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Abstract

essentially been limited to small sized networks.

performance over other techniques.

genetic networks.

Background: Dynamic Bayesian network (DBN) is among the mainstream approaches for modeling various
biological networks, including the gene regulatory network (GRN). Most current methods for learning DBN employ
either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm
or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have

Results: To overcome the above difficulties, we introduce here a deterministic global optimization based DBN
approach for reverse engineering genetic networks from time course gene expression data. For such DBN models
that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the
globally optimal network structure. The proposed approach, named GlobalMIT*, employs the recently proposed
information theoretic scoring metric named mutual information test (MIT). GlobalMIT* is able to learn high-order time
delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both
synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved

Conclusions: Our studies demonstrate that deterministic global optimization approaches can infer large scale

Background

Gene regulatory network (GRN) reverse-engineering has
been a subject of intensive study within the systems biol-
ogy community during the last decade. Of the dozens
of methods available currently, most can be broadly
classified into three main-stream categories, namely co-
expression network, differential equation and Bayesian
network. Co-expression network [1,2] is a class of coarse-
scale, simplistic models that relies directly on pairwise
or low-order conditional pairwise association measures,
such as the (partial) correlation or (conditional) mutual
information, for inferring the connectivities between
genes. These methods have the advantage of low com-
putational complexity, and can scale up to very large
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networks of thousands of genes [3]. However, their major
limitation is that they do not model the network dynam-
ics, and hence cannot perform prediction. Differential
equation (DE) based approaches are a class of sophis-
ticated, well established methods which have long been
used for modeling biochemical phenomena, including
GRNs [4,5]. A particularly salient feature of DE-based
approaches is that they can accurately model the detailed
dynamics of biochemical systems in continuous time.
However, these methods are also much more computa-
tionally intensive, and so far are only applicable to rela-
tively small networks of a handful genes (i.e., 5-30). Lying
in-between these two extremes are Bayesian networks
(BN), a class of models that are based on solid principles
of probability and statistics. A BN represents accurately
and compactly the joint distribution of a set of variables,
using probability and graph theories. BN can also perform
prediction of the GRN behavior in unknown conditions,
albeit not at as detailed level as DE-based approaches.

© 2012 Vinh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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In this paper, we focus on the BN paradigm, which is
indeed among the first approaches for reverse engineering
GRN, through the seminal work of Friedman et al. [6,7],
and later by numerous other authors [8-14]. Two crit-
ical limitations when applying the traditional static BN
paradigm to the GRN domain are: (i) BN does not have
a mechanism for exploiting the temporal aspect of time-
series data (such as time-series microarray data) abundant
in this field; and (ii)) BN does not allow the modeling
of cyclic phenomena, such as feedback loops, which are
prevalent in biological systems [15]. These limitations
motivated the development of the dynamic Bayesian net-
work (DBN) which has received significant interest from
the bioinformatics community [15-22]. DBN exploits the
temporal aspect of time series data to infer edge direc-
tions, and also allows the modeling of feedback loops (in
the form of time delayed cyclic interactions).

In DBN framework, the task of GRN reverse
engineering amounts to learning the optimal DBN struc-
ture from gene expression data. After the structure has
been reconstructed, a set of conditional probability tables
can be easily learned, using methods such as maximum
likelihood, to describe the system dynamics. In this
paper, we are focusing on the more challenging problem
of structure learning. Most of the recent works have
employed either local search (e.g., greedy hill climbing),
stochastic global optimization (e.g., genetic algorithm,
simulated annealing), or Monte Carlo simulation. This is
due to several NP-hardness results for learning static BN
structure (see e.g., [23]). However recently, Dojer [24] has
shown otherwise that for certain DBN models, learning
can be efficiently done in polynomial time for the globally
optimal DBN, when the Minimum Description Length
(MDL) and the Bayesian-Dirichlet equivalent (BDe) scor-
ing metrics are employed. In our recent preliminary work
[25], we have shown that this result also holds true for the
Mutual Information Test (MIT), a novel scoring metric
recently introduced for learning static BN [26]. Through
extensive experimental evaluation, de Campos [26] sug-
gested that MIT can compete favorably with Bayesian
scores, outperform MDL (which is equivalent to the
Bayesian Information Criterion—BIC) and hence should
be the score of reference within those based on informa-
tion theory. To our knowledge, other than the popular
scoring metrics, MIT has not been considered for learn-
ing DBN. An attractive characteristic of MIT is that when
placed into a global optimization framework, its complex-
ity is much lower than that of the BDe-based algorithm
by Dojer [24], and seems to be comparable to that of the
MDL-based algorithm. In other words, MIT seems to
combine the goodness of both BDe and MDL, namely
network quality and speed. The implementation of our
MIT based algorithm, made available as the GlobalMIT
toolbox [27], when tested on small scale synthetic data
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[25], confirmed that MIT also performs competitively
with BDe and MDL in terms of network quality.

The first-order Markov DBN model that we considered
earlier [25,27] is however not completely adequate for the
accurate modeling of GRN, as genetic interactions are
invariably delayed with different time lags [20]. Specifi-
cally, this delay is due to the time required for the regulator
gene to express its protein product and the transcription
of the target gene to be affected (directly or indirectly)
by this regulator protein. In GRNs, most genetic interac-
tions are time delayed, depending on the time required for
the translation, folding, nuclear translocation, turnover
for the regulatory protein, and elongation of the target
gene mRNA [28]. Furthermore, the amount of time lag
needed for different regulator to exert its effect is also
different. Higher order DBNs are therefore needed to cap-
ture these time-delayed interactions. In this paper, we
generalize our GlobalMIT algorithm to the case of higher
order DBN models, to be named GlobalMIT*. Our con-
tribution in this paper is three-fold: (i) we prove the
polynomial time complexity of GlobalMIT™ for higher
order DBNSs; (ii) we give a complete characterization of
the time complexity of GlobalMIT*, and propose a vari-
ant GlobalMIT" for large scale networks that balances
optimality, order coverage and computational tractability;
(iii) we evaluate the high-order GlobalMIT+/* on several
real and synthetic datasets, and for the first time apply
a DBN-based GRN reverse engineering algorithm on a
large scale network of 733 cyanobacterial genes, in a very
reasonable run-time on a regular desktop PC. We show
that the learned networks exhibit a scale-free structure,
the common topology of many known biochemical net-
works, with hubs with significantly enriched functionals
corresponding to major cellular processes.

