
Qiao et al. BMC Bioinformatics 2012, 13:100
http://www.biomedcentral.com/1471-2105/13/100
METHODOLOGY ARTICLE Open Access
Handling the data management needs of
high-throughput sequencing data: SpeedGene, a
compression algorithm for the efficient storage of
genetic data
Dandi Qiao1*, Wai-Ki Yip1 and Christoph Lange1,2,3
Abstract

Background: As Next-Generation Sequencing data becomes available, existing hardware environments do not
provide sufficient storage space and computational power to store and process the data due to their enormous
size. This is and will be a frequent problem that is encountered everyday by researchers who are working on
genetic data. There are some options available for compressing and storing such data, such as general-purpose
compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not
offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every
time the data is accessed.

Results: Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the
compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of
hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the
algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra
time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm
gives greater compression rate than the commonly used compression methods, and the data-loading process takes
less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information
to be easily accessed by other C++ programs.

Conclusions: The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data
in current hardware environment, making system upgrades unnecessary.
Background
As the influx of high-throughput sequencing data [1-3]
is imminent, the data management requirements for the
analysis packages have changed fundamentally. While,
during the days of candidate gene analysis and linkage
analysis,”only” up to several thousands of genetic loci
had to be stored and loaded into the analysis packages,
current Genome-wide Association studies (GWAS) pro-
vide genetic information on several millions of genetic
loci. Thus, the typical size of a dataset containing mostly
common variants is about 1 to 30 Gigabytes. For high-
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throughput sequencing studies, the number of genetic
loci genotyped increases by several magnitudes, and the
file size of such sequencing data can be up to several
Terabytes. For such large files, the loading process can
take up to few hours without counting the time for ana-
lysis. This results in great waste of disk space and com-
putation time, which is a problem that is encountered
routinely.
One possible solution is to use the general-purpose

compression software, such as Gzip and BGZip. How-
ever, such compression software is not designed specific-
ally for genetic data and its analysis, so the compression
rate is relatively low and decompression is always
needed before accessing the data. Better solutions have
been proposed. PLINK and PBAT, which are free whole-
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Figure 1 An example of the LINKAGE format A toy example of
a pedigree file in the LINKAGE format. The first line contains the
marker names. Starting from the second line, each line contains the
pedigree and genetic information for each individual. The first six
columns indicate the subject’s pedigree ID, subject ID, father ID,
mother ID, sex and affection status. The other columns contain the
genetic data.
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genome association analysis toolsets, have introduced
Binary PED formats [4,5]. This format ensures that only
2 Bits are required for storing the information of one
genotype. It is the most popular compression format
used in GWAS. However, the compression rate is not
sufficient for massive datasets generated nowadays as
their compressed datasets could still occupy several
Gigabytes of the disk space. In recent years, sophisti-
cated compression techniques designed specifically for
sequencing data have been proposed. For example,
DNAzip [6] introduced the idea of storing only the dif-
ference between one individual genome data and a refer-
ence genome. However, such algorithms suffer the large
overhead for storing the reference genome. Also, they
require substantial CPU-time for decompression.
We propose here a simple and efficient algorithm to

store large datasets containing SNP data of multiple
samples. We show that our algorithm always works bet-
ter than the compression algorithm implemented in
PLINK or PBAT and provides excellent compression rate
for sequencing data. Also, the compressed data structure
provides the potential for efficient implementation of
permutation methods and does not require any overhead
CPU-time for decompression. We have implemented the
algorithm in the GPL licensed C++ library: SpeedGene.
We show that it takes much less time for loading the
compressed files than PLINK using our library. In
addition, Our C++ implementation supports parallel
loading of the genetic information, which further
decreases the loading time as the number of parallel jobs
increases. The version 1.0 of the SpeedGene library is
available at http://people.hsph.harvard.edu/� dqiao/
SpeedGene.html together with detailed instructions and
examples.

