Kalankesh et al. BMC Bioinformatics 2012, 13:127
http://www.biomedcentral.com/1471-2105/13/127

BMC
Bioinformatics

The language of gene ontology: a Zipf's law

analysis

Leila Ranandeh Kalankesh'?, Robert Stevens' and Andy Brass'*"

Abstract

of the evidence codes used to support the annotation.

annotation.

Background: Most major genome projects and sequence databases provide a GO annotation of their data, either
automatically or through human annotators, creating a large corpus of data written in the language of GO. Texts
written in natural language show a statistical power law behaviour, Zipf's law, the exponent of which can provide
useful information on the nature of the language being used. We have therefore explored the hypothesis that
collections of GO annotations will show similar statistical behaviours to natural language.

Results: Annotations from the Gene Ontology Annotation project were found to follow Zipf's law. Surprisingly, the
measured power law exponents were consistently different between annotation captured using the three GO
sub-ontologies in the corpora (function, process and component). On filtering the corpora using GO evidence
codes we found that the value of the measured power law exponent responded in a predictable way as a function

Conclusions: Techniques from computational linguistics can provide new insights into the annotation process. GO
annotations show similar statistical behaviours to those seen in natural language with measured exponents that
provide a signal which correlates with the nature of the evidence codes used to support the annotations,
suggesting that the measured exponent might provide a signal regarding the information content of the

Background

The gene ontology and annotation

The Gene Ontology (GO) is used extensively in biology.
It provides a structured set of concepts that can be used
to describe genes and gene products. These concepts are
divided into three separate sub-ontologies focused on
molecular function (MF), biological process (BP) and
cellular component (CC) [1]. The GO has now been
used to annotate many of the standard databases of
genes and gene products. This annotation helps to inte-
grate biological resources across various experimental
organisms and different data bases [2-4]. The power of
the GO annotation is that it allows unambiguous com-
munication of knowledge among biologists as to the
functionality of gene products, at the same time as mak-
ing the biological knowledge computer-comprehensible
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[3,4]. GO annotation is undertaken either manually,
automatically, or by some combination of both [4]. The
GO Consortium provide codes that indicate the evi-
dence to support the association between a specific GO
term and gene product (for example through sequence
similarity or direct experimental support). Evidence
codes should not be directly used as a measure of the
annotation quality [5]; they can, however, help inform
the level of belief a user might have in the GO terms
assigned [6].

A number of studies have attempted to address issues
of annotation quality, for example by looking at the
consistency of coding between different annotators [7].
Another study introduced an Annotation Confidence
Scoring system for comparing the annotation of genes
and gene products to those found in a reference genome
set [8]. Others have used the GO evidence codes and
term depth in the GO to provide evidence of quality [9].
There is some evidence that sources annotated through
manual curation are of higher quality than those anno-
tated automatically [10] as they are the result of the
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combined effort of many scientists [11]. None of these
methods, however, has addressed the core question of
how effective the annotations are in conveying meaning
to a wider biological audience. We therefore need meth-
ods that determine the extent to which annotation is
meeting user requirements. Unfortunately, we have very
few ways of judging whether the set of annotations pro-
duced to describe a collection of genes/gene products in
a database works effectively in communicating know-
ledge between the annotator and the end user of those
annotations.

Language and the principle of least effort

The GO provides a vocabulary used by annotators to en-
code information regarding gene product function, infor-
mation that the wider community then need to decode.
The annotation associated with a gene product can be
thought of as a sentence made up of words from GO.

It has long been known that natural languages show
power-law behaviour. For example Zipf’s law states that
for any sufficiently large corpus word frequency is ap-
proximately inversely proportional to word rank (in
which words are ordered by their frequency within the
text, the most common ranked first). Indeed, Zipf’s law
is considered as the statistical characteristic of human
language [12,13], and as a wider property of many differ-
ent complex systems [14]. This pattern has even been
observed in a number of extinct and undeciphered lan-
guages such as Meroitic [15], and in the mysterious
encrypted 15th century Voynich manuscript [16].

