Isrn.org/dbSNP:

dc http://purl.org/dc/elements/1.1/

foaf http://xmins.com/foaf/0.1/

go http://purl.org/obo/owl/GO#

Isrn http://purl.oclc.org/SADI/LSRN/

mged http://mged.sourceforge.net/ontologies/MGEDOnNtology.owl#

mio http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl#
mioe http://unbsj.biordf.net/ontologies/mutation-impact-ontology-extras.owl#
mis http://unbsj.biordf.net/mutation-impact/mi-sadi-service-ontology.owl#
mms http://www.mygrid.org.uk/mygrid-moby-service#

obj http://sadiframework.org/ontologies/service_objects.owli#

owl http://www.w3.0rg/2002/07/owli#

pmc http://www.ncbi.nlm.nih.gov/pmc/articles/PMC/

pred http://sadiframework.org/ontologies/predicates.owl#

props http://sadiframework.org/ontologies/properties.owl#

rss http://purl.org/rss/1.0/

sadiont http://sadiframework.org/ontologies/sadi.owl#

sio http://semanticscience.org/resource/

uniprot http://biordf.net/moby/UniProt/

SHARE: a SPARQL engine for SADI services

SHARE [13] is an experimental client featuring auto-
matic discovery and orchestration of SADI services.
From the user point of view, SHARE is a SPARQL
engine that computes queries by picking and calling sui-
table SADI services from some registry. In a typical sce-
nario, the user first looks up predicates he needs for his
query, in the list of predicates declared as provided by
SADI services in a registry, and also related classes and
property predicates in the referenced ontologies. Then
he uses the available concepts to form a regular
SPARQL query, and sends it to a SHARE endpoint.
Importantly, the SHARE engine decides itself which ser-
vices have to be invoked and in what order, to execute
the query. Note that this qualifies for automatic discov-
ery, composition and invocation. The user deals only
with an almost declarative query, i.e., he only needs to
understand the semantics of the URIs being used in the
query, although knowing the services providing the pre-
dicates can be beneficial. This situation suits our pur-
poses well, so, for our experiments with SADI services
for Mutation Impact data we are using the Web inter-
face for SHARE [17].

To have a controlled environment for our experi-
ments, we installed SHARE (see [18]) on our own server
— a QuadCore 1.8 MHz PC with large cache and RAM,
running Ubuntu Linux, together with a local installation
of a SADI registry that only contains services relevant to
this case study. Relying on our experience, we

recommend this way of doing large case studies because
having a local SHARE installation allows to debug
queries by analysing SHARE logs, and also makes the
experiments reproducible regardless of the changes in
the public registry or the SHARE code. Note that
although our services are accessible from both the cen-
tral SHARE installation and our local one, the results
and performance of queries on the two installations may
differ significantly because the registry used by the cen-
tral SHARE installation contains a much bigger number
of different services. The SHARE client is still in its
infancy and makes some redundant service calls in pre-
sence of many registered services. Although we provide
some performance figures, such as the numbers of
found answers and execution times for some of our
queries, at this stage the query performance is not a
concern for us since we are only investigating the gen-
eral applicability of the SADI framework to our use
cases.

Since SHARE is just a SPARQL engine, its effective
use is highly dependent on the ability of users to write
meaningful queries. To write queries that can be exe-
cuted, users need to know what classes and property
predicates are available, i. e., what predicates are pro-
vided by the registered services and what classes and
predicates are axiomatically related to them in the cor-
responding ontologies. Currently, the main way of listing
predicates provided by the services in a registry is to
query the SPARQL endpoint associated with the

http://purl.org/ontology/bibo/
http://lsrn.org/dbSNP:
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://purl.org/obo/owl/GO#
http://purl.oclc.org/SADI/LSRN/
http://mged.sourceforge.net/ontologies/MGEDOntology.owl#
http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl#
http://unbsj.biordf.net/ontologies/mutation-impact-ontology-extras.owl#
http://unbsj.biordf.net/mutation-impact/mi-sadi-service-ontology.owl#
http://www.mygrid.org.uk/mygrid-moby-service#
http://sadiframework.org/ontologies/service_objects.owl#
http://www.w3.org/2002/07/owl#
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC/
http://sadiframework.org/ontologies/predicates.owl#
http://sadiframework.org/ontologies/properties.owl#
http://purl.org/rss/1.0/
http://sadiframework.org/ontologies/sadi.owl#
http://semanticscience.org/resource/
http://biordf.net/moby/UniProt/

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

registry. For example, the central public SADI registry
[19] has a SPARQL endpoint http://sadiframework.org/
registry/sparql/, and querying this endpoint with

SELECT DISTINCT ?service ?property ?desc
WHERE {
?service sadiont : decoratesWith ?restr .
?restr owl: onProperty ?property .

?service mms : hasServiceDescriptionText ?desc .

will produce a list of services with the predicates they
provide (as well as the services’ textual descriptions).
Note that the query uses some prefixes defined in Table
1. Currently, there is no support for retrieving entities
related to these predicates via the corresponding ontolo-
gies, e. g., inverse predicates, so this kind of search has
to be done manually. In many cases, although not
always, the predicate URIs are resolved to files with the
ontologies defining them, and related entities can be
found by examining these ontologies.

Another SHARE-related limitation stems from the fact
that the current implementation does not guarantee
completeness — some answers that can be computed in
principle, won’t be found by the system. This is, how-
ever, not an inherent problem for SADI as there likely
to exist query client architectures with completeness
guarantee, although without a termination guarantee,
since complete sets of answers may be infinite.

Mutation Impact Ontology
Since the SADI services based on our text mining soft-
ware are defined in terms of our Mutation Impact

Page 5 of 18

ontology, we would like to give a brief overview of the
ontology here. Figure 1 shows the top level concepts of
the ontology with some relations between them.

The central concept in our ontology is mutation speci-
fication. Intuitively, an instance of this class is a piece of
information or a statement saying that some mutation
applied to a specified protein has a specified impact on
a specified protein property. There are, correspondingly,
classes representing mutations (more specifically, series
of elementary mutations), proteins, protein properties
and impacts.

The main predicates relating these classes are as fol-
lows. The predicate specifiesMutations links to the
mutation series that a mutation specification describes.
The membership of elementary mutations in mutation
series is expressed with the predicate containsElementar-
yMutation. The wildtype protein is specified with
groundMutationsTo and the impact is specified with spe-
cifiesImpact. An instance of impact is characterised with
its direction, e.g., positive, negative or neutral, via has-
Direction, and with an instance of the affected protein
property. Note that protein properties are also modelled
as individuals. They can be instances of different sub-
classes of ProteinProperty — currently we use the Gene
Ontology classes for molecular functions. Protein prop-
erties are grounded to proteins: apart from the protein
property class, a specific protein is assigned to a prop-
erty instance with the predicate hasProperty. Since our
ontology is mainly aimed at representing text mining
results, mutation specification instances are linked to
the documents they are extracted from with the predi-
cate isExtractedFromDocument, which is a subproperty
of the inverse of foafitopic. This FOAF [20] predicate
can be interpreted as having a slightly stronger

mutation-impact-ontology :specifiesMutations

mutation-impact-
ontology:MutationSeries

mutation-impact-ontology:hasimpact

mutation-impact-ontology:contains Elementary Mutation

mutation-impact-
ontology:Elementary Mutation Vs
.
mutation-impact-
ontology:ImpactDirection

Protein Property being connected through object property predicates.

mutation-impact-
ontology: MutationSpecification

mutation-impact-ontology :specifiesImpact

mutation-impact-
ontology:Mutationimpact

/

mutation-impact-ontology :hasDirection

Figure 1 Mutation impact ontology structure. Visualization of top level concepts as Mutation Specification, Protein, Mutation Impact and

mutation-impact-ontology:isExtractedFromDocument

foaf:Document

mutation-impact-ontology:grounds MutationsTo

mutation-impact-
ontology:Protein

mutation-impact-ontology :affects Property
mutation-impact-ontology:hasProperty

mutation-impact-
ontology:ProteinProperty

http://sadiframework.org/registry/sparql/
http://sadiframework.org/registry/sparql/

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

semantics than necessary for our purposes because its
description “a topic of some page or document” can be
interpreted as “the main topic of some page or docu-
ment” by some users. However, we failed to find a better
predicate in a sufficiently standard vocabulary. Cur-
rently, we are using foaf:topic in parallel with the SIO
[21] predicate ’refers to’ (SIO_000628) with a more pre-
cise semantics, and in the future it may completely
replace foaftopic.

