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Abstract

Motivation: Copy Number Variants (CNVs) are important genetic factors for studying human diseases. While high-
throughput whole genome re-sequencing provides multiple lines of evidence for detecting CNVs, computational
algorithms need to be tailored for different type or size of CNVs under different experimental designs.

Results: To achieve optimal power and resolution of detecting CNVs at low depth of coverage, we implemented a
Hidden Markov Model that integrates both depth of coverage and mate-pair relationship. The novelty of our
algorithm is that we infer the likelihood of carrying a deletion jointly from multiple mate pairs in a region without
the requirement of a single mate pairs being obvious outliers. By integrating all useful information in a
comprehensive model, our method is able to detect medium-size deletions (200-2000bp) at low depth (<10× per
sample). We applied the method to simulated data and demonstrate the power of detecting medium-size
deletions is close to theoretical values.

Availability: A program implemented in Java, Zinfandel, is available at http://www.cs.columbia.edu/~itsik/zinfandel/

Introduction
An important utility of whole-genome resequencing
(WGS) is to systematically uncover structural variations
(SVs) including copy number variants (CNVs). There
are two major approaches to infer SVs from resequen-
cing data. The first one is to align the reads onto a
reference genome and then infer the SVs from the reads
alignment. The second one is to de novo assemble the
reads into larger genomic fragments (contigs or scaf-
folds) and then infer the SVs by aligning the fragments
to a reference genome. Most of the current high-
throughput sequencing platforms achieve efficiency by
generating massive amount of short paired-end reads in
a single run [1,2], making it much easier to map the
reads to a reference [3-7] than to carry out de novo
assembly. Here we focus on the first approach.

In general there are two major sources of information
useful for inferring SVs from reads alignment: depth of
coverage and break points. Depth of coverage positively
correlates with the copy number [8,9]. Break points,
marking the boundary of SVs, can be inferred from
sequence alignment gaps, which are suitable for short
insertion/deletion (indel) discovery [3,10], or mate-pair
distance abnormally, which is usually the basis of detect-
ing large structural variations [11,12]. Most existing
tools only utilize one type of evidence, even though
these two are complementary. On the one hand, depth
of coverage provides more reliable information for large
CNVs or CNVs flanked by repeats, where accurate map-
ping of reads around breakpoints is difficult. On the
other hand, breakpoints provide better power to detect
small- (through sequence alignment gaps) to medium-
size (through mate pair abnormally) indels or CNVs. In
particular, mate pairs from relatively large inserts pro-
vide larger physical depth of coverage than sequence
depth of coverage, making it best suited to detect
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medium-size CNVs from low pass sequencing. This is
consistent with the idea that moderate deviation of dis-
tances from expectation in multiple mate pairs in the
same locus might provide statistically significant evi-
dence for inferring small indels [13].
Here we describe a computational method for infer-

ring medium-size deletions and other CNVs from low-
pass WGS data, with a model to incorporate both depth
of coverage and mate pair information.

Results
A Hidden Markov Model
The core algorithm is a Hidden Markov Model (HMM)
[14], in which both depth of coverage and mate pair dis-
tances are used to calculate the emission probability.
Depth of coverage correlates directly with copy number,
following a theoretical Poisson distribution with gen-
ome-wide average as l[15]. However, there are systema-
tic biases in sequencing, which leads to overdispersion.
Empirically, the overdispersion can be primarily
explained by the GC bias [1], and the distribution can
be modeled by an overdispersed Poisson or negative
binomial [16,17]. Abnormality in mate pair distance,
order, or orientation suggests breakpoint(s) from CNVs
or other structural variations, and the distance reflects
the size of a deletion or tandem duplication. The pri-
mary challenge of modeling mate pairs through a HMM
is that a 1st order Markov chain does not store the
information of inferred CNV size once the path goes
beyond one end of a pair of break points, and higher
order Markov chain is computational prohibitive for
processing genome-wide data. To address this issue, we
augment a regular 1st order HMM with a grid of specia-
lized deletion states that explicitly model medium-size
deletions and flanking regions (F states) (Figure 1). Spe-
cifically, in the generative model going through a chro-
mosome by each position, a hidden state represents the
copy number, emitting both number of reads starting
from this position and the out-distance of the mate-pair.
And the emission probability of a state in the HMM is
calculated jointly from the mate-pair distance and depth
of coverage (Equation 1).