Methods
The LINKAGE/PLINK data format
The LINKAGE or PLINK data format is a commonly
used data format for storing SNP data in Genome-Wide
Association studies. Data files in this format are called
pedigree files and have”.ped” as the suffix. This format
can be converted from or to the VCF format used in
1000 Genome Project using VCFtools [7]. The Speed-
Gene library currently only recognizes pedigree files in
the LINKAGE/PLINK format, but the algorithm can be
implemented for compressing SNP data in the VCF for-
mat. The VCF format requires the same amount of disk
space for each genotype (4 Bytes) as the LINKAGE/
PLINK format, so the compression rate of this algorithm
applying on VCF files should be similar to the compres-
sion rate for pedigree files. Note that VCF files may con-
tain other informations such as Indels and whether the
genotype is phased or unphased, which could not be
incorporated into the LINKAGE format. However, since
SNP data are very commonly used genetic data in asso-
ciation studies and takes the most disk space, efficient
storage of the SNP data could still save a lot of
resources. In the demonstration of the algorithm and
the examples below, we use the LINKAGE/PLINK for-
mat as the input format.
Any pedigree file in the LINKAGE format has the

same structure, a toy example is shown in Figure 1. The
first line contains the marker names, separated by a
space character. Starting from the second line, each line
includes pedigree and genetic information for each indi-
vidual. The first six columns of these lines specify each
individual’s pedigree information in the order of pedigree
ID, subject ID, father ID, mother ID, sex, and affection
status. Subject ID must be unique within one’s family.
Father and mother ID could be 0 if this information is
unknown, e.g. population-based study of unrelated sub-
jects. Sex is 1 for male and 2 for female. Affection status
is 1 if the subject is unaffected, 2 if affected, and 0 if the
status is unknown. The other columns contain the gen-
etic data for each individual, separated by a space be-
tween each marker. Two columns are required to
represent the information for two alleles, separated by a
space. The allele in- formation is coded using 0 to 4
where 1 =A, 2 =C, 3 =G, T = 4 and 0 represents missing
allele information.
The SpeedGene algorithm
The SpeedGene algorithm consists of three different
sub-algorithms, which are selected by SpeedGene based
on the minor allele frequency (MAF) of the genetic locus
to be stored. The space needed for the compressed data
is computed for the sub-algorithms beforehand. The
SpeedGene algorithm then selects the best procedure
among the three compression methods. The first sub-
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Figure 2 Application of Sub-algorithm I to the toy example.
Genetic information of the first four markers for the first three
individuals in the toy example is extracted here to demonstrate the
sub-algorithm I. Each row represents the four genotypes of one
individual. The minor alleles for the four markers are assumed to be
2 2 2 1 respectively, and are underlined. Genotype 0 0 represents
missing genotypes in the original dataset, which is converted to 3 to
indicate missing genotypes.
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algorithm is based on the binary format implemented in
PLINK and PBAT. It utilizes the fact that the marker in-
formation of each marker can be represented using a 2-
digit binary number. The second sub-algorithm uses
subject indices to indicate heterogeneous, homogeneous
and missing genotypes. The third sub-algorithm uses
binary digits to indicate heterogeneous genotype and
subject indices to indicate homozygous and missing gen-
otypes. A feature of all three compression methods is
that the required memory space for storage can be com-
puted prior to compression. Thereby, the SpeedGene al-
gorithm is able to select the optimal method before
compressing the data. The three sub-algorithms are
described in detail in the following sections.

Sub-algorithm I: compression using binary encoding
For any pedigree file, we assume that there are only bi-
allelic markers in the file. For any allele of a marker, an
individual may only have 0, 1 or 2 of this allele. Also, the
allele information can be missing for any individual at
any marker. Thus, the marker information can be trans-
formed into the number of copies of a particular allele.
It could be 0,1,2, or missing and could be converted to a
2-digit binary number. In the compression process, we
find the minor alleles at each marker and use 00, 01, 10
to represent zero, one or two copies of the minor allele
at one marker. 11 indicate that the genetic information
is missing at this marker for the individual. Thus, one
genotype in the original file can be converted into two
binary digits, which is 2 Bits on disk space. Four of such
2-digit binary number is 8 Bits, which equals 1 Byte.
Therefore, the genetic information of four markers for
one individual can be converted into 1 Byte in a binary
file. This binary encoding is similar to the binary format
used in PLINK [5] or PBAT [4].
Based on this conversion method, we can compress

the genetic information in the pedigree file into a much
smaller binary file. As we have seen in the example
(Figure 2), the genetic information for four genotypes
occupies 16 Bytes in the original pedigree file, and it is
converted to only 1 Byte in the compressed file, which
could save up to a factor of sixteen on the disk space. If
there are n subjects in the dataset, the storage require-
ment for compressing n genotypes for one marker using
this algorithm is given by