In addition to the object property predicates we have a
number of data properties to specify various number-,
string- and URI-valued attributes of entities. In particu-
lar, hasNormalizedForm associates a point mutation
code like “I615S”, with a point mutation instance, and
hasSequence links a protein instance to a string which is
a FASTA representation of the protein’s amino acid
sequence.

Use cases

Here we introduce the use cases we have adopted to test
the suitability of SADI as a medium for providing access
to our Mutation Impact software and data. All our use
cases are in the form of queries, i.e., the user is seeking
some information from publications or our Mutation
Impact DB, in combination with external resources.

Use case 1: Given a list of publications, identify
mutations studied in the papers with their wildtype
proteins and impacts on protein properties. In this
scenario, a biologist wants a quick summary of muta-
tions studied in a set of papers. He is specifically inter-
ested in the proteins being studied as well as the
identified change of protein properties. This kind of
summarisation can aid literature search in many practi-
cal settings, e.g., when a biology researcher looks for
related work for a publication. It can also be used by
bioinformatics database curators to populate or verify
databases.

Use case 2: Find all mutations and the structure
images of wild type proteins that were mutated,
where the impact of the mutation is an enhanced
haloalkane dehalogenase activity. In this use case we
aim to address the needs of a protein engineer who is
seeking to understand what mutational changes can
enhance the catalytic activity of an industrial enzyme,
which is haloalkane dehalogenase in this scenario. The
medium for reviewing the causal relationship of muta-
tions on protein activity is a protein structure image
which can be annotated with mutations and their
impacts retrieved from a database/triplestore [22] or
extracted automatically from documents using text
mining techniques [5,23]. In our use case, we perform
retrieval of the specific protein structures where there
are published reports of mutations having a positive

Page 6 of 18

impact on catalytic activity. The user would wish to
retrieve and review these structures along with mutation
locations and impact annotations. The expected output
of the integrated SADI services is the selected protein
structure files and the corresponding mutations. Ideally,
we would like to see the amino acids in the mutation
positions highlighted on the 3D image of the protein, as
it is done in mSTRAP [5].

Use case 3: Find all pathways, together with the
corresponding pathway images, that might have been
altered by a mutation of the protein Fibroblast
growth factor receptor 3. In this scenario we address
the needs of a systems biologist who is seeking to
understand the likely impact of reported mutations on
signalling or metabolic pathways [24] in which the
mutated protein participates. This entails the retrieval of
pathway information for the mutated proteins, which
can be provided as a pathway diagram also. In the cur-
rent use case we deal with mutations to the protein
Fibroblast growth factor receptor 3 reported in scientific
papers which impact the protein either positively or
negatively.

Use case 4: Find all drugs related to mutated pro-
teins, together with their interaction partners, where
the mutation impact is a decreased carbonic anhy-
drase activity. In this use case we address a query that
a researcher in drug discovery would make when look-
ing for existing drugs targeting a new disease condition.
In the case of Carbonic anhydrase, an enzyme involved
in the acid-base balance of blood (via the interconver-
sion of carbon dioxide and bicarbonate), enzyme inhibi-
tors such as acetazolamide, cause mild metabolic
acidosis. This can be beneficial to patients with severe
chronic obstructive pulmonary disease (COPD) with
chronic hypercapnic ventilatory failure who need a
reduction in arterial carbon dioxide and a rise in arterial
oxygen and the transport of carbon dioxide out of tis-
sues. The query will help us to identify the names of
known drugs targeting the enzyme and what experimen-
tal modifications on the protein have resulted in lower-
ing its activity in situ. Moreover, the query will also
retrieve the names of proteins that interact with the
enzyme directly through protein-protein interactions.

Use case 5: From the literature, find all reported
mutations of the protein with the nsSNP rs2305178.
In this use case, a researcher in genomics asks for all
known mutations reported in the literature for a protein
containing the non-synonymous SNP identified with the
dbSNP ID rs2305178. By retrieving all known mutations
for the protein in which the nsSNP is reported, the
researcher can find out if any of these reported muta-
tions corresponds to the location of the SNP in ques-
tion. Minimally, the researcher can retrieve the full set

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

of mutations to the protein based on reported experi-
mental analysis and their impacts, together with refer-
ences to the supporting literature. In our settings, we
assume that the scope of the search is limited to the
publications that have been processed with our text-
mining software and semantically indexed in our Muta-
tion Impact DB.

Results

SADI services for Mutation Impact pipeline and data

As an initial implementation with SADI, we created a
service that takes a text in the form of a string literal or,
alternatively, a URL of a file with the text, and outputs
all property assertions derived from the input text, such
as links from the text identifier (URI) to the extracted
grounded mutations. These grounded mutations also
have links to ungrounded mutations, proteins and
impacts, in their descriptions. The main purpose of this
service is to provide programming- and installation-free
access to our text mining pipeline. In fact, we currently
use this service ourselves to populate the Mutation
Impact DB with OWL ABox assertions, because it has
the capability of converting the raw results of the Muta-
tion Impact pipeline to OWL. The service can also be
useful in combination with services that find documents
that have to be subsequently analysed.

We illustrate the operation of the service with the fol-
lowing example. In the simplified definition of the input
class (in Manchester Syntax [15]) given below, indivi-
duals eligible as input to the service are required to be
instances of bibo:Document, have their string content
attached with the predicate bibo:content and to have the
MIME type “text/plain” attached with dc:format:

Class : mis: mineTextForMutationlmpacts _ Input
EquivalentTo:
foaf : Document
that bibo : content some xs : string

and dc : format value"text / plain"

The output class definition indicates that the service
will attach instances of mio:MutationSpecification to the
input URIs via the predicate foaf:topic:

Class : mis: mineTextForMutationlmpacts_Output
SubClassOf :

foaf : topic some mio : MutationSpecification

We also provide an extract from the definition of the
class MutationSpecification in the mutation impact
ontology, that specifies how the wildtype protein, series
of point mutations and corresponding impact are asso-
ciated with a mutation specification instance:

Page 7 of 18

Class : mio : MutationSpecification
SubClassOf :
mio : groundMutationsTo some mio : Protein,
mio : specifiesMutations
some mio : MutationSeries,

mio : specifiesImpact somemio : MutationImpact

Class : mio : MutationSeries
SubClassOf :
mio : containsElementaryMutation

some mio : PointMutation

Class : mio : MutationImpact
SubClassOf :
mio : affectProperty
some mio : ProteinProperty,
mio : hasDirection

some mio : MutationImpactDirection

Here is a sample input to the text-mining service:

pmc:100293
rdf : typemis : mineTextForMutationImpacts_Input;
bibo : content "The function ofAsp70,...".

