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Abstract

Background: RNA sequencing (RNA-seq) measures gene expression levels and permits splicing analysis. Many
existing aligners are capable of mapping millions of sequencing reads onto a reference genome. For reads that
can be mapped to multiple positions along the reference genome (multireads), these aligners may either randomly
assign them to a location, or discard them altogether. Either way could bias downstream analyses. Meanwhile,
challenges remain in the alignment of reads spanning across splice junctions. Existing splicing-aware aligners that
rely on the read-count method in identifying junction sites are inevitably affected by sequencing depths.

Results: The distance between aligned positions of paired-end (PE) reads or two parts of a spliced read is
dependent on the experiment protocol and gene structures. We here proposed a new method that employs an
empirical geometric-tail (GT) distribution of intron lengths to make a rational choice in multireads selection and
splice-sites detection, according to the aligned distances from PE and sliced reads.

Conclusions: GT models that combine sequence similarity from alignment, and together with the probability of
length distribution, could accurately determine the location of both multireads and spliced reads.

Background

Studying gene expressions and understanding how alter-
native mRNA splicing manifests in a biological system
are as essential as elucidation of its underlying regula-
tory mechanisms [1]. RNA-seq has received much atten-
tion as a revolutionary tool for transcriptome analysis
[2]. Its massively-paralleled sequencing approach pro-
vides paramount advantages over traditional array-based
technologies in three key aspects. First, unlike microar-
rays, RNA-seq has virtually no background signal. It
also has no upper limit for transcript-level quantifica-
tion, which corresponds to the numbers of fragments
sequenced. As a result, RNA-seq has a very wide
dynamic range compared to microarray. Second, the
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paired-end (PE) reads — two short sequencing reads
separated by a fixed distance - provide information on
how two exons are connected. With millions of paired-
end reads, analysis of transcript isoforms from a com-
plex transcriptome becomes possible [3]. Finally, RNA-
seq does not rely on a priori probe information, thereby
allowing novel transcripts discovery, cross-validation of
gene predictions and genome annotations.

Genomic alignment tools such as BWA [4] and Bowtie
[5] can map massive amount of reads onto a reference
genome with high efficiency. However, sequences
matching multiple locations along the reference genome
are handled arbitrarily. Under such circumstances, these
‘multireads’ are randomly assigned to one of the possible
locations. Another package, ERANGE, rescues these
arbitrarily mapped reads by assigning them in propor-
tion to those uniquely mapped reads [6]. Yet both
approaches might distort the abundance of reads that
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are mapped to paralogous gene families, regions of low
sequence complexity or high sequence conservation,
thereby affecting virtually all subsequent analysis [7].

Paired-end (PE) information improves alignment pre-
cision in genome assembly [8]. The insert size — the
separation between two reads in a pair chosen during
the sequencing procedures — is an important constraint
to help determine the locations of PE reads. The
inferred size based on reference mapping should equal
to the insert size if no splicing occur within the region
that is flanked by two reads within a PE pair. However,
such information is of little use when splicing takes
place.

Reads spanning two neighbouring transcribed regions
cannot be fully mapped onto the reference and are con-
sidered as “unmapped” reads. Splicing-aware aligners
were thus specifically developed to rescue this
unmapped yet expressed, biologically relevant informa-
tion. Early splicing-aware mapping algorithms started by
constructing an artificial splice-junction library using
annotated exons, followed by read mapping [6]. Subse-
quent tools such as G-Mo.R-Se [9] and TopHat [10]
perform a global search of splice junctions. However, G-
Mo.R-Se is limited by its inability to handle PE reads,
whereas TopHat depends on canonical splice codes.

SplitSeek [11], Supersplat [12], and SpliceMap [13]
were recently proposed to perform truly global and
unbiased spliced-read mapping. These methods, how-
ever, rely on an arbitrary read-count method to assess
the reliability of a putative splice junction. As a result,
the sequencing depth of an experiment has a tremen-
dous effect on splice-site discovery. Recently, Wang et
al. proposed a statistical measure of splice sites using a
minimum mismatch approach to a database of artifi-
cially joined exon-boundary sequences [14]. This
approach, however, highly depends on the accuracy of
existing exon annotations.

In this study, we have proposed a maximum likelihood
estimation (MLE) method based on a geometric-tail
(GT) distribution of intron lengths to determine the
alignment positions of PE reads. This probabilistic
model deals with splice junctions between reads, or
those encompassed in one or both of a PE reads (as illu-
strated in Figure 1). By utilizing a priori knowledge,
this is a biologically-inspired method to assess the qual-
ity of splice junctions. Based on this model, multiple
alignments of reads within a PE pair can be properly
resolved.