If N(r) is the number of words in a text with rank r
then Zipf’s law can be expressed as:

N(r)~r* (1)

where «o is the Zipf’s law exponent.

There are a number of different ways in which this be-
haviour can be represented mathematically - power law
behaviour, Zipf’s law, Pareto’s law - that can be demon-
strated to be equivalent [17]. For example, if P (f) is the
proportion of words in a text with frequency f then the
power law can also be expressed as:

P(f)~f* (2)

It is straightforward to show that p and « are related
by:

B=1+_ 3)

For typical single author sources in English f is about
2 [18-20]. There can, however, be variations around this
value. For example, in the speech of young children p is
around 1.6 [21] whereas B >2 has been found in sets of
nouns taken from single author texts [22]. Almost all
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texts analysed have values of p in the range [1.6-2.4]
[23]. Zipf further argued that the power law behaviour
arose from a principle of “least effort” in communica-
tion. A communication process can be thought of as
having three components; a speaker, a listener and a
message. The principle of “least effort” examines the
work required from the speaker and the listener in com-
municating a message [12,24].

Similarly, we can view annotation as a process of com-
munication. Consider the process of annotating the cel-
lular location of the gene product integrin alpha8. The
simplest annotation for the speaker (annotator) to pro-
duce is a frequently used (and ambiguous) term such as
“cell” (GO:0002623). Such an annotation would, how-
ever, push greater effort on to the person using the an-
notation — the listener. The listener’s job is easiest if the
term used is clear and unambiguous, for example “integ-
rin complex” (GO:0008305). This, however, requires sig-
nificant effort from the speaker in identifying such rarely
used GO terms.

Zipf's law and the gene ontology

In this paper we have applied methods of computational
linguistics to large repositories of GO annotation data
from a number of complete published genomes. The
objectives are to determine the extent to which:

e GO annotation from complete genomes show power
law behaviour;

e the exponent of the power law provides insights into
the nature of the underlying annotation;

e computational linguistic analysis provide insights
into the annotation process.

To do this we have retrieved genome annotations from
the Gene Ontology Annotation (GOA) project. In par-
ticular, the GOA data can be regarded as a gold-
standard annotation set, with a significant portion that
has been extensively curated by human experts.

Methods

Gene Ontology identifiers and evidence codes were
retrieved from each of the genome projects covered by
the Gene Ontology Annotation (GOA) project (the ver-
sion published in October 2009). Table 1 shows the data
sets that were obtained and the total number of annota-
tions and distinct number of GO identifiers included in
each.

The mouse and human GOA data sets were then fur-
ther sub-divided using GO evidence codes to produce
eight new data sets with different levels of support from
the evidence codes. A set of high confidence (HC) data
were derived chosen by selecting annotations labeled
with at least one of the IDA (Inferred from Direct
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Table 1 Total number of annotations and the number of
distinct GO identifiers for each of the data sets used in
the study in terms of three separate sub-ontologies

Species Sub- GOA
Ontology Total number of The number of distinct
annotations GO IDs
Hs Ccc 51,640 889
MF 55,781 2,844
BP 58,320 5,259
Mm Ccc 45,933 641
MF 60,919 2318
BP 59,133 4,239
Dr Ccc 23,179 304
MF 47,651 1,187
BP 34,158 1,513
Sc Ccc 29,563 626
MF 26,292 1,611
BP 31,797 1,963
Rn (da 53,342 50
MF 63,050 2,776
BP 74,943 5411

CC - Cellular Component sub-ontology, MF - Molecular Function sub-ontology
and BP - Biological Process sub-ontology. Homo sapiens (Hs), Mus musculus
(Mm), Danio rerio (Dr), Saccharomyces cerevisiae (Sc), Rattus norvegicus (Rn).