Note that the value of bibo:content is a string with the
ASCII content of the article with PubMed Central ID
100293 represented with the URI pmc:100293.

This RDF listing shows the corresponding output of
the service:

pmc:100293
rdf : type
mis : mineTextForMutationImpacts_Output;
foaf : topic mio : MutationSpecification _1397 _69.

mio : MutationSpecification_1397_69
rdf : type mio : MutationSpecification;
mio : groundMutationsTo uniprot : CSA1GI;
mio : specifiesMutations
mio : MutationSeries_1397_64;
mio : specifiesImpact
mio : MutationImpact _1397_67.

mio : MutationSeries_1397_64
rdf : type mio : MutationSeries.
mio : containsElementaryMutation mio : K52A.

mio : MutationImpact 1397 67
rdf : type mio : Mutationlmpact;
mio : affectProperty
mio : ProteinProperty 1397_68;
mio : hasDirectionmio : Positive.

mio : ProteinProperty 1397 68
rdf : type go: GO_0030983.

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Most of our other mutation impact-related SADI ser-
vices essentially wrap some ad hoc queries to our Muta-
tion Impact DB. For example, one of the most
intensively used services — getMutationByWildtypePro-
tein — finds all instances of the Mutation Impact ontol-
ogy class MutationSpecification, given the UniProt ID of
a protein that acts as the wildtype protein in those
mutations. More specifically, the service expects an RDF
node, representing a protein, with a UniProt record
attached to it via si0:SI0_000212 (is referred to by’),
which is in turn linked via si0:SIO_000008 (‘has attri-
bute’) to an attribute of the type Isrn:UniProt-Identifier,
whose string value is attached to it with si0:SIO_000300
(has value’). This listing provides a simplified version of
the input class:

Class:
mis : getMutationByWildtypeProtein_Input
EquivalentTo:
sio:SIO_000212 some
sio : SIO_000008 some
(Isrn : UniProt_Identifier
and
sio:SIO_000300 some xs : string)

This kind of input modelling makes the service
semantically interoperable with many other SADI ser-
vices working with proteins.

In the output, the service attaches a mutation specifi-
cation instance to the protein via the predicate mio:pro-
teinlsSpecifiedAsWildtypeBy, which is an inverse of mio:
groundMutationsTo. The class MutationSpecification is
central to the ontology and the DB: its instances repre-
sent grounded mentions of mutations and are linked to
the corresponding wildtype and mutant proteins, the
mutation impacts, and also the texts from which the
mutation mentions were extracted. So, two other ser-
vices - getMutationByMutantProtein and getMutation-
Bylmpact - also find MutationSpecification instances by
their mutant proteins and required mutation impacts.

Two other services retrieve instances of biological
entities of specified types, present in our DB. The ser-
vice getMIDBBioEntityByType does this for the top level
biological entity classes in our ontology, such as Protein
or Point Mutation. The service getProteinPropertyBy-
Type specialises in protein property types, most of
which are currently inherited from the Gene Ontology.
Given a subclass of ProteinProperty, e.g., GO_0018786
(haloalkane dehalogenase activity’) from the Gene
Ontology, it finds all known instances of this type,
whose descriptions contain links to the proteins they
characterise.

Page 8 of 18

There are also two auxiliary services: getMutationlm-
pactByProteinProperty finds mutation impact instances
linked to a specified protein property grounded to a spe-
cific protein, and getMutationSubseries finds series of
elementary mutations identified in a text, that are sub-
sets of a specified set of elementary mutations. We also
have two services that visualise grounded mutations by
rendering the 3D structure of the wildtype proteins and
highlighting the amino acids affected by the point
mutations.

The list of all SADI services based on the Mutation
Impact ontology, text mining pipeline and DB, can be
found in [25] and is also summarised in Table 2.

Experiments with SHARE

This section contains the main result of our investiga-
tion — it describes our experiences using SADI via the
SPARQL engine SHARE to solve the use cases.

In the query examples below we omit prefix declara-
tions — the meaning of the namespace abbreviations is
given in Table 1. Full versions of all queries discussed in
this article are available from [18], with instructions on
how to execute them via a SHARE Web interface
installed locally for this purpose.

Experiment with use case 1

In this use case, our goal is to formalise the query
“Given a list of publications, identify mutations studied
in the papers with their wildtype proteins and impacts
on protein properties” and execute it using our text
mining pipeline for mutation impacts. We have
uploaded three PDF files with publications about
mutations to a location on the Web and listed their
URLs in an RDF document (http://unbsj.biordf.net/
util-sadi-services/service-data/PDFs.rdf) that will serve
as input to our SPARQL query. This document
describes the files as instances of the class bibo:Docu-
ment having the MIME type “application/pdf” as the
value of the dc:format predicate. For example, the
paper with the PubMed ID 17545153, uploaded to our
Web site, is represented with the following entry,
given, for readability, in the Notation 3 syntax [16] for
RDF:

repo :17545153.pdf rdf : type bibo : Document .
repo :17545153.pdf rss : link

"http :/ / unbsj.biordf.net /.../17545153.pdf".
repo :17545153.pdf dc : format "application / pdf " .

In general, we often need to create such RDF docu-
ments to specify input to queries or to provide addi-
tional information necessary to execute the queries,
because SPARQL does not allow inlining assertions in
queries directly.

http://unbsj.biordf.net/util-sadi-services/service-data/PDFs.rdf
http://unbsj.biordf.net/util-sadi-services/service-data/PDFs.rdf

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Page 9 of 18

Table 2 Our SADI services based on the Mutation Impact ontology, text-mining pipeline and database. Detailed
information (in RDF) about a service can be obtained by opening the service URL, obtained by attaching the prefix
http://unbsj.biordf.net/mi-sadi/ to the name, in a Web browser

service operation

mineTextForMutationimpacts
getMutationByWildtypeProtein
getMutationByMutantProtein
getMutationlmpactByProteinProperty
getMutationBylmpact
getMutationSubseries
getMIDBBioEntityBy Type
getProteinPropertyByType

visualiseMutationSeries
positions

extracts mutation specifications from a document

finds specifications of mutations grounded to a given protein

finds specifications of mutations resulting in a protein specified by its sequence

finds mutation impact instances affecting a specified grounded protein property

finds mutation specifications corresponding to an impact on a specified grounded protein property
finds mutation series instances that are subseries of a given mutation series

finds biological entities by their type URIs

finds protein properties grounded to specific proteins by their type URIs

renders the 3D structure of the wildtype protein, from PDB, and highlights the point mutation

visualiseMutationSeries\WithHomologyModeling - same as visualiseMutationSeries except that the 3D structure is predicted by homology modeling

We start with the following simple SPARQL query:

1 SELECT DISTINCT ?PDFDocument ?MutationSpec
2 FROM < http://unbsjbiordf.net/ ... /PDFs rdf >
3 WHERE {

4 ?PDFDocument dc : format "application / pdf " .
5 ?PDFDocument dc : hasFormat ? OtherFormat .

6 ?OtherFormat foaf : topic ? MutationSpec . }

where http://unbsj.biordf.net/.../PDFs.rdf abbreviates
http://unbsj.biordf.net/util-sadi-services/service-data/
PDFs.rdf.