Results and discussion

GT distribution

GT distribution has been widely used in the approxima-
tion of length distribution for the de novo prediction of
biological sequence elements, in particular exons and
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introns. However, fitting geometric distribution of
whole-genome intron length has always been suboptimal
due to the complex mechanism of gene splicing. There
are mainly two types of introns: short ones and long
ones, which centered at approximately 100bp and
1000bp, respectively [20]. n-tuple could provide a better
fitness using a well-defined n, especially when intron
length is small. This allows a better estimation of the
tail part by means of a geometric distribution. However,
over-fitting would happen when using n-tuple. A
smoothing method proposed by Burge [18] could reduce
over-fitting. We used an arbitrarily large tuple up to
3,000bp to estimate the distribution of genome-wide
intron lengths.

As shown in Figure 2A, the blue dots represent differ-
ent intron lengths, and the red line represents the
smoothed probability. Two peaks can be observed
around 40bp and 100bp. A large portion of intron
lengths span from 500 to 2,000bp, and then declines
slightly until 3,000bp.

Insert-size distribution

Current next-generation sequencing platforms such as
Roche 454, ABI SOLID, and Illumina Genome Analyzer
all employ PE sequencing techniques. Fragments with a
defined size were isolated and subjected to downstream
sequencing steps. A rough estimation of the insert size
was usually given during the sample preparation steps.
A more precise measure could only be inferred from
mapping results.

We adopted the concept of “regular pair” defined in
BWA, which has extreme values filtered from each
256*1024 pairs. We used the uniquely mapped PE pairs
to estimate the distribution (Figure 2B). Insert-size dis-
tributions in the two datasets S4 and S5 approximated a
normal distribution, and they were used to calculate the
convolution probabilities.

Multiread analysis

Non-uniquely mapped reads (multireads) refer to those
matching multiple locations along the reference genome.
BWA uses a random selection method to tackle multi-
reads, which might introduce errors. Multireads can be
classified into three groups according to their character-
istics: 1) expressed repetitive elements, 2) transcripts
from distinct loci that share great similarity with other
counterparts, and 3) one or both reads from a PE pair
derived from splicing events, and yet happened to have
a full match found on the reference. Group 1 can easily
be handled according to its high occurrences and anno-
tations, while Groups 2 and 3 are difficult to resolve
simply by alignment. The GT-based estimation we have
proposed here could help mitigate such selection.
We took Groups 2 and 3 into account by running
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Figure 1 Alignment of two paired-end (PE) reads. Read 1 and read 2 could be spliced into two fragments as ls,o and lg,q, respectively. lig is
the gap length between two PE reads mapped onto the reference genome.

ABMapper [21] on repetitive reads that could be
mapped for more than 300 times onto the genome.
When tracing back these reads to the mapping result by
BWA, we found all these reads were tagged with “XT:A:
R”, and BWA randomly selected the locations of these
multireads.

GT-based models shared at least 88% of the mapping
locations with BWA. The two sets differed by 6-10%.
Inconsistency between the two sets of results was subse-
quently evaluated based on gene expression levels.
Expression level of a given gene was calculated using a
normalized read-count method, which involves sum-
ming the total number of reads mapped to the gene fol-
lowed by normalization with the gene length. Based on
the assumption that a multiread is more likely to be ori-
ginated from a highly expressed region than from a
lower one, we consistently observed more than 60% of
the reads in the ‘different’ groups in all three of our
GT-based models that showed higher expression levels
than those from BWA (Additional file 1, Table 1B).
These results have demonstrated that the GT-based

model is likely to be more accurate than BWA in the
selection of multireads position.

Splice-site comparison

SpliceMap and TopHat were used to evaluate the accu-
racy of GT-based models in splice-site detection. We
did not use SplitSeek in our comparison because it only
supports SOLiD data. SpliceMap and TopHat were
applied to the same datasets (S4 and S5) and the results
were compared to the Alternative Splicing and Tran-
script Diversity (ASTD) database [16]. The ASTD data-
base is the largest depository of experimentally-verified
splicing events. Junction sites from the GT-based mod-
els were compared to those identified by TopHat and
SpliceMap. We defined that two putative splice sites,
one identified by the GT-based model and the other
identified either by TopHat or SpliceMap, are a match if
positions of the two are within 8-bp from each other.
The GT-based models, TopHat, and SplicMap shared a
large number of common splice junctions (Figure 3).
The unmatched sites between the GT-based models and
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Figure 2 GT distribution and insert-size distribution. A) Distribution of intron length and GT estimation. The upper right is an enlarged
region from 1 to 500bp. B) Density of insert-size. S4 is marked in red and S5 is marked in green.
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Figure 3 A comparison of splice junctions between the GT-based model, Tophat, and SpliceMap, and with the ASTD. A) S4 GT-based
model with SpliceMap; B) S5 GT-based model with SpliceMap; C) S4 GT-based model with TopHat; and D) S5 GT-based model with TopHat.
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Tophat or SpliceMap were then further compared with
the ASTD entries using the same criteria.