Assay); IPI (Inferred from Physical Interaction); IMP (In-
ferred from Mutant Phenotype ); TAS (traceable Author
Statement); EXP (Inferred from experiment); IC (In-
ferred by Curator); IEP (Inferred for Expression Pattern)
or IGI (Inferred from Genetic Interaction) evidence
codes. A set of low confidence (LC) data were derived
by selecting annotations labeled with IEA (Inferred from
Electronic Annotation) evidence codes. These data sets
are characterized and described in Table 2.

It can be difficult to calculate an accurate exponent for
the Zipf’s law exponent if the data are presented in the
form of a frequency vs rank graph, particularly as the
data for high rank (low frequency) terms are often noisy.
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By representing the data in the form of a Pareto distri-
bution it is possible to measure the exponent much
more accurately [17]. This is because the Pareto distri-
bution is expressed in terms of the cumulative distribu-
tion frequency:

P(X=2x)~xk (4)

where the distribution shape parameter k can be con-
verted to the Zipf’s law exponent a via:
1

a=z (5)

and to the power law exponent 3 as below:
B=1+k (6)

The cumulative frequency graph is well defined for all
values of x, and removes the problem of noise in the low
frequency terms [17].

The data on the GO identifier frequencies were there-
fore analysed using the Matlab packages plfit, plplot and,
plpva (version 1.0.10 published in January 2010) devel-
oped by Clauset and Shalizi [25]. These packages at-
tempt to fit a power law model to the empirical data
(represented as a Pareto distribution) and determine the
extent to which the data can be effectively modeled
using a power law. These tools provide two statistics de-
scribing the data. The first is a P-value that is used to
determine the extent to which the power law model is
appropriate. If the P-value is greater than 0.1 we can re-
gard the power law to be a plausible model of our data.
The second statistic produced is P, the exponent of the
power law.

Results

Annotation and power law behaviour

Some of the most frequently used terms in the annota-
tion data are some of the most generic (low term depth).
For example the term GO:0005515 (protein binding) is
typically one of the top two most frequent terms in all

Table 2 The total number of annotations and the number of distinct GO identifiers of each of the Homo sapiens (Hs)
and Mus musculus (Mm) data sets in terms of the three separate sub-ontologies by evidence code

Species Sub- GOA
ontology High Confidence Low Confidence
The number of distinct GO Total number of The number of distinct GO Total number of
IDs annotations IDs annotations
Hs CcC 642 16,744 572 31,164
MF 1,974 20,250 1,735 31,709
BP 3172 18,594 3,642 33,820
Mm CcC 487 11,784 232 28918
MF 1,364 10,467 1,320 45,185
BP 3,846 264,78 731 26,473
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the MF data analysed and is only two levels down from
the root of the molecular function sub-ontology. The
top 25% of the most commonly used GO terms for
human molecular function have an average depth of 4.6,
compared with an average depth of 6.4 for the 25% least
commonly used terms. A similar pattern is repeated for
all the sub-ontologies in all species examined in this
paper (data not shown). This difference is significant
(p<0.001 in a paired t-test), demonstrating that the
most commonly used terms are typically less specific
(higher in the ontology) than those which are used less
frequently (deeper in the ontology).

Figure 1 shows the log-log plots of cumulative fre-
quency vs. term rank (Pareto plots) for data from the
human GOA. It can be seen from these figures that
there is strong support for a power law model for these
data for the annotations from all three sub-ontologies,
as demonstrated in the P-values returned from the fit-
ting software.

Table 3 shows the results obtained for the GOA data-
sets as defined in Table 1. In all cases the data are well-
described by a power law, with exponents in the range
observed for language (1.6<p<2.4). By examining the
results we can see that there are differences between the
exponents measured for the BP sub-ontology compared
with the CC and MF ontologies; the mean value of f for
the GO BP sub-ontology is 2.13, for the MF sub-
ontology is 1.81, and for the CC sub-ontology is 1.71.
The difference between the mean values from the BP
compared with the CC and MF ontologies is significant
(p<0.001). There is no significant difference between the
exponents measured for the CC and MF sub-ontologies.
One interesting anomaly is the value of the exponent mea-
sured for the biological process sub-ontology of D. rerio at
1.88 compared with the mean of 2.13.