Methods

Preliminaries

We first briefly review the DBN models. Let X =
{X1,...,X,} be a set of random variables (RV);
{xi1,...,x;ny} be an actual observed sequence cor-
responding to X; over N time points; X;[f] be the
RV representing the value of X; at any time ¢ and
X[t]={X1[¢],...,X,[£]}. A DBN represents the joint
probability distribution function (PDF) over the set of
n x N RVs X[1]UX[2]... U X[N]. Since such a general
PDF can be arbitrarily complex, several assumptions
are often employed for its simplification. The two most
popular assumptions are first-order Markovianity, i.e.,
PX[4]1X[1],..., X[t — 1]) = P(X[#]|X[t — 1]), and
stationarity, i.e., P(X[¢]|X[t — 1]) is independent of ¢.
These two assumptions give rise to the popular first-
order Markov stationary DBN which assumes that both
the structure of the network and the parameters char-
acterizing it remain unchanged over time. It is worth
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noting that recent works have progressed to allow more
flexible, non-stationary DBN models, such as ones with,
either parameters [22], or both structure and parameters
[29] changing over time. However, more flexible models
generally require more data to be learned accurately.
In situations where training data are scarce, such as in
microarray experiments where the data size can be as
small as a couple of dozen samples, a simpler model such
as the Markov stationary DBN might be a more suitable
choice.

DBN models consist of two parts: the prior network and
the transition network [30]. The prior network contains
only intra time slice edges (since there are no other time
slices preceding it), while the transition network can con-
tain both inter and intra time slice edges, as demonstrated
in Figure 1(a,b). Learning the prior network requires col-
lecting m independent observation sequences, of which
only m initial time slices are used for learning. For biologi-
cal networks, such data abundance is not always available,
since there may be only one or a very limited number of
time series. Therefore, only the learning of the transition
network is practical and is relevant. Henceforth, by DBN
we mean only the transition network part of the model.
Some authors have further restricted the transition net-
work to contain only inter time slice edges [18,21,24]. In
the context of genetic networks, inter-time slice edges
correspond to time-delayed genetic interactions, while
intra-time slice edges correspond to instantaneous inter-
actions. In reality, only delayed genetic interactions are
biologically plausible, as a result of the time required for
the translation, folding, nuclear translocation, turnover
time-scales for the regulatory protein, and the time scale
for elongation of the target gene mRNA [28]. Only when
this total time lag is small compared to the sampling gap,
then the interaction can be considered as instantaneous.
In this paper we shall consider DBN with only inter-time
slice edges. The rationale for this focus can be taken from
both a biological point of view (genetic interactions are
essentially time-delayed), and from an algorithmic point
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Figure 1 (a) prior network; (b) First-order Markov transition
network; (c) 2nd-order Markov transition network with only
inter time slice edges.
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of view: there are efficient polynomial time algorithms for
learning this class of DBN, as will be discussed in the next
section.

A critical limitation of the first-order DBN for modeling
GRN is that it assumes every genetic interaction to have
a uniform time lag of 1 time unit, i.e., all edges are from
slice [¢ — 1] to [¢]. For GRNs this is not always the case,
since genetic interactions can have longer lags, and differ-
ent transcription factors (TF) of the same gene can have
different lags [20]. As mentioned earlier, this motivates the
use of higher order DBNS, in which the first-order Marko-
vianity is replaced by the dM-order Markovianity, i.e.,
PX[4]1X[1],...,X[t=1]) = P(X[ 4] |X[¢t=1],...,X[t—
d]). With this model, a node (i.e., gene) can have parents
(i.e., TFs) in any of the previous d time slices. A 2nd-order
Markov DBN is illustrated in Figure 1(c), in which node X»
is regulated by two parents, namely X3 with one-time-unit
lag, and X; with two-time-unit lag.

The MIT scoring metric

In this section, we first review the MIT scoring metric
for learning BN and then show how it can be adapted to
the DBN case. The most popular approaches for learn-
ing DBN are essentially those that have been adapted
from the static BN literature, namely the search+score
paradigm [15,21], and Markov Chain Monte Carlo
(MCMC) simulation [18,29]. In this paper we apply the
search+score approach, in which we specify a scoring
function to assess the goodness-of-fit of a DBN given the
data, and a search procedure to find the optimal network
based on this scoring metric. While several popular scor-
ing metrics for static BN, such as the Bayesian scores
(K2, BD, BDe and BDeu), and the information theoretic
scores (BIC/MDL, Akaike Information Critetion—AIC),
can be adapted directly for DBNs, we focus on the Mutual
Information Test (MIT), a recently introduced scoring
metric for learning BN [26]. Briefly speaking, under MIT
the goodness-of-fit of a network is measured by the total
mutual information shared between each node and its
parents, penalized by a term which quantifies the degree
of statistical significance of this shared information. To
understand MIT, let {ry, ..., r,} be the number of discrete
states corresponding to our set of RVs X = {X3,..., X},
D denote our data set of N observations, G be a BN, and
Pa; = {Xj1,..., X} be the set of parents of X; in G with
corresponding {r;1, ..., i} discrete states, and s; = |Pa;|.
The MIT score is defined as:

n

Si
SSmir(G:D) =Y {2N-I(X,Pa) =Y ai i ¢
i=1;Pa; %0 j=1

where I (X;, Pa;) is the mutual information between X; and
its parents as estimated from D. xo; is the value such
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that p ()(2 (lij) = Xa,l,vi> = « (the Chi-square distribution
at significance level 1 — ), and the term /;, ;) is defined as:

1 ‘
li () = (ri - 1)(71'0,'(1‘) - 1) l_[]k:l Vioj(k)» ] = 2...,8;
l (ri = D (igyj) — 1), j=1

where o; = {0;(1),...,0;(s;)} is any permutation of the
index set {1...s;} of Pa;, with the first variable having the
greatest number of states, the second variable having the
second largest number of states, and so on.