In all three conditions, GT-based models clearly
exceled in the detection of putative splice junctions:
with 53% and 49% more reported sites compared to
SpliceMap and TopHat, respectively (Table 1). As
shown in Figure 3 (detailed numbers in Additional file
1, Table 2), over 60% of unmatched junctions could be
confirmed by the ASTD. These ASTD-confirmed junc-
tions constituted approximately 22% of the total pre-
dicted splice junctions based on the GT-model. These

Table 1 Splice sites comparison and EST validation

sS4 Model 1 Model 2 Model 3
TOTAL splice sites 102074 102784 101974
Confirmed by EST 98109 98819 98008
% confirmed by EST 96.12% 96.14% 96.11%
Splice sites by TopHat 66988
Splice sites by SpliceMap 66452
S5 Model 1 Model 2 Model 3
TOTAL splice sites 89249 90269 89189
Confirmed by EST 85938 86958 85878
% confirmed by EST 96.29% 96.33% 96.29%
Splice sites by TopHat 60659
Splice sites by SpliceMap 60625

results indicated that both TopHat and SpliceMap have
missed at least one-fifth of true splice junctions.

Some splice junctions reported by our GT-based
model, TopHat and SpliceMap were not in the ASTD,
either because the splice sites were not deposited in the
ASTD, or the splice sites were false positives. We there-
fore performed an exhaustive search on all splice junc-
tions reported by the GT-based model against the
Human EST database. We found that the GT-based
model achieved a remarkable 96% accuracy in finding
true splice junctions (Table 1). Therefore, a majority of
the splice junctions reported by the GT-based model
and were unmatched to the ASTD were indeed true
splice sites.

Conclusions
RNA-seq has advanced the field of biological research. It
has increasingly been used for transcriptomic analysis of
model organisms as well as disease models in human.
For non-model organisms, however, since gene annota-
tion is often incomplete or completely absent, there is
insufficient data for GT distribution estimation. In such
cases, GT distribution will have to be estimated with an
evolutionary-related species.

In this study we have shown that the GT-based model,
which employs an empirical distribution of intron
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lengths, has an edge over the current mainstream meth-
ods such as TopHat and SpliceMap. Two main reasons
behind this advantage are (1) ABMapper, the spliced-
aware mapper that has much higher sensitivity and
identify far more putative splice sites than other tools
[21]; and (2) the GT-based model itself, which is capable
of multireads mapping and splice-site inference. We
have shown that combing these two factors would lead
to the discovery of 50% more EST-validated splice sites
than existing tools.

Methods

Workflow

Two human lymphoblastoid cell-line datasets (identified
as S4 and S5 throughout this study) were used in testing
our model. PolyA-selected mRNAs were sequenced by
the Illumina platform at the Beijing Genomic Institute-
Shenzhen. S4 and S5 were sequenced with 75 base pair
(bp) in read length and with an approximately 250bp
insert size. The two datasets comprise of 4.6 million and
3.8 million of PE reads, respectively. Reads were trimmed
to 67 bp to get rid of low quality bases. Ensembl tran-
scripts and gene annotations were retrieved from the
UCSC genome browser [15]. Splicing events and junc-
tion-site information were retrieved from the Alternative
Splicing and Transcript Diversity (ASTD) database [16].
Human genome version hgl8 was used as the reference
for read mapping. Human expressed sequence tags
(ESTs) were retrieved from NCBI as of July 2, 2010.

The internal distance between two adjacent exons was
calculated based on the Ensembl gene annotations. A
geometric-tail (GT) distribution of internal distances
was calculated as described in the Algorithm section.
We used a Gaussian smoothing method proposed by C.
Burge to replace each point with a normally-distributed
variable centered at the point to avoid over-fitting [17].
The distribution of gap lengths between mapped PE
reads was calculated by a convolution of the normal dis-
tribution of insert-sizes and the GT distribution of
intron lengths.