P n d C Poisson n C G d D, , Pr ,d l d( ) = ⋅ ⋅( ) ⋅ ( ) (1)

In Equation 1, n is the number of reads start at a
genomic position, d is the out-distance between a pair
of reads, C is the copy number of the state, δ is the
shifted value of mean out-distance of the state, l is the
genome-wide average number of reads starting at any
position, G is the depth of coverage adjustment value
based on local GC content, and D is the genome-wide
mean out-distance. Pr(d | D, δ) is the probability of d
assuming the insert size follows the empirical

distribution observed from data with mean shifted by δ
(i.e., mean is D+δ). We assume δ is 0 for for all states
except for F states, where δ is the approximate size of
the deletions flanked by these states. The model targets
deletions of different sizes by setting different δ values
for flanking states on different rows.
The transition probabilities from normal to other

states are set heuristically to reflect rough estimation of
the number of medium- to large- size deletions and
duplications in the genome. The transition probability
of a non-normal state to itself is set to reflect the
approximate duration of that state along the genome in
a generative model, which for F states is the targeted
size of the flanked deletion. Other transition probabil-
ities are calculated based on the constraint that the total
probability of all in- or out- transitions is 1. We use
Viterbi algorithm to infer the most likely copy-number
status path along a chromosome given the sequence
data.

Results from simulated data
We constructed a human diploid genome by duplicating
the human reference genome, and then altering it with
deletions and tandem duplications placed randomly.
Aiming to demonstrate the power and resolution of our
method, we focused on medium size CNVs (400 and
800bp) and only simulated heterozygous CNVs. Homozy-
gous CNVs of comparable sizes are obviously easier to
detect. We then simulated 0.2× ~ 4× haploid coverage
shotgun reads [3] with fixed size at 35bp. We set two
types of insert libraries, one with mean insert size 200bp
(standard deviation of 20) and the other with mean insert
size 1.5kbp (standard deviation of 200). We mapped [3]
the simulated reads to the human reference genome. We
applied our method to infer CNVs from the simulated
data. A CNV is regarded as correctly identified if the
inferred CNV and the simulated one have 50% mutual
overlap. The power of detecting CNVs from simulated
data is consistent with the theoretical values, and exceeds
0.8 at ≥ 3× depth of coverage for medium-size (400-
800bp) CNVs (Figure 2). We did not observe false discov-
eries outside of known gaps in the reference genomes
including centromeres. Figure 2 also shows the results of
BreakDancer [11] on the simulated data. BreakDancer
was less powered to detect deletions of size comparable
to the shotgun insert library size from low-pass sequen-
cing. Particularly, it was not able to detect any 400bp het-
erozygous deletions from 1.5kbp insert library.

Discussion and conclusions
We described a Hidden Markov Model-based method
that integrates the depth of coverage with mate-pair
information from whole genome sequencing data to
infer CNVs. Using simulation, we demonstrated that
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this method achieved near-theoretical power for detect-
ing medium-size deletions from low-pass WGS data.
We applied BreakDancer [11] to the same set of simu-

lated data and demonstrated that our method was better
powered to detect medium-size deletions from low-pass
sequencing. This is expected because BreakDancer infers
CNVs based on discordant mate pairs that have larger
outer-distance deviations than a fixed threshold. That
makes it suboptimal in taking advantage of multiple dis-
cordant mate pairs that deviate from mean distance
values consistently but less significantly than the
threshold.
Medvedev et al 2010 [19] presented a donor graph-

based method (CNVer) to infer CNVs using both mate-

pair and depth-of-coverage information. The advantage
of CNVer is that by using mate pair discordant and
depth-of-coverage information jointly, it has better accu-
racy and sensitivity of detecting CNVs flanked by seg-
mental duplications, which are the places where
traditional mate-pair based methods have difficulties
because of non-unique mapping of reads. Similarly to
BreakDancer, CNVer requires an explicit out-distance
cutoff (by default three times the standard deviation of
insert library size) to establish a list of discordant mate
pairs. Therefore, CNVer would have poor power to
detect deletions with size close to the threshold values.
Our method takes advantage of the fact that multiple
mate-pairs with small but consistent deviations of outer-