To make sense of this criterion, let us first point out
that maximizing the first term in the MIT score, i.e.,
> ;2N - I(X;, Pa;), can be shown to be equivalent to maxi-
mizing the log-likelihood criterion. However, learning BN
by using the maximum likelihood principle suffers from
overfitting, as the fully-connected network will always
have the maximum likelihood. Likewise, for the MIT
criterion, since the mutual information can always be
increased by including additional variables to the par-
ent set, i.e., I(X;, Pa; U X;) > I(X;, Pa;), the complete net-
work will have the maximum total mutual information.
Thus, there is a need to penalize the complexity of
the learned network. Penalizing the log-likelihood crite-
rion with —3C(G) log(N) gives us the BIC/MDL criteria,
while —C(G) gives us the AIC criterion (where C(G) =
Y= 1) ]_[;Lz1 rjj measures the network complexity).
As for the MIT criterion, while the mutual information
always increases when including additional variables to
the parent set, the degree of statistical significance of
this increment become negligible as more and more vari-
ables are added. This significance degree can be quantified
based on a classical result in information theory by Kull-
back [31], which, in this context, can be stated as follows:
under the hypothesis that X; and X; are conditionally inde-
pendent given Pa; is true, the statistics 2N - I(X;, X;|Pa;)
approximates to a x 2(/) distribution, with [ = (r; — D(rj—
1)g; degree of freedom, and g; = 1 if Pa; = §, otherwise
qi is the total number of states of Pa;, ie., g; = ]_[“221 Tik-
Thus the second term in the MIT score penalizes the addi-
tion of more variables to the parent set. Roughly speaking,
only variables that have the conditional mutual informa-
tion shared with X; given all the other variables in Pa; that
is higher than 100« percent of the MI values under the null
hypothesis of independence can increase the score. An
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important difference between MIT and the other informa-
tion theoretic based metrics (BIC/MDL, AIC) is that the
penalty term is applied individually and independently to
each RV rather than to the network as a whole. For further
details on the motivation and derivation of this scoring
metric as well as an extensive comparison with BIC/MDL
and BD, we refer readers to [26].

We next show how MIT can be adapted for the case
of high-order DBN learning, by carefully addressing the
issue of data alignment. The mutual information is now
calculated between a parent set and its child at differ-
ent time lags. At any time ¢t > d, let Pa; = {X;;[t —
8i1],.. ., Xis;,[t — 85,1} be the parent set of X;[¢], with
{81, . ..,8is;} be the actual regulation order corresponding
to each parent. In this work, since we only consider DBN
with inter time slice edges, 1 < §;; < d, V] for a d-th order
DBN. When the mutual information is calculated, the tar-
get node is always shifted by d units forward in time, while
the parents are shifted forward by {d —8i1y...,d — (Sisi}
time units respectively. We define I; as a time-delayed
mutual information operator, which automatically shifts
the target variable as well as all of its parents to the correct
alignment.

The number of effective observations N, is therefore
N, = N —d, if we have only one time series of length
N. If there are m separate time series, it is imperative
that no wrong alignments occur at the transition between
these time series when they are concatenated. The num-
ber of effective observations for multiple time series is
N, = Zf’;l N; — md where N;’s are the length of the time
series. The MIT score for DBN is calculated as:

n

Shyr(G: D)= Z
i=1;Pa; £

Si
N, [(Xi, Pa) = ) Xaji
j=1

To make this clear, we demonstrate the process of data
alignment through the simple DBN example given in
Figure 1(c). For node Xy, Pay = {X;[t — 2], X3[¢t — 1]},
therefore when I;(-) operates, it shifts the target node
X, forward by two units in time, while the parent X;
is shifted zero unit, and parent X3 is shifted 1 unit, as
shown in Figure 2. The number of effective observa-
tions is N, = N} — 2 if only the first sequence is used, or

2 N;2N,-1N, 2

N,-2N,-1N, 2 Ng2Ng1N,

TNNENE

ENERNE

| LA

H

[ | [alal-T] DL Talal-T5] LI TalRl-
VAR /
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[/ [/
x40 EAA -

HdEdN

Figure 2 Data alignment for node X5 in the DBN in Figure 1(c). Shaded cells denote unused observations for the calculation of (X, Pay).
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N, = N1 + Np + N3 — 2 x 3ifall 3 sequences are used for
learning.

Shared and exchanged information in time-delayed Mi
The proposed algorithm uses the time-delayed mutual
information to give directional sense in dynamical sys-
tems. As a measure, for capturing system dynamics, the
time-delayed MI contains both the exchanged informa-
tion which is useful and the shared information which
is not useful. However, Schreiber [32] premised that the
time-delayed M, because of its use of static probability, is
limited and unable to distinguish between the exchanged
information from shared information. Consequently, he
proposed the concept of transfer entropy, using transi-
tion probabilities rather than static probabilities, thereby
ignoring static correlations due to the common history or
common input signals. From this viewpoint, it implies that
the transfer entropy would be more appropriate because
the time-delayed MI, using static probability, will contain
exchanged information with less ‘strength’ than transfer
entropy which is not influenced by static correlations.

However, we note that the transfer entropy requires
the estimation of very high-dimensional joint distribu-
tions, i.e., (2d 4+ 1) dimensions where d is the Markov
order. Thus, even with d = 3, hundreds to thousands of
samples are required for satisfactory estimation of the
7-dimension distribution. In contrast, the time-delayed
MI requires estimation of only bi-dimensional distri-
butions and is thus better able to cope with limited
(few tens of samples) microarray data samples, as com-
monly available for reconstructing genetic networks. If
the number of samples increases in the future, e.g.,
due to advancements in technology for gene expres-
sion profiling, the transfer entropy approach will be an
important candidate for reverse engineering genetic net-
works.

Proposed approaches

This section presents our GlobalMIT* algorithm for
learning the globally optimal structure for a d-th order
DBN with the MIT scoring metric in polynomial time.
The original GlobalMIT algorithm for the case of the
1st-order Markov DBN [25] can be considered as a spe-
cial case of GlobalMIT* with d = 1. Our development of
GlobalMIT* has made use of the same set of assumptions
as proposed by [24]. While therein, the DBN learning
problem is placed within a generic machine learning con-
text, herein we are focusing our attention to the particular
context of GRN modeling. Next, we list the required
assumptions and discuss the associated rationales along
with biological plausibility.