The purpose of this query is essentially to list muta-
tion specification instances (?MutationSpec) together
with the input documents (?PDF Document) they are
extracted from. Our text mining SADI service provides
the predicate foaftopic. However, writing a condition
like ?PDF Document foaf:topic ?MutationSpec is not
enough because the service only accepts documents in
ASCII, whereas our input documents are in PDF.
Moreover, we are modelling a situation where the user
does not know what text formats are accepted by the
available text mining services. So, line 5 requests a
conversion of ?PDF Document into all available for-
mats: the predicate dc:hasFormat relates different
representations of the same document and is provided
by our SADI service pdf2ascii. Finally, line 4 is needed
to enumerate PDF documents from the input. Note
the use of dc:format to specify the MIME type of a
document.

The query executes in less than one minute and returns
twenty six mutation specifications extracted from the
three papers from the input file PDFs.rdf. However,
returning only mutation specification instances like mio:
MutationSpecification1292519446381_2538 is clearly not

enough. Our imagined user needs various informative
parts of a mutation specification, such as the wildtype
protein and identified impact, rather than just a URIL In
the service output, these are attached with various predi-
cates, such as mio:groundMutationsTo or mio:specifiesIm-
pact, and can be easily requested in the query by adding
the following lines:

1 ?MutationSpec mio : groundMutationsTo ? Protein .
2 ?MutationSeries

mio : mutationSeriesIsSpecifiedBy

? MutationSpecification .

3 ?MutationSeries

mio : containsElementaryMutation ? Mutation .
4 ?Mutation

mio : hasNormalizedForm ? NormalizedMutation .
5 ?MutationSpecification

mio : specifiesImpact ? Impact .
6 ?Impact mio : affectProperty ? Property.
7 ?Property rdf : type ? ProteinPropertyType.
8 ?Impact mio : hasDirection ? ImpactDirection.

Line 1 extracts the reference to the wildtype protein.
Lines 2-4 extract codes like “I615S” for all the point
mutations referenced by the mutation specification. Line
5 extracts the impact instance, line 8 extracts the direc-
tion, e.g., mio:Positive or mio:Neutral, assigned to the
impact instance, and lines 6-7 extract the types of the
affected protein property, e.g., g0:GO_0004016. The
SELECT line in the new query can specity ?PDF Docu-
ment, ?Protein, ?NormalizedMutation, ?ImpactDirection
and ?ProteinPropertyType as the answer variables, so the
user now can see answers like this:

http://unbsj.biordf.net/.../PDFs.rdf
http://unbsj.biordf.net/util-sadi-services/service-data/PDFs.rdf
http://unbsj.biordf.net/util-sadi-services/service-data/PDFs.rdf
http://unbsj.biordf.net/mi-sadi/

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

?PDFDocument =

http:// unbsj.biordf.net/.../15489963.pdf
?Protein = uniprot : 075907
? NormalizedMutation = 1615S
? ImpactDirection = mio : Neutral
?ProteinPropertyType = go : GO_0004016

The actual answer is given by SHARE in the form of a
table where the columns are labelled with the query
variables. We do not show the table here as it does not
fit due to very long rows. Note also that there may be
multiple rows with the same wildtype protein but differ-
ent point mutations or affected protein properties.

Although such results are already satisfactory, for
extra user convenience we would like to provide read-
able protein names and the organisms they belong to, in
addition to the UniProt IDs like “O75907”. None of our
services can deliver this information, so we look in the
central SADI registry [19] for appropriate predicates and
find prop:hasName that relates a protein (UniProt
record) to an attribute representing the name of the
protein, whose string value is accessible via the data
property sio:SIO_000300. There is also predicate prop:
fromOrganism relating a protein to the corresponding
taxon record that is linked to its scientific name
attribute via sio:SIO_000008. Both predicates are pro-
vided by the service uniprotinfo we found in the public

Page 10 of 18

registry [19]. The listing for the final query is given in
Figure 2. In about three minutes, the execution of this
query produced several dozens of bindings like the fol-
lowing one:

?PDFDocument =

http :/ / unbsj.biordf.net/.../15489963.pdf
?Protein = uniprot : 075907
?NormalizedMutation =1615S
? ImpactDirection = mio : Neutral
?ProteinPropertyType = go: GO _ 0004016
?ProtNameString =

Diacylglycerol O-acyltransferase 1

?OrganismName = Homo sapiens

The main message we would like this use case to deli-
ver is that by packaging our text mining software as a
SADI service we offer its functionality to the end users
in a programming-free manner. This possibility alone
already makes SADI a valuable part of our infrastructure
for annotating mutations. The use of a separate service
for PDF-to-ASCII conversion demonstrates the extra
flexibility this approach provides - one can use our text
mining service with any text formats, provided that
there are SADI services extracting ASCII contents from
these formats. Note also how easy was it to present our
text mining results in combination with data from

-

WHERE {

?Mutation mio:hasNormalizedForm
?Protein prop:hasName ?ProtName
'has walue'
'has attribut'

?8ciName rdf:type sio:SI0Q 000120
'has value'

SELECT DISTINCT ?PDFDocument ?PProtein ?NormalizedMutation ?ImpactDirection
?ProteinPropertyType 7ProtNameString ?0rganismName
FROM <http://unbsj.biordf.net/util-sadi-services/service-data/PDFs.rdf>

?PDFDocument dc: format "application/pdf"

?PDFDocument dec:hasFormat ?0therFormat

?0therFormat foaf:topic ?MutationSpec

?MutationSpec mio:groundMutationsTo ?Protein
PMutationSeries mio:mutationSeriesIsSpecifiedBy ?MutationSpecification
?MutationSeries mio:containsElementaryMutation 7Mutation
?NormalizedMutation
?MutationSpecification mio:specifiesImpact ?Impact
?Impact mio:affectProperty ?Property

?Property rdf:type ?ProteinPropertyType

?Impact mio:hasDirection ?ImpactDirection

?ProtName sio:5I0 000300 ?ProtNameString
?Protein prop: fromOrganism ?TaxonRecord

?TaxonRecord sio:S8I0_000008 ?SciName
'scientific name'

?S5ciName sio:S5I0_000300 ?0rganismName . }

Figure 2 Listing of the final SPARQL query for use case 1. This SPARQL formalises “Given a list of publications, identify mutations studied in
the papers with their wildtype proteins and impacts on protein properties”.
.

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

external sources, as exemplified by the use of the uni-
protinfo service. In the next four use cases we will focus
our attention on the value of such integration.
Experiment with use case 2
Baseline functionality: show the protein structure.
Our query “Find all mutations and the structure images
of wild type proteins that were mutated, where the
impact of the mutation is an enhanced haloalkane deha-
logenase activity” can be realised with the SPARQL
shown in Figure 3. Let us analyse how we construct this
query. The predicate mioe:proteinPropertyHasType in
our ontology, provided by the service getProteinProperty-
ByType, links grounded protein properties with their
types, so we can use it to enumerate known instances of
GO_0018786. In lines 5 and 9, mio:af fectProperty links
the grounded protein properties to the corresponding
instances of mutation impacts and mio:hasDirection
selects only positive impacts. Using mio:specifieslmpact,
we can select instances of mutation specifications (line
11), which in turn link to the corresponding wildtype
proteins (line 13) and series of elementary mutations
(line 15). We would like to see readable codes of ele-
mentary mutations in the output, like D124N or V226A,
so we use mio:containsElementaryMutation to retrieve
the corresponding elementary mutations and mio:has-
NormalizedForm to map them to the corresponding
codes.