The analysis was then repeated for the data-sets
obtained from the mouse and human GOA data sets
divided into high and low confidence evidence codes
(the statistics for which are shown in Table 2). These
results are shown in Table 4.

Again there is a clear trend visible in these results,
with the low confidence data showing consistently lower
exponents than the full data set, with the highest expo-
nents being measured for the filtered high confidence
data. A paired t-test analysis of data measured from the
high confidence and low confidence data supports the
fact that the difference in exponents between these data
sets is significant (p =0.01). It is also interesting to note
that two of the annotation data sets with lower values of
S have P-values<0.1, i.e. cannot be effectively repre-
sented by a power law.

Using the data from Tables 1 and 3 it is possible to
examine [ as a function of both the total and distinct
number of GO identifiers in each genomic annotation
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dataset. There is no clear correlation between the size of
the data set and the power law exponent (Figure 2). This
analysis includes data from a wide range of species data
sets from the Ensembl database in addition to the GOA
datasets.

Discussion

We have used computational linguistics methods to
examine a range of gene annotation data sets used to
populate genome resources. In almost all cases these
data sets obey Zipf’s law, with exponents typical of those
for human languages (Table 3). The This supports the
hypothesis that the GO annotation can be thought of as
a language, and that we can think of annotation as a
form of communication process with the characteristics
of a natural language. This then provides us with a
framework in which to look at the effectiveness of the
communication process using power law. For example,
we have observed a real and significant difference in the
power law exponents measured for annotation using the
biological process sub-ontology (B ~2.1) compared with
that using the molecular function and cellular compo-
nent sub-ontologies (p ~1.8).

The measured exponent changes in a predictable and
significant way as a function of the evidence codes that
have been used to support annotation, but not as a func-
tion of the size of the annotation available (Figure 2).
However, it is not clear that the absolute value of the ex-
ponent can be interpreted as a quality measure; for ex-
ample, we would not want to state that the BP
annotations are of higher quality than those done with
the MF and CC ontologies. We therefore need to look
more deeply into the linkage between the exponent and
information transfer. For example, some insights can be
drawn from work in statistical mechanics approaches to
understanding the behaviour of language [26]. In this
work it is hypothesised that the exponent B is propor-
tional to the “temperature” of the communication sys-
tem, where temperature is to be interpreted as a
“willingness to communicate”. This would therefore
imply that the increase we see in the value of B as a
function of the annotation source (Table 4) reflects an
increasing effort in the communication process. Indeed,
this observation has been made previously in a number
of studies of human language, in which the value of the
exponent has been somewhat controversially linked to
communication effectiveness [23,24,27,28]. Similarly,
there is a large literature (e.g. [29]) which debates the
interpretations that can legitimately me be made of the
Zipf’s law exponent in linguistics and the extent to
which these variations provide insights into communica-
tion, whether in whistles between dolphins [30], the na-
ture of the schizophrenic brain [31] or language in
children [32]. In particular, much of this analysis has
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Figure 1 The cumulative distribution function Pr(x) plotted as a function of frequency (x) for GO gene annotations contained within
Human GOA. The straight line shows the region of the plots for which a power law was found to provide a good model of the data [25]. 1(a)
Annotation from the biological process sub-ontology, 1(b) annotation from the molecular function sub-ontology, and 1 (c) annotation from the
cellular component sub-ontology The measured power law exponents, {3, (were 2.04, 1.83, and 1.73 respectively. For all graphs p-value > 0.55,
suggesting that the power law does provide a plausible model of the data.
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investigated the ways in which differences in language
use, communication effectiveness or brain structure are
reflected in the measured exponent.