Assumption 1. (acyclicity) Examination of the graph
acyclicity is not required.
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This assumption is valid for DBNs with no intra time
slice edges. For this class of DBN, as the edges are only
directed forward in time, acyclicity is automatically sat-
isfied. The biological implication of this assumption is
that we may not be able to detect the instantaneous
interactions. As stated previously, the majority of genetic
interactions are time-delayed. However, if the sampling
gap is large, we may consider some quick interactions
as instantaneous. The effect of this constraint is that, if
gene X; regulates gene X3 almost instantly, their mutual
information /(X3, X») will likely be maximized when their
expression profiles are in synchrony, i.e., no shifting of any
of the two sequences is involved. With Assumption 1 in
place, we will have to consider two time-delayed mutual
information values, I;(X1,X>) and (X3, X1) (since I is
asymmetric). If these values are significantly weaker than
I1(X1,X2) then the interaction between genes X; and Xy
may go undetected. However, when the signal is smooth
and is sampled in short time step, we found that shift-
ing the expression profile by just one time unit will not
often cause a large reduction in the MI value. This is
because smooth time series have high auto-correlation
at short lags, and thus, instantaneous interactions may
still be captured by DBN models with only inter-time
slice edges. The algorithmic implication of Assump-
tion 1 becomes clear when we consider Assumption 2
below:

Assumption 2. (additivity) S(G : D) = Y I, s(X;,Pa; :
Dl x,upa;) Where D|x,upq; denotes the restriction of D to the
values of the members of X; U Pa;.

To simplify notation, we write s(Pa;) for s(X; Pa;:
Dly, U Pai). Assumption 2 simply states that the scoring
function decomposes over the variables and is satisfied
by most scoring metrics such as BIC/MDL, BD and also
clearly by MIT. However together with Assumption 1,
their algorithmic implication is profound: these assump-
tions allow us to compute the parent set for each node
independently. Unlike the case of BN where the choice
of parents for a certain node may affect the choice of
parents of all the other nodes, for DBN (without intra
time slice edges), the choice of parents for a node has
no effect on the other nodes. Thus, the algorithms devel-
oped based upon these two assumptions become very
amenable to parallelization, i.e., each node can be learned
independently with a separate computational thread. Still,
exhaustive brute-force search for the optimal parent set
will require exponential time for a d-th order DBN,
because Pa; can be an arbitrary subset of X[ £ — 1] U... U
X[t — d] and the number of all possible parent sets
is 2%, In order to further reduce the search space, we
rely on the special structure of the scoring metric, as
follows:



Vinh et al. BMC Bioinformatics 2012, 13:131
http://www.biomedcentral.com/1471-2105/13/131

Assumption 3. (splitting) s(Pa;) = u(Pa;) + v(Pa;) for
some non-negative functions u and v satisfying Pa; C
Pa; = u(Pa;) < u(Pa)).

Assumption 4. (uniformity) |Pa;| = |Paj| = u(Pa;) =
u(Pa)).

Assumption 3 requires the scoring function to decom-
pose into two components: v evaluating the accuracy of
representing the distribution underlying the data by the
network, and # measuring its complexity. Furthermore, u
is required to be a monotonically non-decreasing function
in the cardinality of Pa; (Assumption 4), i.e., the network
gets more complex as more variables are added to the par-
ent sets. However in its original form, the MIT scoring
metric, having higher scores for better networks, does not
abide by these assumptions. We overcome this by casting
the problem as a minimization problem (similar to Dojer)
where lower scored networks are better. We consider a
variant of MIT as follows:

Smir(G : D)=Y"1 1 2N, - (X1, X =S}, (G:D), (1)

where X4 = X[t — 1]U...UX[ ¢t — d]. This score admits
the following decomposition over each variable (with the
convention of I(X;, ?) = 0):

spir(Pa;) = vaur (Pay) + upgr (Pay), (2)
varr(Pay) = 2N, - (X, X%) — 2N, - [(X;, Pay), (3)
uprr(Pay) = 3001 Xaki - (4)

Roughly speaking, vayr measures the “error” of repre-
senting the joint distribution underlying D by G, while
upir measures the complexity of this representation. We
make the following propositions:

Proposition 1. S;\/HT maximization is equivalent to Syt
minimization.

Proof. This is obvious, since Z?=1 2N, - L(X;, Xd)
constant. O

Proposition 2. vyr, upyr satisfy assumption 3.

Proof. vyt > 0since of all possible parent sets Pa;, the
full set X7 has the maximum (shifted) mutual information
with X;. And since the support of the Chi-square distri-
bution is RY, i.e., Xo,. > 0, therefore Pa; € Pa} = 0 <
upyr (Pa;) < upr(Pa)). O

While we note that uy7 does not satisfy Assump-
tion 4, for applications where all the variables have the
same number of states, it can be shown to satisfy this
assumption. Within the context of GRN modeling from
microarray data, this generally holds true, since it is a
popular practice to discretize expression data of all genes

Page 6 of 16

to, e.g., 3 states corresponding to high, low and base-line
expression value [15].

Assumption 5. (variable uniformity) All variables in X
have the same number of discrete states k.

Proposition 3. Under the assumption of variable unifor-
mity, upr satisfies assumption 4.

Proof. It can be seen that if [Pa;| = |Paj| = s;, then
upir(Pa;) = upyr (Paj) = Z;;l Xa,(k—1)2k-1- O

Since up7(Pa;) is the same for all parent sets of
the same cardinality, we can write uy7(|Pa;]) in place
of wupr(Pa;). With Assumptions 1-5 satisfied, we can
employ the following Algorithm 1, named globalMIT™, to
find the globally optimal DBN with MIT, i.e., the one with
the minimal Sy score.

Theorem 1. Under assumptions 1-5, GlobalMIT* applied
to each variable in X finds a globally optimal d-th order
DBN under the MIT score.

Algorithm 1 GlobalMIT* : Optimal dt"-order DBN with MIT
Pai =0
forp = 1to nd
If uprrr (p) > spr (Pa;) then return Paj; Stop.
P = arg min {syr(V|Y € X% Y| = p}
If sprr (P) < syr(Pa;) then Pa; := P.
end for

Proof. The key point here is that once a parent set grows
to a certain extent, its complexity alone surpasses the total
score of a previously found sub-optimal parent set. In fact,
all the remaining potential parent sets P omitted by the
algorithm have a total score higher than the current best
score, i.e., syr(Pa) > upgr(|Pal) > sy (Pa;), where Pa;
is the last sub-optimal parent set found. O

We note that the terms 2N, - L(X;, X%) in the Syyr
score in (1) are all constant and would not affect the out-
come of our optimization problem. Knowing their exact
value is however, necessary for the stopping criterion
in Algorithm 1, and also for determining its complexity
bound, as will be shown in Section “Complexity analysis”.
Calculating I5(X;, X?) is by itself a hard problem, requiring
in general, a space and time complexity of order O(k"#*1).
However, for our purpose, since the only requirement for
vy is that it must be non-negative, it is sufficient to
use an upper bound of (X, X%). Since a fundamental
property of the mutual information states that /(U,V) <
min{H (U), H(V)}, i.e., mutual information is bounded by
the corresponding entropies, we have:

2N, - Ii(X;, X9) < 2N, - Hy(X),
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where H(X;) is the entropy of X; estimated from a d-
time-unit shifted expression profile, i.e., {xl’(d+1), R xiN}.
Otherwise, we can use a universally fixed upper bound for
all Hs(X;), that is log k, then:

2N, - I;(X;, X%) < 2N, - logk.