So far we have used only predicates from our Muta-
tion Impact ontology. Since the essence of use case 2 is

Page 11 of 18

visualisation, we look for predicates in SADI-related
ontologies, that could link proteins to their images.
There is no direct link, but we can use the composition
of props:has3DStructure and obj:hasJmol3DStructureVi-
sualization to first retrieve a reference to the PDB
record of the protein, and then find the corresponding
graphics file.

SHARE was able to compute our query using three
of our SADI services — getProteinPropertyByType, get-
MutationlmpactByProteinProperty and getMutation-
ByImpact — and two third party SADI services from
the registry, providing props:has3DStructure and obj:
hasJmol3DStructureVisualization, and yet this was
completely transparent to us as the end users. We only
dealt with an almost completely declarative query com-
posed of predicates that we were able to find in ontol-
ogies referenced by available SADI services. The only
thing we need to know beyond the semantics of a pre-
dicate is the direction in which available services com-
pute it: e.g., we cannot use props:has3DStructure to get
from a PDB ID to the corresponding protein because
there is currently no service that would annotate a
PDB ID with the inverse of props:has3DStructure.
Finding the services, their invocation and some deduc-
tion with the ontological definitions of predicates, was
done by SHARE completely automatically. Note espe-
cially the ease with which integrating our mutation-
related information with the external sources of data
was achieved.

1
2
3 WHERE {

4 # impact <-- property instance

5 f?Impact mio:affectProperty ?Property .
)

i

8

check that the impact is positive
9 “?Impact mio:hasDirection mio:Positive

10 # grounded mutation <-- impact
12 4
14 4

16 #

19 # protein --> PDB file
20 ?Protein props:has3DStructure ?Struct

21 %

SELECT ?NormalizedMutation ?Protein ?StructImage
FROM <http://unbsj.biordf.net/mutation-impact/service-data/protein_property_types.rdf>

protein property instance <-- G0O_0018786
?Property mioe:proteinPropertyHasType go:G0_0018786 .

11 ?MutationSpec mio:specifiesImpact ?Impact

grounded mutation --> wildtype protein
13 f?MutationSpec mio:groundMutationsTo ?Protein .

grounded mutation -->» point mutation series
15 f?MutationSeries mio:mutationSeriesIsSpecifiedBy ?MutationSpec

point mutation series --> separate point mutations
17 “?MutationSeries mio:containsElementaryMutation ?Mutation .
18 ?Mutation mio:hasNormalizedForm ?NormalizedMutation .

PDB file —--> Web page with Jmol applet call
22 ?8truct obj:hasImol3DStructureVisualization 7StructlImage . }

Figure 3 Listing of the baseline SPARQL query for use case 2. This SPARQL formalises “Find all mutations and the structure images of wild
type proteins that were mutated, where the impact of the mutation is an enhanced haloalkane dehalogenase activity".

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Extended functionality: locating mutations on the
protein structures. Although the query above illustrates
well the integrative power of SADI and SHARE, it does
not fully satisfy the requirements for the use case
because the mutations are not shown on the protein 3D
structure. At the time of our experiments, no existing
SADI services were providing such functionality, so we
wrote our own service visualiseMutationSeries. This ser-
vice accepts a mutation specification including a protein
instance identified with a UniProt record URI, as input.
It extracts references to PDB [26] files representing
parts of the protein sequence obtained by different
methods, e.g., X-ray crystallography, from the UniProt
record. Then it creates a small Jmol [27] script that
instructs Jmol to render the amino acid sequence with
the positions of the specified point mutations high-
lighted on the structure. In the output, the service links
the input mutation specification to an HTML document
using the predicate obj:hasjmol3DStructureVisualization.
This small HTML document calls the Jmol viewer
applet on the created script, so that when it is loaded
into a Web browser with Java applet support, the user
can see and rotate the 3D image of the protein structure
with wildtype residues highlighted on it. Figure 4 is a
screenshot of a Jmol rendering of the structure of
P51698 with the wildtype residue of the point mutation
L2481 highlighted.

All it takes to use the visualiseMutationSeries service
for the purposes of our use case is to replace lines 19-
22 with the triple pattern

?MutationSpec
obj: hasJmol3DStructureVisualization

?Structlmage

as shown in Figure 5.

Homology modelling for missing structures. Our
experiments with mutation visualisation using the
known protein structures from the Protein Data Bank
(PDB) [26] revealed that many proteins of interest don’t
yet have PDB records. To rectify this, at least partially,
we adopted the solution used in mSTRAPviz [5]. If the
amino acid sequence of a protein is known, which is
usually the case with UniProt listed proteins, we look
for homologous sequences for which PDB files exist and
then call the MODELLER program [28] to predict the
3D structure of the target protein by adjusting the struc-
tures of the template sequences.

To implement this, we created the SADI service visua-
liseMutationSeriesWithHomologyModeling that takes a
mutation specification with a wildtype protein whose
amino acid sequence is given as a FASTA string, as
input. The protein’s sequence must also have a homolo-
gue identified by a PDB record. The service runs

Page 12 of 18

MODELLER on these data and the created PDB file
representing the predicted structure is treated exactly
the same way as visualiseMutationSeries treats files
hosted by the Protein Data Bank, i.e., it is visualised
with Jmol, together with the specified point mutations.
Additionally, we have written the SADI service blastPDB
that wraps a PDB SOAP service based on the BLAST
algorithm for searching for homologous sequences in
the PDB database. To test the new services, we ran a
query obtained by replacing GO_0018786 in the query
in Figure 5, with GO_0004091, and requesting negative
impacts, so that the relevant proteins in our Mutation
Impact DB don’t have PDB files (details are provided in
[18]). The query is executed in two minutes and returns
visualisations of one protein Esterase YpfH with four
distinct point mutations. Since two homologous PDB
sequences are used to model the protein’s 3D structure,
the total number of answers for the query is eight.
Experiment with use case 3

The work required by this use case (“Find all pathways,
together with the corresponding pathway images, that
might have been altered by a mutation of the protein
Fibroblast growth factor receptor 3“) can also be divided
into two parts: the first part can be done using the pre-
dicates from our ontology, and the second part has to
be delegated to external resources, dealing with genes,
pathways and pathway visualisation. Since we know that
the wildtype protein is Fibroblast growth factor receptor
3 (UniProt ID P22607), we can easily retrieve the muta-
tion specifications linked to this protein with the prop-
erty mio:groundMutationsTo. These instances will have
impacts attached to them with mio:specifiesImpact, and
we can specify the interesting impact directions with
mio:hasDirection.

Using pred:isEncodedBy we also map the protein to
the corresponding gene, and sio:SIO_000062 (’is partici-
pant in’) allows to retrieve the pathways in which the
protein participates, pred:visualizedByPathwayDiagram
will fetch the corresponding graphics file URL. The
resulting query is shown in Figure 6. Note that the
input file in the FROM clause just qualifies uniprot:
P22607 as an instance of mio:Protein to make it a legiti-
mate input to the service getMutationByWildtypeProtein
that links proteins to mutations specifications. SHARE
executed the query using this service and two external
SADI services providing sio:SIO_000062 and pred:visua-
lizedByPathwayDiagram. The execution took less than
one minute and returned five pathways with diagrams.
Experiment with use case 4
This use case (“Find all drugs related to mutated pro-
teins, together with their interaction partners, where the
mutation impact is a decreased carbonic anhydrase
activity”) is somewhat similar to use case 2: given the
protein property type, we retrieve the grounded

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Page 13 of 18

Figure 4 Screenshot of a Jmol rendering of the structure of P51698 with L248l. This image was obtained by running the Jmol viewer on a
PDB file representing the amino acid sequence of protein with the UniProt ID P51698. The highlighted amino acid is the wildtype of the point
mutation L248l.

properties, positive impacts and the wildtype proteins
with the help of some predicates from our ontology.
The connection from the proteins to drug names is rea-
lised with the predicates obj:isTargetOfDrug and obj:has-
DrugGenericName. Separately, we find the interacting
proteins with pred:hasMolecularIinteractionWith. To
make go:GO_0008270 a valid input to our service get-
MutationImpactByProteinProperty, it is qualified as a
mioe:ProteinPropertyType in the input file in the FROM

clause. The resulting query is shown in Figure 7. The
query was executed in less than two minutes and
returned 50 distinct drug names and 2 interacting
proteins.