Reads were mapped to the hgl8 reference genome
using ABMapper, which was specifically developed by
our group for multiread and spliced alignments [21].
Internal testing has shown that it outperforms current
splicing-aware aligners in splice-site detection. All puta-
tive locations of aligned reads were kept for probability
calculation after repetitive reads filtering, which involves
removing reads that occur more than 300 times in the
genome. A maximum likelihood method was used to
generate three models and were subsequently used to cal-
culate the probability (detailed in the Algorithm section).

BWA output that contains randomly selected multi-
reads was extracted for comparison to our GT-model.
Reads were first mapped by BWA (v0.4.9) onto hgl8.
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Multireads with the tag “XT:A:R” were then extracted
for downstream analysis (as shown in Figure 4). Splice-
Map (v3.1.1) and TopHat (v1.0.14) were used to per-
form splice-site detection. ELAND was used as the
default aligner in SpliceMap; and Bowtie (v0.12.5) was
used with TopHat.

Algorithm

Our empirical probabilistic model of intron length uti-
lizes a maximum likelihood estimation method to deter-
mine the most probable location for multireads and to
detect splice junctions.

Length-distribution estimation has been widely used
on many biological elements. For example, C. Burge
used a shifted-geometric distribution to estimate the
length of introns in a gene finding algorithm [17,18].
However, the distribution of intron length is far more
complex than other biological sequence elements
because the splicing mechanism is complicated and is
not yet fully understood. A combination of more than
one distribution is required to properly describe it. Here
we have adopted a geometric-tail (GT) distribution to
represent the intron sequence length, which was first
proposed in [19].

GT distribution is a two-part distribution: the first is
an arbitrary length distribution, and the second is a geo-
metric distribution. The definition is as follows:

d, if xe {1,...,t}

O(x) =Pr[X =x] = {d ot
0 d

if x>t

where d, is defined by a t-tuple (d, d»,
parameter q (0<q<1) satisfies

-1

> di |+d,- 1,

i=1 1-q
The parameters could be estimated as [19]:
[21‘:01 (i +t):|
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Figure 4 Workflow of this study. Comparison of the GT-model to TopHat and SpliceMap

To avoid over-fitting of d,, we used a Gaussian
smoothing procedure as previously described by others
[18].

Mapping of two reads in a pair onto the reference
genome could result in two types of gaps (as illustrated
in Figure 4): (1) /;: gaps that are flanked by the PE
reads (‘read 1’ and ‘read 2’) when they are mapped onto
the reference genome; and (2) [, : spliced gaps at vari-
able lengths that are introduced when a single read is
split into two fragments (‘fragment 1’ and ‘fragment 2’)
during the read-mapping process . [, is the gap between
two fragments introduced mainly by splicing. Hence the
sequence between the two mapped fragments is there-
fore considered an “intron”.

All the putative locations would form a set of gap
lengths L{ls,0, lsp1s --s Lspns lis}, which includes intron
sequence lengths {{;,0, [sp1, ..., Lsp,} and insert gaps {/;},
with the corresponding probability P{Py,o, Psp1s ---» Pspus
P;}. The length of spliced gap (/;,) would follow the
empirical GT distribution for it actually represents the
intron length between two fragments of a reads P(X =
ly,) = d(ly,). However, the distribution of insert gap (/;)
is more complex than that of intron sequence length
(Is), because it is a combination of spliced-gap distribu-
tion and insert-size distribution introduced during
paired-end sequencing. Spliced-gap distribution is an
empirical GT distribution, and the distribution of insert-
size is considered as a normal distribution according to
the amplicon selection procedure (defined during the
actual RNA-seq procedures). Let d; be the insert size of
a PE read in the whole dataset, and I be the length of
the insert fragment library in the experiment, then:

d; = glx) ~ N(, o).

So the distribution of /, is a convolution of GT distri-
bution and the normal distribution:

PX = 1l;y) = (g% 0)(Liy)

The likelihood function for each putative location 6 of
a PE read is:

log ik(60) = f(lo,Lyr,--1510) = D log f(116) = ) log P,

The maximum likelihood is estimated to find the most
probable location for a pair of PE reads. Besides length
distribution, expression levels and splice-site frequency
are also used as a priori knowledge to help determine
read locations. The expression level is calculated by the
summation of all expressions on each mapped position
along the genome, which is normalized by the total
length of mapped reads. The splice-site probability is
similar to the read-count method, and total count of
splice sites is used for normalization. The following are
the three models used in our study:

‘GT model 1’: MLE estimation WITHOUT any a
priori knowledge;

‘GT model 2": MLE estimation with expression level as
a priori knowledge;

‘GT model 3: MLE estimation with junction-site fre-
quency as a priori knowledge.

Additional material
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