Using these bounds, we obtain the following more practi-
cal versions of d7:

Vir (Pay) = 2N, - Hy(X;) — 2Ne - I;(X;, Pa;)  (5)
Viur(Pay) = 2N, - logk — 2N, - Ii(X;, Pay).  (6)

It is straightforward to show that Algorithm 1 and
Theorem 1 are still valid when v/, or v} ;- are used in
place of vpsr.

Complexity analysis

Theorem 2. GlobalMIT* admits a polynomial worst-
case time complexity of O((nd)'°%Ne) in the number of
variables and DBN order.

Proof. Our aim is to find a number p* satisfying
uprr (p*) = sprr(P). Clearly, there is no need to examine
any parent set of cardinality p* and over. In the worst case,
our algorithm will have to examine all the possible parent
sets of cardinality from 1 to p* — 1. We have:

*

?
upir (p*) = st B) € Y Xajorj) = vaarr D)
j=1
= 2N, - L(X;, X%).

As discussed above, since calculating vyr is not conve-
. / /! : ' / k

nient, we use v, and vy instead. With v/, p* can be

found as:

p
p* =argmin { p1Y " Xatog) = 2Ne - Ho(X0) ¢,
j=1
while for v},
p
p* =argmin { p|> " Xa o) = 2N, - logk
j=1

It can be seen that p* depends only on «, k and N,. Since
there are O((nd)?") subsets of X¢ with at most p* par-
ents, and each set of parents can be scored in polynomial
time, GlobalMIT* admits an overall polynomial worst-
case time complexity in the number of variables n and
network order d. While p* does not admit a closed-form
solution (since Xa,l; cannot be analytically calculated), a
large over-estimate of p* can be provided as follows. Note
that Xa by 18 the value such that p(xz(lij) < Xely) = .
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Since generally & > 0.5, if we take the mean value (cor-
responding roughly to « = 0.5) of the Xz(li,-) distribution,
i.e., [;;, as an under-estimate for Xa by then:

*

)4 pi-1
> ek = 2Ne -logk & Y (k — 1)K
j=1 j=0

> 2N, - logk
o (k—1) (kl’* - 1) > 2N, - logk < p*

2N, - logk

Assuming N, > logk, we can see that p* ~ log; (N),
and the algorithm admits an overall complexity of
O((nd)'osiNey, O

Let us now compare this bound with those of the
algorithms for learning the globally optimal DBN under
the BIC/MDL and BDe scoring metrics as proposed by
[24], and implemented in the BNFinder software [21].
For BIC/MDL, p},,, is given by [log N,], while for
BDe, p}p, = [N,log, -1 k], where the distribution P(G)
AXPail - with a penalty parameter 0 < A < 1, is used as
a prior over the network structures [24, default value
logi~! =1 for BNFinder]. In general, p},, scales lin-
early with the number of effective data items N,, making
its value less of practical interest, even for small data
sets. Moreover, this bound becomes meaningless when
N, > n, as py;,, > n, meaning that in the worst case
BNFinder+BDe will have to investigate all the possible
parent sets. On the other hand, it can be seen that the first
order GlobalMIT and BNFinder+MDL admits roughly the
same worst-case computational complexity.

The GlobalMIT" algorithm

It is noted that the search space has been expanded from
X[t — 1] in the case of the 1st-order DBN, to X¢ =
X[t — 1]JU... U X[t — d] for the case of the d-order
DBN. Roughly, the number of variables has been multi-
plied d times in order to accommodate the higher-order
regulations. Such a multiplicative expansion in the search
space may be very expensive, especially for a determin-
istic global optimization algorithm such as GlobalMIT™*.
For very large networks, it may be useful to consider the
following additional assumption:

Assumption 6. (non-redundant, optimal-lag interaction)
No multiple edges with different time lags exist between a
parent X; and its child X;. Furthermore, the only one edge
allowed, if it exists, must take place at the optimal lag 5?},

where 8;‘;- = argmax {Is(Xj,Xi[t— SPHIL <6 < d}.
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This assumption restricts that for each node X;, there
may be only one single link to any node X; at the most-
probable time lag where their mutual information is max-
imized. With this assumption in place, the search space
for each variable X; reduces from X4 = X[t—1]U...U
X[t — d] to X/’f = {X [t — 5;]}1'—1 . which is equiva-
lent in size to the first-order GlobalMIT algorithm. Thus
Assumption 6 provides a trade-off between optimality and
coverage: while the search is performed only on #z variables
at a pre-determined lag thereby significantly reducing the
computational cost, this lag can take any value from 1 to
d detecting delayed genetic interactions at the most likely
time lag. We shall refer to this variant of GlobalMIT"*,
when Assumption 6 is employed, as GlobalMIT . It can be
easily seen that, for any high order d > 1, GlobalMIT" still
admits the same complexity as the first order GlobalMIT.

Results and discussion

This section presents the experimental evaluation on
GlobalMIT*/*, Our proposed algorithms are imple-
mented within the Matlab/C++ GlobalMIT* toolbox,
freely available as online supplementary material (Addi-
tional file 1). We compare our approach with two other
global optimization algorithms for learning DBN under
the MDL and BDe metrics, namely BNFinder+MDL
and BNFinder+BDe, which are part of the Python-based
BNFinder software [21]. As elaborated in the previ-
ous section, the BNFinder+BDe algorithm is generally
very expensive, and hence not feasible for large or even
medium (few tens of nodes) scale networks. In these cases,
we replace BNFinder+BDe with BANJO [33], a Java-based
software package for learning DBN using the BDe metric
via a stochastic global optimization method, in particular
simulated annealing.