Experiment with use case 5

Finally, the query “From the literature find all reported
mutations of the protein with the nsSNP rs2305178”
was implemented with the SPARQL query shown in
Figure 8. The predicate sio:SIO_000272 (’is variant of) in

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Page 14 of 18

SELECT{DISTINCT ?NormalizedMutation ?Protein ?StructImage
WHERE
?Property mioe:proteinPropertyHasType go:G0O_0018786
?Impact mio:affectProperty ?Property
?Impact mio:hasDirection mio:Positive
?PMutationSpec mio:specifiesImpact 7Impact
PMutationSpec mio:groundMutationsTo PProtein
?PMutationSeries mio:mutationSerieslsSpecifiedBy ?YMutationSpec
?PMutationSeries mio:containsElementaryMutation ?Mutation
?Mutation mio:hasNormalizedForm 7NormalizedMutation

?MutationSpec obj:hasImol3DStructureVisualization ?StructImage . }

Figure 5 Listing of the extended functionality query for use case 2. Improves on the query in Figure 4 by requesting mutations to be

shown on the protein 3D structure.

line 5 maps the specified dbSNP ID to an Entrez gene
ID. If we were dealing with completely declarative
queries, it would be enough to use a composition of the
predicates obj:correspondsToEntrezGene, obj:hasRefSeq-
Transcript and pred:isEncodedBy, as in lines 9-13, to
map the Entrez gene ID to a protein. However, no
SADI service currently provides the inverses to the first
two predicates, so the composition can only work in the
direction from proteins to Entrez gene IDs. To use this
possibility, we had to implement the service getMIDB-
BioEntityByType that enumerates all proteins known in
our DB. In fact, the service is more general - it enumer-
ates instances of several main biological entity classes
from our ontology, such as MutationImpact or Point-
Mutation. The service provides the inverse of mioe:bio-
logicalEntityHasType whose use is demonstrated in line

7. Linking the protein to elementary mutations is done
exactly the same way as in use case 2. Once SHARE has
the necessary data in the working memory, it computes
the join on the variable ?EzGene. Finally, the last two
lines in the query serve to retrieve the URLs of the
documents from which the corresponding mutation spe-
cifications were extracted.

Discussion

We are not aware of any work solving exactly the same
problem, i. e. publishing text-mined information on
mutations and text-mining software itself, with semantic
web services, so we look at related work falling into a
more general topic. Since the problem we are solving is
essentially an instance of the more general problem of
agile integration of bioinformatics resources with the

SELECT ?YPathway ?PathwayDiagram
WHERE {

?Gene sio:SI0 000062 ?Pathway

FROM <http://unbsj.biordf.net/mutation-impact/service-data/proteins.rdf>

grounded mutations «-- wildtype protein P22607
?MutationSpecification mio:groundMutationsTo uniprot:P22607

grounded mutations --> impact
?MutationSpecification mio:specifiesImpact ?Impact

check that the impact is non-neutral
{?Impact mio:hasDirection mio:Positive]
UNION {?Impact mio:hasDirection mio:Negative)

protein P22607 -->» encoding gene
uniprot:P22607 pred:isEncodedBy ?Gene
gene —--> related pathways

'"is participant in'

pathway id --> pathway diagram image file
?Pathway pred:visualizedByPathwayDiagram ?PathwayDiagram . }

Figure 6 Listing of the SPARQL query for use case 3. This SPARQL formalises “Find all pathways, together with the corresponding pathway
images, that might have been altered by a mutation of the protein Fibroblast growth factor receptor 3".

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

Page 15 of 18

SELECT ?DrugName ?InteractingProtein

FROM <http://unbsj.biordf.net/mutation-impact/service-data/protein_property_types.rdf>
WHERE {

¥ enumerate known instances of go:GO_0008270
?Property mioce:proteinPropertyHasType go:G0O_0008270

impact <-- protein property instance
?Impact mio:affectProperty ?Property

check that the impact is positive
?Impact mio:hasDirection mio:Positive

grounded mutation <-- impact
PMutationSpecification mio:specifiesImpact ?Impact

grounded mutation --> wildtype protein
?MutationSpecification mio:groundMutationsTo ?Protein .

wildtype protein --> drug
?Protein obj:isTargetOfDrug ?Drug
?Drug obj:hasDrugGenericName ?Drugllame

wildtype protein --> interacting proteins
?Protein pred:hasMolecularInteractionWith ?InteractingProtein }

Figure 7 Listing of the SPARQL query for use case 4. This SPARQL formalises “Find all drugs related to mutated proteins, together with their
interaction partners, where the mutation impact is a decreased carbonic anhydrase activity”.

help of semantic web services, we will refer the reader
to two projects in this area.

BioMOBY [29] is the most closely related technology,
simply because it is a direct predecessor of SADI - the
SADI project emerged as an attempt to better integrate
services into the general Semantic Web context [11].

SADI inherited much of the BioMOBY ideology, in par-
ticular that the messages exchanged between clients and
services carry their semantics by using ontology-based
formats, and the decentralised domain ontology use.
From the perspective of our case study, the key advan-
tage of SADI is that the relation between inputs and

s N
1 SELECT DISTINCT ?NormalizedMutation ?DocumentURL
2 WHERE {
3 # SNP --> gene (Entrez)
4 # 'is variant of'
5 dbsnp:rs2305178 sio:S8I0_000272 ?EzGene
6 # enumerate known proteins
7 ?Protein mice:biclogicalEntityHasType mio:Protein
3 # proteins -->» genes (KEGG)
9 ?Protein pred:isEncodedBy 7KeggGene
10 # gene (KEGG) -->» reference sequence

1l ?KeggGene obj:hasRefSeqgTranscript ?RefSeq

12 # reference sequence --> gene (Entrez)

13 ?RefSeq obj:correspondsToEntrezGene ?PEzGene

14 # protein --> mutation info

15 ?MutationSpecification mio: groundMutationsTo ?Protein .

16 PMutationSeries mio:mutationSeriesIsSpecifiedBy ?MutationSpecification
17 ?MutationSeries mio:containsElementaryMutation ?Mutation

18 ?Mutation mio:hasNormalizedForm ?NormalizedMutation

19 # mutation --> literature reference

20 ?Document foaf:topic ?PMutationSpecification

21 ?Document rss:link ?DocumentURL }

Figure 8 Listing of the SPARQL query for use case 5. This SPARQL formalises “From the literature find all reported mutations of the protein
with the nsSNP rs2305178".