Figure 1 The Hidden Markov Model. The states: (1) Normal: normal diploid state, copy number 2, mate pair distance follows the empirical
distribution observed from genome-wide data. (2) Del 1: 1-copy deletion state, mate pair distance follows the empirical distribution observed
from genome-wide data. (3) Del 2: 0-copy deletion state, mate pair distance follows the empirical distribution observed from genome-wide data.
(4) Dup 1: 3-copy duplication state, mate pair distance follows the empirical distribution observed from genome-wide data. (5) Dup 2: 4-copy
duplication state. This state is also capable of capturing duplications with more than 4 copies. (6) Grid states: marked with purple dashed frames.
Each row of grid states targets deletions of a particular size. The 5’ flanking and 3’ flanking states (collectively, F states) model the flanking
regions of such deletions where the mate pair distances follow the empirical distribution with a shifted mean value (genome-wide average +
deletion size).
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distances could still provide statistically significant evi-
dence, and models it explicitly through “flanking”
regions in the HMM. Additionally, CNVer requires
combination of support from depth-of-coverage and
mate pairs. This is effective for reducing false positives,
but makes it difficult to detect small- or medium-size
CNVs that are intrinsically underpowered in depth-of-
coverage based methods given low to medium genome-
wide average depth.
It is feasible to process low-pass sequencing data from

cancer tissues for inferring amplification loci, which will
be called 4-copy duplications in our method, and then
estimate the amplification level by other methods based
on the number of reads mapped to the regions.
One limitation of our method is that hemizygous dele-

tions are not modeled. A future direction is to detect
CNVs from exome data. Comparing to whole genome
sequencing, exome sequencing requires an extra capture
step, which makes the depth of coverage distribution
much more overdispersed than Poisson, and therefore
presents computational challenges in depth-based CNV
detection. A reasonable approach would be to call
CNVs jointly from multiple samples.

Methods
Theoretical power calculation
Power of detecting CNVs based on depth-coverage only
The depth-coverage from whole-genome shotgun
sequencing follows Poisson distribution [15]. Due to
various experimental issues, such as the unevenness of
accessibility of sequencing from genomic structure and
the DNA melting temperature dependence on local GC
content [1], the real distribution is overdispersed, and
can be modeled by a negative binomial or overdispersed
Poisson [17].
To illustrate the power and resolution of CNV detec-

tion from shotgun reads, we consider a simple Poisson
model. Assuming the chromosome-wide average depth-
coverage is l, the read size is fixed at S, then in a region
of size δ (δ >S), the number of shotgun reads sampled
from a copy-neutral region follows Poisson distribution
with mean δ·l/S. Likewise, the number of reads from a
1-copy gain region follows a Poisson distribution with
mean 1.5·δ·l/S, and the number of reads from a 1-copy
loss region follows a Poisson distribution with mean
0.5·δ·l/S. Let copy-neutral be the null model, we can
then calculate the power of detecting 1-copy gain or 1-
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Figure 2 Power of detecting medium-size deletions at low to moderate depth of coverage. The blue and red dashed lines are theoretical values
using 1.5kbp and 200bp insert libraries, respectively. The green and purple solid lines are results from Zinfandel on the simulated data with
1.5kbp and 200bp insert libraries, respectively. The standard deviation of 1.5kbp- and 200bp- inserts was set at 200 and 20, respectively, based on
empirical data from Life SOLiDTM and Illumina SolexaTM platforms [17]. The black and gray lines are results from BreakDancer on the simulated
data, and the brown dashed lines are theoretical values for methods solely based on depth of coverage.
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copy loss with a pre-set type I error cutoff. Figure 3(a)
shows the dependence of power on region size δ and
average depth-coverage l.
Power of detecting CNVs based on mate-pair information
The outer-distance of a mapped pair of reads reflects
the insert size. If the insert contains a deletion, the
mapped distance will be larger than the expected by the