It is noted that the GlobalMIT* toolbox supports multi-
threading to maximally exploit the currently popular
multi-core PC systems. We conducted our experiments
on a quad-core i7 desktop PC with 8Gb of main mem-
ory, running Win7 64bit, which is a typical off-the-shelf
PC configuration at the time this paper was written. Intel
core i7 processors contain 4 separate cores, each can han-
dle 2 independent threads concurrently. We shall execute
GlobalMIT* with 6 threads in parallel (the remaining
two being reserved for system and interface processes).
BANJO also supports multi-threading, whereas BNFinder
does not. While we could have run all algorithms with
only a single thread, for a “fair” comparison in terms
of run-time, our objective in carrying out the experi-
ments this way is to highlight the capability and benefit
of parallelization of GlobalMIT*. The 1-thread execu-
tion time would be roughly three to five times longer in
our observation. As for parameter setting, BNFinder was
run with default settings, while BANJO was run with 6
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threads, simulated annealing+random move as the search
engine, and its run-time was set to, either that required
by GlobalMIT™ or at least 10 minutes, whichever longer.
GlobalMIT* has two parameters, namely the significance
level «, to control the trade-off between goodness-of-fit
and network complexity, and the DBN order 4. Adjusting
a will affect the sensitivity and precision of the discov-
ered network, very much like its affect on the Type-I and
Type-II error of the mutual information test of indepen-
dence. De Campos [26] suggested using high significance
levels, i.e., between 0.999 and 0.9999. We note that for
smaller number of samples, a lower level of significance
a may be necessary to avoid overly penalizing network
complexity. Thus, in our experiments we set o = 0.999
for N, < 100 and a = 0.9999 otherwise. The choice of
a suitable DBN order d, on the other hand, is both
species-specific and data-specific, in particular the data
sampling rate. For example, in mammals, the transcrip-
tional regulatory time delay can be from several minutes
to several tens of minutes, and is composed of two com-
ponents: the TF translation/post-translational process-
ing/translocation time (~ 10.5 = 4 mins), and the target
gene transcription and post-transcription processing time
(~ 20 — 40 mins) [28]. Also, for a higher data sampling
rate, a higher d value is needed to cover the same time
delay. It is also noted that increasing d will decrease the
number of effective data points available for learning. In
our experiments, we experimentally set d from 1 to several
time units, depending upon the sampling rate. Whenever
necessary, gene expression data were discretized using
3-state quantile discretization.

Small scale E. Coli network
We study the E. coli SOS system [34] which involves lexA,
recA and more than 30 other genes they directly regu-
late. In normal condition, LexA binds to the promoter
regions of these genes and acts as a master repressor.
When the DNA is damaged, the RecA protein senses the
damage and triggers LexA autocleavage. Drop in LexA
level leads to de-repression of the SOS genes. When DNA
repair completes, RecA stops mediating LexA autocleav-
age, LexA accumulates and represses the SOS genes again.
We used the expression data gathered in [34] for 8 genes,
namely uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA and
polB, to reconstruct the interactions between these genes.
The data set contains 4 time series, each of 50 observa-
tions taken at 6-minute interval, under two UV exposition
levels. Since the dynamics of each gene in all time series
are similar, we can take the mean value of these time series
as input to the algorithms. Thus, the input data consists of
8 genes x50 observations.

For this small network, GlobalMIT* and BNFinder
require only a few seconds, while BANJO was executed for
10 minutes with 6 threads in parallel. The experimental
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results are reported in Figure 3. GlobalMIT* (d = 1),
BNFinder (BDe & MDL) all returned the same network
in Figure 3(b), with ruvA being disconnected. Overall,
this structure closely reflects the SOS network, in which
the lexA/recA compound acts as a hub that controls the
other genes. BANJO returned the network in Figure 3(c),
in which the hub-structure is basically also identified,
but with several more false interactions between the tar-
get genes, e.g., between umuD and uvrD/uvrA. Note
that the ruvA gene is also disconnected in the BANJO’s
recovered network. When testing with higher orders,
GlobalMIT* discovered a similar hub structure. The most
complete network was discovered at d = 6 in (Figure 3d),
in which all the interactions between lexA/recA and other
genes were recovered. Furthermore, the mutual interac-
tion between lexA and recA were also correctly identified.
Additional experiments to test the effect of data dis-
cretization on this data set are presented in the online
supplementary material (Additional File 2).

Medium scale synthetic network for glucose homeostasis

We study a glucose homeostasis network of 35 genes
and 52 interactions, first proposed by Le et al. [35]. The
network, which shows the genetic interactions that con-
trol glucose metabolism in perinatal hypatocytes, was the
result of an extensive literature review of the biological
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components affecting perinatal glucose metabolism. Le et
al. [35] modeled the interactions using conditional prob-
ability tables with two discrete states, with the strength
of the interactions chosen to be consistent with biological
variation. They provided a program to generate synthetic
data sets from this network using a static Bayesian net-
work model. It is clear from Figure 4 that the network
has a cascade hierarchical structure, and is reasonably
complex, with several genes being regulated by multi-
ple transcription factors. In order to create a synthetic
dynamic Bayesian network for testing, we modified Le
et al’s network as follows. First, we organized the nodes
into 4 levels, with the top level comprising of the mas-
ter transcription factors (TFs), and the interaction order
between nodes in adjacent levels assumed to be one. The
network in Figure 4 thus contains time-delayed interac-
tions of orders 1 (13 edges), 2 (23 edges) and 3 (16 edges).
Then, from the data generated by Le et al’s program,
we simply shifted forward the expression profiles of the
2nd-, 3rd- and 4th-level nodes by 1, 2 and 3 time units
respectively to create data for this DBN model. We gen-
erated ten time series of 125 observations, then for each
N € {25,50,75,100, 125} we took the first N observations
of these series for testing. Since the network structure
in this experiment is known in advance by design, we
can calculate the true positive (TP), false positive (FP)
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Figure 4 The hepatic glucose homeostasis network: black, blue, red colors for 1st-, 2nd- and 3rd-order interactions respectively.

and false negative (FN) edges. The mean=+standard devia-
tion values for the performance metrics, namely sensitivity
(=TP/(TP+FN)), precision (=TP/(TP+FP)) and runtime,
over 10 time series for all algorithms are reported in
Table 1.