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

outputs is explicitly ontologically defined, whereas Bio-
MOBY still follows the earlier semantic web service
paradigm that only requires a service’s functionality to
be categorised, e. g. by qualifying the service as an
instance of an ontological class, say SequenceAllignment-
Service, and by mapping the input and output data types
to ontological classes, possibly from a domain ontology.
This difference makes us strongly prefer SADI because
all our use scenarios assume, as a user, a biologist rather
than a bioinformatician who would be comfortable with
an ontology of bioinformatics operations and data types.
We also assume that in many cases a non-bioinformati-
cian user will also prefer dealing with declarative queries
that are executed completely automatically, to creating
workflows, even with the help of tools that exploit the
service categorisation and the semantics of service IO to
ease such workflow creation.

Both SADI and BioMOBY require service providers to
adhere to the IO conventions imposed by these frame-
works. However, access to many bioinformatics
resources is already available in the form of Web ser-
vices consuming and producing ad hoc XML-based for-
mats, e.g., SOAP services. Such legacy services, as well
as new Web services whose providers cannot or don’t
want to make them natively semantic, can sometimes be
turned into Semantic Web services by semantic annota-
tion. my-GRID [30,31] is a mature project that follows
this approach by allowing services described with WSDL
to be annotated, possibly by a third party, with respect
to a centralised ontology. Although the use of unrest-
ricted XML as the data model for service IO is a great
convenience, some other features of myGRID make its
use for our purposes problematic. First, as in the case
with BioMOBY, there is no way to describe the seman-
tics of a service by ontologically relating the input and
output. Second, the necessity of conversions between
datatypes consumed and produced by different services
seems to complicate the workflow construction — this
gives services “speaking” the same language a clear
advantage. Finally, the reliance on a centrally curated
ontology would deprive us of the extra flexibility in
semantic modelling of services that the SADI and Bio-
MOBY approaches enjoy. In the concrete settings of our
case study, it is unclear how we could substitute the
classes and predicates from our Mutation Impact ontol-
ogy with terms from, for example, the myGRID Domain
Ontology.

Conclusions

The primary goal of our case study was to explore the
suitability of the SADI framework as a medium to facili-
tate data sharing and integration across biological data
types. We have identified that SADI provides an effec-
tive way of exposing our mutation impact data such that

Page 16 of 18

it can be leveraged by a variety of stakeholders in multi-
ple use cases.

Our experience in deploying and registering mutation
services in accordance with SADI specifications was
positive, albeit with some challenges. In particular, we
identified that advanced skills in knowledge engineering
were required to build semantic representations of the
services. More specifically, a SADI service provider has
to (i) find classes and predicates in existing ontologies,
that model his data well, and (ii) ensure that his model-
ling of service 10 is compatible with the IO of other
SADI services with which the new service is intended to
be composed. The first task is a general problem for all
activities requiring ontology-based modelling, and seems
to have no simple solution. It seems safe to assume that
at least in the near future this task has to be performed
mostly manually by reasonably experienced knowledge
engineers. Difficulties associated with the second task
are likely to be alleviated with the appearance of more
sophisticated tools for browsing networks of SADI
services.

We also note that formulating the queries based on
the SADI services requires cumbersome search for pre-
dicates in the SADI-related ontologies. Clearly, the
necessary infrastructure for such search is yet to be
built.

Another conclusion we have drawn from our case
study is that a greater choice of available SADI clients is
necessary to make SADI practically useful, especially in
production settings. We will look at the SADI plugin for
Taverna [32], which is currently under active
development.

Most, if not all, of our queries could be replaced with
browsing, especially faceted, of the virtual RDF graph
implied by the services, which is much more user
friendly than writing SPARQL queries. Unfortunately,
the only currently available RDF browser with SADI
support is Sentient Knowledge Explorer (see, e.g., [13]),
which is a commercial product.

Another important conclusion we have drawn from
our experiments is that some limitations of the SADI-
based approach to data integration also restrict its
applicability strictly to the discovery phase in a scientific
or R&D process. In simple words, one can use SADI to
come up with hypotheses and obtain preliminary evi-
dence, but SADI-produced results cannot be used as
hard evidence. The relevant limitations are the absence
of answer completeness guarantee with the existing
query client, absence of result reproducibility guarantee
and lack of answer justifications. The absence of com-
pleteness guarantee, mentioned in the section about
SHARE, and the inherent irreproducibility of results due
to the reliance on third party services that can be down,
inaccessible, etc., make statistical judgements based on

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56
http://www.biomedcentral.com/1471-2105/12/54/S6

answers returned by SHARE unreliable, although some
valuable insights can be obtained and used later to drive
more rigorous investigations. Creating clients that would
provide verifiable answer justifications seems a good tar-
get for research.

The fact that the initial query design for Use case 5
did not work because some services were missing sug-
gests that the general utility of SADI is predicated on
the coverage of bioinformatics resources and relevant
onto-logical predicates by existing services. In this
respect, we would like to mention that the SADI net-
work of public services is growing fast — it is expected
to contain over 400 services by the end of 2011.

In future work we aim to extend the Mutation Impact
DB with more data types related to mutation annota-
tions extracted from the literature, and create the corre-
sponding SADI services facilitating integration with
other Bioinformatics data. We are also conducting case
studies on the use of SADI for other biomedical
domains, such as lipidomics and experimental proteo-
mics data.

Apart from the integration of distributed and hetero-
geneous sources of data, the SADI framework can be
useful simply as a medium for semantic querying of a
single database, so that SPARQL queries can be
answered on an SQL database. We are exploring this
possibility in a case study with a large health care
research datawarehouse.

List of abbreviations used

GATE: General Architecture for Text Engineering; SADI: Semantic Automated
Discovery and Integration; SPARQL: SPARQL Protocol and RDF Query
Language; SHARE: Semantic Health and Research Environment; GO: Gene
Ontology; OWL: Web Ontology Language; RDF: Resource Description
Framework; URI: Universal Resource Identifier; SIO: Semanticscience
Integrated Ontology; FOAF: Friend-of-a-friend ontology; SNP: single-
nucleotide polymorphism; MIME: Multipurpose Internet Mail Extensions; PDB:
Protein Data Bank; SOAP: Simple Object Access Protocol.

Acknowledgements

This research was funded in part by the New Brunswick Innovation
Foundation, New Brunswick, Canada; NSERC, Discovery Grant Program,
Canada; and the CANARIE NEP-2 Program (C-BRASS project). We also thank
Luke McCarthy for helping us with various SADI-related technical issues.
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 4, 2011: Proceedings of the European Conference on
Computational Biology (ECCB) 2010 Workshop: Annotation, interpretation
and management of mutation (AIMM). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2105/117
issue=54.

Authors’ contributions

AR wrote the SADI services and did the experiments with the SPARQL
queries. JBL co-developed the use cases with CJOB and contributed to the
SHARE experiments at the early stages. CJOB coordinated the work. All
authors contributed to the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 5 July 2011

Page 17 of 18

References

1. Baumgartner WA, Cohen KB, Fox L, Acquaah-Mensah G, Hunter L: Manual
annotation is not sufficient for curating genomic databases.
Bioinformatics 2007, 23:i41-i48.

2. lLaurilla J, Naderi N, Witte R, Riazanov A, Kouznetsov A, Baker CJO:
Algorithms and semantic infrastructure for mutation impact extraction
and grounding. BMC Genomics 2010, 11(Suppl 4):524.

3. Cunningham H, Maynard D, Bontcheva K, Tablan V: GATE: A Framework
And Graphical Development Environment For Robust NLP Tools And
Applications. Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics (ACL'02) 2002.