2∗n=8d e Bytes ð1Þ

For the assessment of the performance of the proposed
SpeedGene algorithm, we will use the LINKAGE/PLINK
format and the binary-encoding algorithm described
above as the standard approach to which the SpeedGene
algorithm will be compared.
Sub-algorithm II: compression using subject indices
With the binary-encoding algorithm described above,
the genetic information of any marker in one dataset is
compressed to the same size since the compression algo-
rithm does not depend on the frequency of each geno-
type. As shown in the results section, the performance
of the binary compression is the best we can achieve
when the variants are relatively common (MAF > 30%).
However, for SNPs with small MAF, only a few subjects
have the heterozygous genotype and, even fewer, have
the rare homozygous genotype. Thus, it is wasting disk
space if the genetic information for all the subjects is
recorded, especially for the subjects with the common
homozygous genotypes which is by far the most frequent
genotype. Therefore, we can utilize this feature of SNPs
with small MAF, and record only the indices of the sub-
jects with the missing, heterozygous or rare homozygous
genotypes for the SNP. The common homozygous geno-
type is the default genotype. Since most of the SNPs of
the human genome have small MAF [1], the improve-
ments of this approach is substantial compared to the
binary-encoding algorithm in the last section.
Specifically, suppose we have n subjects in the data,

then we need log2 nð Þ� �
binary digits in order to record

the index of any subject. First, the number of the rare
homozygous, the heterozygous and the missing geno-
types are counted. This information is used to calculate
the compressed size and determine whether Sub-algo-
rithm II should be used for the SNP. If Sub-algorithm II
requires the smallest amount of memory, SpeedGene
will use Sub-algorithm II for the compression of the
genetic data for the SNP. The indices of the subjects
with the homozygous, heterozygous and missing geno-
types are transformed into binary digits and are written
into the binary file afterwards. Since the number of sub-
jects with each genotype varies, the counts, each
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requires log2 nð Þ� �
Bits on the disk space, are written to

the file before the indices of the subjects are outputted
to the file. Thus, the storage requirement for compres-
sing n genotypes for one marker using this algorithm is
given by

log2 nð Þ� �
∗ Homoþ 1þ Heterþ 1þMissingþ 1ð Þ=8� �

Bytes

ð2Þ
where #Missing denotes the number of subjects with the
missing genotype, #Homo denotes the number of sub-
jects with the rare homozygous genotype, and #Heter
denotes the number of subjects with the heterozygous
genotype.

Sub-algorithm III: compression using binary encoding and
subject indices
As we will see in the next section, Sub-algorithm II
works best for SNPs with very small MAF, but performs
worse than Sub-algorithm I for more common SNPs
(MAF> 0.3). However, by combining Sub-algorithm I
and II, we can create a hybrid approach that performs
better than Sub-algorithm I and II for SNPs whose
MAFs are somewhere between uncommon and very
common.
Since the heterozygous genotype is more common for

genetic loci that are in the range between uncommon
and very common (0.05 ≤MAF ≤ 0.3), recording the het-
erozygous genotype by the indices of subjects is not very
efficient. Instead we use a binary number of n digits to
indicate the subjects with the heterozygous genotype,
where n is the number of subjects in the dataset. If
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where #Homo denotes the number of subjects with the
rare homozygous genotype and #Missing denotes the
number of subjects with the missing genotype for the
SNP.
For Sub-algorithm II and III, since the indices of the

heterozygous and homozygous genotypes are stored for
each marker, this compressed data structure makes com-
putation for permutation methods much convenient.