It is noted that we have omitted BNFinder+BDe in this
experiment. The reason is that this algorithm becomes too
expensive even for this medium network. For example, at
N = 25, BNFinder+BDe requires around 1 minute. The
execution time quickly increase to 1206 £167 mins at N =
50. And at N = 75, we could not even complete analyzing
the first of the 10 datasets: the execution was abandoned
after 3 days, with BNFinder+BDe having learnt the par-
ents for only 2 nodes. Of the algorithms reported in
Table 1, GlobalMIT, BANJO and BNFinder+MDL are lim-
ited to learning the 1st-order DBN. It can be observed
that GlobalMIT and BNFinder+MDL learned networks
with similar sensitivity and precision, with both perfor-
mance metrics improving as N increased. On the other
hand, BANJO achieved a slightly better sensitivity, but at
the cost of a significantly lower precision. This observa-
tion is in concordance with our earlier experiment on the
E. coli SOS network, in which BANJO also learned many
more edges than GlobalMIT* and BNFinder. This result
also highlights the major advantage of deterministic global
optimization based approaches (GlobalMIT*, BNFinder)
over stochastic global optimization based method such as
BANJO. Wherever applicable, these methods never get
stuck in local minima, and are able to deliver consis-
tent and high quality results. Of course, BANJO on the
other hand is the choice for very large datasets where
deterministic methods are computationally infeasible.

As for higher-order DBN learning algorithms, both
GlobalMIT* and GlobalMIT" (with d = 3) achieves sig-
nificantly better sensitivity compared to first-order DBN
learning algorithms (GlobalMIT, BNFinder, BANJO). The
improved sensitivity is mainly credited to the abil-
ity of these algorithms to cover all the possible time-
delayed interactions between the genes. More specifi-
cally, at N = 125, GlobalMIT" discovers on average 16.9
high-order interactions, i.e., 43% of the total high-order

interactions. Meanwhile, BANJO and BNFinder+MDL
only recover on average 5.5 (14%) and 4.6 (12%) high-
order interactions respectively. It is also noticeable from
this experiment that GlobalMIT" delivered results almost
identical to GlobalMIT* but with a much shorter time,
comparable to the 1st-order GlobalMIT.

Large scale cyanobacterial genetic networks

This section presents our analysis on a large scale
cyanobacterial network. Cyanobacteria are the only
prokaryotes that are capable of photosynthesis, and in
recent years have received increasing interest [36], due to
their high efficiency in carbon sequestration and poten-
tial for biofuel production (up to 30 times more efficient
than terrestrial oilseed crops). These organisms therefore
are credited with holding the key to solving two of the
most critical problems of our time, namely climate change
and the dwindling fossil fuel reserves. Despite their evo-
lutionary and environmental importance, the study of
cyanobacteria using modern high throughput tools and
computational techniques has somewhat lagged behind
other model organisms. Herein, we focus on Cyanothece
sp. 51142, hereafter Cyanothece, a unicellular cyanobacte-
rial strain that is involved not only in photosynthesis but
also in nitrogen fixation in the same cell. As a byprod-
uct of nitrogen fixation, Cyanothece has been recently
shown to produce biohydrogen at very high rates that are
several fold higher than previously described hydrogen-
producing photosynthetic microbes [37].

We used transcriptomic data from [36], where samples
from cells grown in alternating 12h light-dark cycles
were collected every 4h over a 48h time course. We
analyze the subset of 733 genes that have a 2-fold expres-
sion in at least one of the 12 time points, as pub-
lished in [36]. Since the sampling gap of 4h in this
experiment is relatively large as compared to regular
biological regulatory time lag, we used spline interpo-
lation to interpolate two more data points in between
each two actual measurements, i.e., upsampling the given
time series at an 1h20’ interval. The resulting data
set thus contains 733 genesx34 time points. For this



Table 1 Experimental results for the hepatic glucose homeostasis network

GlobalMIT (d = 1) GlobalMIT" (d = 3) GlobalMIT* (d = 3) BANJO BNFinder+MDL
N Pr Se Time Pr Se Time Pr Se Time Pr Se Time Pr Se Time
25 75+£17 9+2 0+0 67 +38 185 0+0 64+ 12 185 0+0 1242 2243 10+0 64+ 17 942 0+0
50 82+ 14 1943 0+0 80+ 10 35+3 0+£0 77 £12 35+4 0+0 25+£5 276 10£0 88+ 12 18+4 1£0
75 85+12 24+3 0+0 85+6 45+4 0+£0 81+8 46 £ 4 9+0 34+4 28+2 10£0 85+ 11 23+3 7+0
100 9447 2442 240 98 + 4 46+ 4 0+0 98+ 4 46+ 4 1M+0 415 2943 11+0 85+38 2543 14+0
125 91+8 2542 240 97 +£ 4 50+3 240 97 +4 50+ 4 482 439 43+ 4 30+3 482 + 39 82438 2742 2040

Se: percent sensitivity; Pr: percent precision; Time: in minutes.
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large network, we employed the GlobalMIT version,
with order d = 3 (which indeed covers one time point
lag on the original data set). GlobalMIT" inferred the
network as in Figure 5(a) after 14.5 mins of execution
time. Upon visualization with Cytoscape [38] using a
standard layout algorithm, the network shows a clear
scale-free topology, with the majority of nodes having
only a few connections and a small number of hubs
having many connections. The node degree in a scale-free
network distributes according to a power-law distribu-
tion, P(x) o« x7, with the scaling parameter y typi-
cally between 2 and 3 for various networks in nature,
society and technology. The scale-free property is thought
to be a key organization feature of cellular networks,
as supported by recent analysis on model organisms
such as S. cerevisiae and C. elegans [39,40]. It is noted
that some authors use the scale-free property as the
prior input for their algorithms to, either encourage or
enforce them to produce scale-free networks as output
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[40,41]. Herein however, we have not used any such prior
information.

To formalize this observation, we fit the node degree
(counting both in- and out-degree) in the GlobalMIT"
inferred network to the power-law distribution using
the method of maximum likelihood (ML). The ML esti-
mate for y in this network is 2.24, falling well within
the typical range. From Figure 6 it can be seen that
the observed degree distribution fits well with the the-
oretical P(x) = x~2?* curve. In order to verify that
the scale-free structure is not merely an artefact of
the inference algorithm, we test GlobalMIT" with the
same parameters on the same microarray data set, but
with every gene expression profile randomly shuffled.
The resulting network is shown in Figure 5(b). Using
the same layout algorithm, no clear modular structure
and hubs are visually recognizable for this network.
Also, as clear from Figure 6, the node degree distri-
bution largely deviates from a power-law curve, being

(c) BNFinder+MDL

connectivity.

Figure 5 The Cyanothece sp. 51142 reconstructed genetic networks, visualized with Cytoscape. Node size is proportional to the node

N o

(d) BANJO
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very short-tailed with the largest hubs having only 7
connections.