deletion size. To calculate the power of detecting a dele-
tion of certain size based on mate pair distance, we
define a null hypothesis and an alternative hypothesis.
The null hypothesis is that the mapped distance of a
pair follows the empirical distribution of all the mapped
pairs from the same run, which is a valid approximation
because the majority of the inserts are from genomic
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Figure 3 Theoretical power of detecting CNVs. Heat-map shows the dependence of power on deletion size (y-axis) and depth-coverage (x-axis).
Read size S is fixed at 35bp. Type I error cutoff is 10-5. (a) Power of detecting CNVs based on depth-coverage only. The deletion size R is in the
range of 50bp to 256Kbp. The depth-coverage l is in the range of 0.1 to 5×. (b) Power of detecting CNVs based on mate-pair distance from
insert library with mean 200bp and standard deviation 20. (c) Power of detecting CNVs based on mate-pair distance from insert library with
mean 1500bp and standard deviation 200.
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regions where the target genome does not contain dele-
tions comparing the reference genome. Denote the
mean of the empirical distribution as D, which is actu-
ally a point estimation of the insert library size. The
alternative hypothesis is that the insert contains a dele-
tion of size δ, therefore the mapped distance follows a
distribution with same shape as the empirical distribu-
tion but with a different mean of D+δ . The power of
detecting a deletion of δ based on a single pair of reads
is: 1- CDF(Q | D+δ ), where Q is the quantile value of
the null distribution (with mean value D) given p = type
I error, CDF() is the cumulative density function of the
alternative distribution (with mean value D+δ) at Q.
An optimal algorithm of detecting deletions do not

require a single pair to have obvious outlier mapping
distance, but can integrate the significance of the devia-
tion from expectation from multiple pairs. To estimate
the power of detecting a deletion based on multiple
pairs, we approximate the null distribution of mapping
distance using a Gaussian distribution with mean D and
standard deviation s (empirically the approximation is
more accurate near D). Assume a deletion of size δ is
contained in m inserts (thus m pairs of reads), the stan-

dard error of the mapped distances is s
m

. The power

can be calculated based on Z-score: d
s
m

2
. Given gen-

ome-wide average depth-of-coverage l, read size S, then

the expected value of m is lD
S4
, therefore,

Z score

D
S- =

d l

s
4

2
. Figure 3(b) and (c) show the depen-

dence of power on deletion size δ and average depth-
coverage l with two examples of insert libraries (D and
s values are based on empirical data from [17]).

The Hidden Markov Model and implementation
The possible states in our HMM are: “normal”, which
models copy neutral sites, “Del1”, which models hetero-
zygous deletions, “Del2”, which models homozygous
deletions, “Dup1”, which models three-copy duplications,
and “Dup2”, which models four-copy duplications includ-
ing homozygous duplications and heterozygous duplica-
tions composed of one normal copy and one three-copy
duplications, and “5’ flanking” and “3’ flanking”, which
model the 5’ and 3’ breaking points of deletions.
We use heuristics to set the transition probabilities.

Specifically, the transition probability from a any state
to itself is the inverse of the expected duration of the
state. For the deletions and duplications that directly
connected with Normal state, the expected duration is
average size of the CNVs that are well powered for
detection based on depth-of-coverage. The expected

duration of deletion states in the “grid” is the targeted
deletion size of the row where the state is located
(200bp, 400bp, 600bp, 800bp, …, and 1600bp). The
expected duration of the 5’ and 3’ flanking regions is the
mean size of the insert library. The duration of the Nor-
mal state is estimated by dividing the genome size with
the expected total number of CNVs. The transition
from a state to other states is constrained by the model
structure, and the probability is equally distributed
among the destination states.
We implemented the algorithm in Java. Running the

program on a commodity Linux server to process a
human genome sequenced at 4× requires about thirty
hours CPU time. In practice, it is convenient to split the
genome into overlapping fragments and carry out CNV
detection on different fragments in parallel to speed up
the process.

Parameters
The input data of Zinfandel is the reads-alignment out-
put in “mapview” fomat from maq [3]. Support for
SAM/BAM format [18] is planned for future version.
The maq mapping parameters are all default except –a
(outer-distance outoff), which was set to 6000.
BreakDancer parameters were set to default of break-

dancer-max version 1.0. Deletions called by BreakDan-
cer were filtered based on score using a cutoff of 40 as
recommended by the program.

Definition of outer-distance
Assume the mate pair insert library was prepared in for-
ward-reverse (FR) orientation [3]. Denote the mapping
position of 3’ end of the read with negative strand as E,
and the 5’ end of the read with positive strand as S,
then the out-distance is defined as D≡E-S.
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