4. Lau EY, Kahn K, Bash P, Bruice T: The importance of reactant positioning
in enzyme catalysis: a hybrid quantum mechanics/molecular mechanics
study of a haloalkane dehalogenase. Proc. Natl. Acad. Sci. USA 2000,
97(18):9937-42.

5. Rajaraman K, Choo KH, Ranganathan S, Baker CJO: A Workflow for
Mutation Extraction and Structure Annotation. J. Bioinfor-matics and
Computational Biology 2007, 5(6):1319-1337.

6. Mutation Impact Ontology. [http://unbsjbiordf.net/ontologies/mutation-
impact-ontology.owl].

7. Witte R, Kappler T, Baker CJO: Enhanced semantic access to the protein
engineering literature using ontologies populated by text mining. Int J
Bioinform Res Appl 2007, 3(3).

8. Broekstra J, Kampman A, van Harmelen F: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. The Semantic Web ISWC
2002 2002, 54-68.

9. SPARQL Query Language for RDF, W3C Recommendation 15 January
2008. [http://www.w3.0rg/TR/rdf-sparqgl-query/].

10. Mutation Impact RDF triplestore SPARQL endpoint. [http:// unbsj.biordf.
net/ openrdf-workbench/repositories/new-mut ation-impact-db/query.
Authentication data: user.=trustedguest, password=semanticsworks].

11. Wilkinson MD, Vandervalk B, McCarthy L: SADI Semantic Web Services -
‘cause you can't always GET what you want! AP-SCC 2009, 13-18.

12. Wilkinson M, McCarthy L, Vandervalk B, Withers D, Kawas E, Samadian S:
SADI, SHARE, and the in silico scientific method. BMC Bioinformatics 2010,
11(Suppl 12):57.

13. Vandervalk BP, McCarthy EL, Wilkinson M: SHARE: A Semantic Web Query
Engine for Bioinformatics. The Semantic Web (ASWC 2009) 2009, 367-369.

14. SADI service computing the body mass index. [http://sadiframework.org/
examples/calculateBMI].

15. OWL 2 Web Ontology Language Manchester Syntax. [http://www.w3.0rg/
TR/owl2-manchester-syntax/].

16. Notation 3. [http://www.w3.0rg/Designissues/Notation3].

17. Web interface for SHARE. [http:// biordf.net/cardioSHARE/].

18. Full versions of the SPARQL queries presented in this paper. [http//
unbsj biordf.net/mutation-impact/AIMM2010-BMC-Bioinformatics-
supplementary-materials.htmi].

19. Central SADI registry. [http://sadiframework.org/registry/ services/].

20. FOAF Vocabulary Specification. [http://xmins.com/foaf/spec/].

21. Semanticscience Integrated Ontology (project Web page). [http//
semanticscience.org].

22. Gabdoulline RR, Ulbrich S, Richter S, Wade RC: ProSAT2Protein Structure
Annotation Server. 2006.

23, Baker CJO, Witte R: Mutation Mining-A Prospector’s Tale. Information
Systems Frontiers 2006, 8:47-57.

24. Bauer-Mehren A, Furlong LI, Rautschka M, Sanz F: From SNPs to pathways:
integration of functional effect of sequence variations on models of cell
signalling pathways. BMC Bioinformatics 2009, 10(S-8):6.

25. SADI services based on the Mutation Impact pipeline and DB. [http://
unbsj biordf.net/mutation-impact].

26. Berman H, Bhat T, Bourne P, Feng Z, Gilliland G, Weissig H, Westbrook J:
The protein Data Bank and the challenge of structural genomics. Nat
Struct Biol 2000, 7(Suppl):957-959.

27. Jmol Molecul Structure Viewer. [http://jmol.sourceforge.net/].

28. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M,
Pieper U, Sali A: Comparative Protein Structure Modeling With
MODELLER. Current Protocols in Bioinformat-ics 2006, 15(Suppl):5.6.1-5.6.30.

29. Wilkinson MD, Links M: BioMOBY: An open source biological web services
proposal. Briefings in Bioinformatics 2002, 3(4):331-341.

30. Stevens RD, Robinson AJ, Goble CA: myGrid: personalised bioinformatics
on the information grid. Bioinformatics 2003, 19(Suppl. 1):302-i304.

http://www.biomedcentral.com/1471-2105/11?issue=S4
http://www.biomedcentral.com/1471-2105/11?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/17646325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10963662?dopt=Abstract
http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl
http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl
http://www.w3.org/TR/rdf-sparql-query/
http:// unbsj.biordf.net/ openrdf-workbench/repositories/new-mut ation-impact-db/query. Authentication data: user.=trustedguest, password=semanticsworks
http:// unbsj.biordf.net/ openrdf-workbench/repositories/new-mut ation-impact-db/query. Authentication data: user.=trustedguest, password=semanticsworks
http:// unbsj.biordf.net/ openrdf-workbench/repositories/new-mut ation-impact-db/query. Authentication data: user.=trustedguest, password=semanticsworks
http://www.ncbi.nlm.nih.gov/pubmed/21210986?dopt=Abstract
http://sadiframework.org/ examples/calculateBMI
http://sadiframework.org/ examples/calculateBMI
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/DesignIssues/Notation3
http:// biordf.net/cardioSHARE/
http://unbsj.biordf.net/mutation-impact/AIMM2010-BMC-Bioinformatics-supplementary-materials.html
http://unbsj.biordf.net/mutation-impact/AIMM2010-BMC-Bioinformatics-supplementary-materials.html
http://unbsj.biordf.net/mutation-impact/AIMM2010-BMC-Bioinformatics-supplementary-materials.html
http://sadiframework.org/registry/ services/
http://xmlns.com/foaf/spec/
http://semanticscience.org
http://semanticscience.org
http://www.ncbi.nlm.nih.gov/pubmed/19126227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19126227?dopt=Abstract
http://unbsj.biordf.net/mutation-impact
http://unbsj.biordf.net/mutation-impact
http://www.ncbi.nlm.nih.gov/pubmed/11103999?dopt=Abstract
http://jmol.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12855473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12855473?dopt=Abstract

Riazanov et al. BVIC Bioinformatics 2011, 12(Suppl 4):56 Page 18 of 18
http://www.biomedcentral.com/1471-2105/12/54/S6

31. Lord P, Bechhofer S, Wilkinson MD, Schiltz G, Gessler D, Hull D, Goble C,
Stein L: Applying Semantic Web Services to Bioinfor-matics: Experiences
Gained, Lessons Learnt. The Semantic Web ISWC 2004 2004.

32. Withers D, Kawas E, McCarthy L, Vandervalk B, Wilkinson M: Semantically-
guided workflow construction in Taverna: the SADI and BioMoby plug-
ins. ISOLA'T0 Proceedings of the 4th international conference on Leveraging
applications of formal methods, verification, and validation - Volume Part |
2010, 301-312.

doi:10.1186/1471-2105-12-54-S6

Cite this article as: Riazanov et al: Deploying mutation impact text-
mining software with the SADI Semantic Web Services framework. BMC
Bioinformatics 2011 12(Suppl 4):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit BiolVed Central

http://www.ncbi.nlm.nih.gov/pubmed/21603263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21603263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21603263?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	What is SADI?
	SHARE: a SPARQL engine for SADI services
	Mutation Impact Ontology
	Use cases

	Results
	SADI services for Mutation Impact pipeline and data
	Experiments with SHARE
	Experiment with use case 1
	Experiment with use case 2
	Experiment with use case 3
	Experiment with use case 4
	Experiment with use case 5

	Discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