We next tested BNFinder and BANJO on this data set.
BNFinder+BDE was abandoned after 3 days of execu-
tion without finishing. BNFinder+MDL on the other hand
is relatively fast, requiring only 4 mins. The resulting
network, shown in Figure 5(c), also exhibits a scale-free
structure. The ML estimate for y in this network is, inter-
estingly, 2.25, very close to that of the GlobalMIT" net-
work. BANJO was run with 6 threads for 1h. The resulting

Table 2 Functional enrichment analysis for the top 20 hubs

network, shown in Figure 5(d), does not appear to possess
a scale-free topology, and the node degree distribution
also largely deviates from a power-law curve. In fact, the
BANJO network node degree distribution resembles that
of a random Erdds-Rényi graph with the same number of
nodes and connections (Figure 6).

We next perform functional enrichment analysis for the
top hubs in each network. For this purpose, we gathered
annotation data for Cyanothece sp. 51142 from Cyanobase
[42, access May 2011]. Cyanobacteria in general and

GlobalMIT" network

Hub Degree Enriched function Corrected p-value
cce 4432 16 Nitrogen fixation 4.5E-5
cce_3394 16 Nitrogen fixation 1.7E-5
cce_3974 14 Photosynthesis, dark reaction 14E-2
cce_0997 13 Photosystem | 1.3E-5
cce-0103 12 Plasma membrane proton-transporting 1.7E-5
cce 0589 11 Signal transducer 94E-3
cce-1620 10 Photosystem Il reaction center 2E-2
cce 1578 10 Structural constituent of ribosome 1E-2
cce 2038 10 Response to chemical stimulus 4.5E-2
cce 4486 9 Photosynthetic membrane 31E-2

BNFinder+MDL network
cce 3394 20 Nitrogen fixation 3.7E-8
cce_3377 17 Proton-transporting ATPase activity 2.1E-7
cce_3898 15 Structural constituent of ribosome 2.5E-1
cce 1943 11 peptidoglycan biosynthetic process 34E-2
cce 2639 9 thiamine-phosphate kinase activity 2182
cce-1620 8 Photosystem Il reaction center 1E-2
BANJO network

cce 4663 10 Calcium ion binding 34E-2
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Cyanothece in particular are not very well annotated. For
example, to date, nearly half of Synechocystis sp. PCC
6803’s genes, the best studied cyanobacterium, remain
unannotated. Therefore, we supplemented Cyanobase
annotation with homology search using the Blast2GO
software suit [43]. In total, these combined efforts gave us
annotation data for 542 out of 733 genes in our study. We
then employed BiNGO [44] for gene ontology functional
category enrichment analysis, using the hypergeomet-
ric test for functional over-representation, and False
Discovery Rate (FDR) as the multiple hypothesis testing
correction scheme. Only a corrected p-value of less than
0.05 is considered significant. Following these procedures,
of the top 20 hubs in the GlobalMIT" network, 10 were
found to be significantly enriched in major Cyanothece
cellular processes, such as nitrogen fixation, photosyn-
thesis and other closely related pathways, as presented
in Table 2. Since the wet-lab experimental setting herein
involves alternative light-dark cycles, this result is found
to be highly biologically relevant. Cyanothece strains
thrive in marine environments, and in addition to car-
bon fixation through photosynthesis, these bacteria can
also perform nitrogen fixation by reducing atmospheric
dinitrogen to ammonia. Since the nitrogenase enzyme is
highly sensitive to oxygen, Cyanothece temporally sepa-
rates these processes within the same cell, so that oxygenic
photosynthesis occurs during the day and nitrogen fix-
ation during the night [36]. Thus, under normal growth
condition with regular dark-light cycles and without
any stress, it could be expected that photosynthesis and
nitrogen fixation are the two most active Cyanothece cel-
lular processes. This is reflected clearly in the GlobalMIT"
reconstructed network. Upon inspecting BNFinder+MDL
network, 6 out of the top 20 hubs were found to be signif-
icantly enriched, also in major relevant cellular processes.
It is noted that while GlobalMIT" show the most hubs,
BNFinder+MDL manages to recover several hubs with
significantly better corrected p-value. In particular, 3 hubs
for nitrogen fixation, proton transport and ribosome were
recovered with significantly smaller corrected p-value.
However, as opposed to GlobalMIT", other important
functional hubs for photosynthesis, photosystem I &
II were missing. BANJO on the other hand produced
relatively poor result, with only 1 out of 20 top hubs
turned out to be significantly enriched, but not related
to any major cellular pathway. The overall results suggest
that both GlobalMIT" and BNFinder+MDL successfully
reconstructed biologically plausible network structures,
i.e., scale-free with a reasonable scaling parameter value,
and with functionally enriched modules relevant to the
wet-lab experimental condition under study. GlobalMIT"
managed to produce more enriched hubs, as a result of
the higher order DBN model employed and the improved
MIT scoring metric. BANJO on the other hand, generally
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failed to produce a plausible network structure. This
experimental result thus highlights the advantage of
deterministic global optimization approach, as employed
by GlobalMIT" and BNFinder+MDL, versus a stochastic
global optimization approach as employed by BANJO.

Conclusion

In this paper, we have introduced GlobalMIT" and
GlobalMIT*, two DBN-based algorithms for reconstruct-
ing gene regulatory networks. The GlobalMIT suite makes
use of the recently introduced MIT scoring metric, which
is built upon solid principles of information theory, having
competitive performance compared against the other tra-
ditional scoring metrics such as BIC/MDL and BDe. In
this work, we have further shown that MIT possesses
another very useful characteristic in that when placed
into a deterministic global optimization framework, its
complexity is very reasonable. As theoretically shown and
experimentally verified, GlobalMIT exhibits a much lower
complexity compared to the BDe-based algorithm, i.e.,
BNFinder+BDe, and is comparable with the MDL-based
algorithm, i.e., BNFinder+MDL. GlobalMIT*/* are also
designed to learn high-order variable time delayed genetic
interactions that are common to biological systems. Fur-
thermore, the GlobalMIT* variant has the capability of
reconstructing relatively large-scale networks. As shown
in our experiments, GlobalMIT*/* are able to reconstruct
genetic networks with biologically plausible structure and
enriched submodules significantly better than the alter-
native DBN-based approaches. Our current and future
study of GlobalMIT*/* mainly focuses on the applica-
tion of these newly developed algorithms to elucidate
the gene regulatory network of Cyanothece, Synechocys-
tis, Synechococcus amongst other cyanobacteria strains
having high potential for biofuel production and carbon
sequestration.
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