An inference that might therefore be drawn as regards
the differences in exponents between the various GO
sub-ontologies could therefore be that the information
conveyed by BP is fundamentally more complex than
that described by the other two sub-ontologies, captur-
ing the processes in which the molecule is involved, ra-
ther than a simple molecular function description, or a
location in which the activity takes place. That is, we
simply have more to say about process than we do about
function and cellular location; the biology is more

complex in processes. This might intrinsically require
more “willingness to communicate” than is needed to
describe aspects of molecular function or cellular com-
ponent. An anomaly in this analysis is the observed low
exponent for the D. rerio BP sub-ontology, from which
we might infer that the information content captured in
the annotation for biological processes in this model
species is lower than that from the other model organ-
isms (as reflected in the significantly smaller number of
published papers on D. rerio compared to those of the
other model species listed).

One key difference between this analysis and that
more generally used in computational linguistics is in
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Table 3 Results obtained from the power law analysis of
each of the data sets characterized in Table 2

Species Ontology GOA
B P-value
Hs ccC 173 0.63
MF 1.83 0.55
BP 2.04 0.65
Mm cc 1.69 0.74
MF 1.76 0.36
BP 2.08 0.97
Dr (d 1.62 0.74
MF 1.69 091
BP 1.88 0.1
Sc ccC 1.86 029
MF 1.88 0.78
BP 227 042
Rn cc 1.68 024
MF 191 0.85
BP 2.38 0.76

B is the power law exponent and P-value is a statistic used to determine how
good a model the power law is of the data. If P>0.1 we can assume that the
power law does provide a good description of the data. H. sapiens (Hs), M.
musculus (Mm), D. rerio (Dr), S. cerevisiae (Sc), R. norvegicus (Rn).

the variation of word length. In the GO annotation all
words have the same length (the GO Identifier) whereas
in natural languages word lengths can vary. A recent
paper [33] has revisited one of Zipf’s original observa-
tions that word length correlates inversely with fre-
quency [34]. The key finding was that the correlation
between word length and information content was better
than that between word length and frequency. The ana-
lysis presented here, in the rather more controlled envir-
onment of genome annotation, has the potential to
throw new light on this long-running debate in

Table 4 Results obtained from power law analysis of each
of the data sets characterized in Table 2

Species Ontology GOA
HC LC
B P-Value B P-Value
Hs cc 1.88 0.37 1.62 0.11
MF 205 0.18 1.75 0.16
BP 212 0.37 2.04 0.62
Mm CcC 19 0.43 1.5 0.71
MF 215 0.65 167 0.03
BP 26 0.61 1.62 0.00

B is the power law exponent and P-value is a statistic used to determine how
good a model the power law is of the data. Statistically significant values are
denoted in bold. The GO evidence codes used to define the high confidence
(HC) and low confidence (LC) data sets are described in the materials and
methods.
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computational linguistics, as we can separate out the
effects of word length and focus specifically on the infor-
mation content and frequency of terms.

In principle we also believe that the straightforward
computational linguistics methods we have applied to
GO data in this paper should be more widely applicable
to any situation in which data are described using terms
from an ontology; for example, medical patient data
described using terms from SNOMED-CT [35]. Indeed,
we have recently observed very similar Zipf’s law behav-
iour in a large corpus of primary care general practice
data describing patients in Salford (UK) (data not
shown).

Conclusions

In this paper we have demonstrated that computational
linguistics, in the form of Zipf’s law, provides a powerful
and innovative framework in which to examine GO an-
notation. As hypothesised, the GO annotation does fol-
low Zipf’s law and there is some evidence that the
exponent does provide information on the nature of the
annotation; for example, it responds in a predictable way
as a function of the evidence codes used to support the
annotation. An unexpected finding is that the power law
exponent of data described using the process sub-
ontology is significantly different to that measured for
data in the function and component ontologies. We do
not know whether this difference is some fundamental
feature of the structure of the GO sub-ontologies, the
nature of the biology being communicated, or whether it
reflects thought processes in the annotation teams. Such
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an understanding could be useful in helping improve the
use of ontologies for annotation.

While other studies have focussed on consistency or
depth of annotation for assessing the quality of annota-
tion [7-9], no study has explored the nature of the anno-
tation from the perspective of the communication of
information. The method should provide a straightfor-
ward technique for assessing corpora described using
terms from ontology in areas beyond just biology and
bioinformatics.
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