Results and discussion
Performance comparison of sub-algorithms
The SpeedGene algorithm selects for each genetic locus
the optimal algorithm in terms of storage space (1–3)
among the three sub-algorithms as described in the
methods section. To assess the performance of the
SpeedGene algorithm, we compare it with the standard
LINKAGE/PLINK format and the PLINK/PBAT com-
pression algorithm. The efficiency of the SpeedGene al-
gorithm depends on two factors, the genotype frequency
of the genetic locus and the number of subjects included
in the dataset. Assuming Hardy-Weinberg equilibrium,
the first plot of Figure 3 gives a plot of the compression
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factor of the three sub-algorithms versus different MAFs
for a dataset of 1000 subjects. The second plot shows
the number of Bits needed per genotype for storing the
genotype information of 1000 subjects at different MAF
values. The dashed line provides the performance for the
SpeedGene algorithm which is based on the allele fre-
quency and formulas 1, 2 and 3 to select the optimal
compression procedure among Sub-algorithm I-III.
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Table 1 Performance of the SpeedGene algorithm on the simulated datasets

SNPs Size PLINK Gzip SpeedGene DNAzip (Extrapolated) Avg MAF

1 million 3.731 GB 238 MB 22 MB 18 MB 16 MB+� 4.2 GB reference 0.004944

30 million 112 GB 6.985 GB 592 MB 534 MB 310 MB+� 4.2 GB reference 0.004228

Compressed file sizes of the simulated datasets using PLINK, Gzip, SpeedGene and DNAzip. Each dataset contains 1000 subjects.
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compared to the LINKAGE format is realized. With
smaller MAFs, the compression factor increases rapidly.
Equivalently, 2 Bits per genotype would be needed for
MAF> 0.3, about 1.0 to 2.0 Bits per genotype for
0.05 ≤MAF ≤ 0.3, and less than 1 Bit per genotype is
needed for MAF< 0.05.
The performance of the algorithms also depends on

the number of subjects in the dataset. Figure 4 shows
the compression factor of the algorithms for one marker
for different number of subjects, at eight MAF levels.
Generally, the compression factor decreases slightly as
the number of subjects included increases, but is mostly
constant over the range of number of subjects we have
considered for different values of MAF. In addition to
that, the plots give us similar information as the plots
above. For example, for SNP with MAF= 0.01, Sub-algo-
rithm II is able to compress the genetic information by a
factor of at least 100, which is much better than Sub-al-
gorithm I and III. Thus, MAF is the most influential fac-
tor in determining which algorithm is the optimal
method among the three sub-algorithms.
Table 2 Performance of the SpeedGene algorithm on two
real datasets

Dataset Size PLINK Gzip SpeedGene Avg MAF

FHS 8.822 GB 564.6 MB 1.400 GB 460 MB 0.238637

COPDgene 161 MB 10.1 MB 20.5 MB 3.6 MB 0.057327

File sizes of the FHS dataset and COPDgene dataset, compressed using PLINK,
SpeedGene and Gzip.
The C++ library implementation
We have implemented the algorithm in a C++ library
called SpeedGene. There are two classes in the SpeedGene
library. The first one is the Comp class, which is respon-
sible for compressing a pedigree file in the LINKAGE/
PLINK format into a text file that contains the subject in-
formation and a binary file that contains the genetic infor-
mation. The binary file is not human-readable and can
only be used by the second class in our library. The com-
pression process requires two scans of the pedigree file to
avoid storing all the marker information before compres-
sion, which would take a great amount of memory space.
The second class is the LoadComp class. As its name sug-
gested, it is responsible for loading the compressed files
into the memory, and for processing queries from the
user. It provides an option to load the entire pedigree file
or to load a section of the file. This partial-loading func-
tion ensures that only necessary information is loaded for
the jobs that are running in parallel, which greatly
decreases the loading time. Moreover, the public functions
provided by the library allow the user to retrieve any infor-
mation stored in the original file. This C++ library makes
it straightforward for users to incorporate it into their
own programs whereas other existing libraries do not offer
such capability.
Performance
Compression rate
We evaluated the performance of the SpeedGene algo-
rithm on two rare variants datasets. We simulated two
datasets with 1000 subjects from the Wright’s distribu-

tion [8], which is f pð Þ ¼ cpβs�1 1� pð Þβn�1eσ 1�pð Þ , where
the scaled mutation rates βs = 0.001, βn = βs/3, the selec-
tion rate σ= 12, and c is a normalizing constant. Table 1
below shows the compressed file size for the simulated
data. For sequencing data, the optimal algorithm is Sub-
algorithm II for most of the SNPs. Thus, SpeedGene is
able to achieve a large compression rate. In the simu-
lated data, the compression factor is approximately 200,
which is equivalent to 0.16 Bits per genotype, whereas 2
Bits per genotype is required by PLINK or PBAT. Gzip
seems to perform much better on rare variant data than
on common variant data, however, such general-purpose
software takes extra time to decompress the files before
loading them into the memory. We have also extrapo-
lated the approximate file size if DNAzip is used [6].
According to the paper, each SNP for one person
requires slightly less than 1 Byte per SNP for storage
and it requires a reference hu- man genome (� 3 Giga-
bytes) and a reference SNP map (� 1.2 Gigabytes) to re-
trieve the entire genome data.
We also applied these methods to two real datasets.

One dataset contains the genotype data from the Framing-
ham Heart Study (FHS), which includes 6956 subjects and
340,444 SNPs. The other dataset is obtained from the
COPDgene study on patients with Chronic Obstructive
Pulmonary Disease (COPD). It includes 257 subjects with
162757 SNPs over the human genome and 77% of the
SNPs in this sequencing data have a MAF≤ 5%. The ori-
ginal file size and the compressed file sizes using different
compression methods are shown in Table 2. For the FHS
dataset, since that most of the SNPs are common, the
compression rate of SpeedGene is just slightly greater than
that of PLINK. Gzip gives a much lower compression ratio
of 6 here, as for most common variant datasets. The
COPDgene sequence data contains mostly rare variants,



Table 3 Time needed to load the compressed dataset

Number of SNPs Loading time (SpeedGene) Loading time (PLINK)

1 million 26 sec 56 sec

30 million 11 min 29 min

The CPU time needed for loading the two compressed files using SpeedGene
and PLINK on a 2.35 GHz AMD Opteron CPU with 128 GB of RAM.
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but still includes some common variants, so we observe a
much higher compression rate with SpeedGene than with
PLINK and Gzip.
Loading time
The time for loading the compressed datasets using
SpeedGene and PLINK on a 2.35 GHz AMD Opteron
CPU with 128 GB of RAM is shown in Table 3 below.
The time to load the entire file using SpeedGene is less
than half of the time needed by PLINK for the simulated
datasets. If the analysis is ran in parallel, the loading time
using SpeedGene is decreased further as the number of
jobs ran in parallel increases. For example, if we are load-
ing 1/10 of the dataset with 30 million SNPs in each paral-
lel job, the loading time needed by SpeedGene is 1.8
minute.
Conclusions
To tackle the problem of large file sizes and long loading
times of genetic data, we have developed a new compres-
sion algorithm - SpeedGene. The algorithm selects the op-
timal approach among three methods in terms of the
required disk space. We have shown that the algorithm al-
ways works better than the compression algorithms pro-
vided by PBAT and PLINK, and can reach a compression
factor of sixteen up to few hundreds. Especially for se-
quencing data with mostly rare variants, the algorithm is
able to compress files of hundreds of Gigabyte to hun-
dreds of Megabytes. Similar compression rate can be
reached for the VCF files containing SNP data. In addition,
the compressed data structure requires no extra time for
decom- pression and could reduce a large amount of com-
putation time for performing permutations on the
genotypes.
A C++ implementation of the SpeedGene algorithm is

provided and an integration in R is ongoing, but the algo-
rithm could be implemented easily for other data formats
and using other programming languages. The SpeedGene
library utilizes the structure of the compressed data and
enables direct loading of the genotype data into the mem-
ory. Moreover, the functions in the LoadComp class of
this library allow the user to flexibly retrieve any specified
subject or genetic information from the compressed data-
set. Furthermore, user-friendly parallel-loading function is
supported, which in result shortens the loading time
greatly when parallel jobs are dispatched in clusters.
To fully utilize the compression algorithm, it needs to
be incorporated into other analysis software for associ-
ation studies, where the genetic information can be loaded
using the library and directly sent for analysis in the soft-
ware. For example, we are planning to include this binary
format as one of the standard input format in NPBAT,
which is an interactive software for the analysis of popula-
tion based genetic association studies. Such incorporation
would require additional efforts, but with the gain of
much more disk space and shorter loading time, it will be
beneficial in the long run.
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