
Cui and Wang BMC Bioinformatics 2012, 13:146
http://www.biomedcentral.com/1471-2105/13/146

SOFTWARE Open Access

Identifying mutation regions for closely related
individuals without a known pedigree
Wenjuan Cui and Lusheng Wang*

Abstract

Background: Linkage analysis is the first step in the search for a disease gene. Linkage studies have facilitated the
identification of several hundred human genes that can harbor mutations leading to a disease phenotype. In this
paper, we study a very important case, where the sampled individuals are closely related, but the pedigree is not
given. This situation happens very often when the individuals share a common ancestor 6 or more generations ago.
To our knowledge, no algorithm can give good results for this case.

Results: To solve this problem, we first developed some heuristic algorithms for haplotype inference without any
given pedigree. We propose a model using the parsimony principle that can be viewed as an extension of the model
first proposed by Dan Gusfield. Our heuristic algorithm uses Clark’s inference rule to infer haplotype segments.

Conclusions: We ran our program both on the simulated data and a set of real data from the phase II HapMap
database. Experiments show that our program performs well. The recall value is from 90% to 99% in various cases. This
implies that the program can report more than 90% of the true mutation regions. The value of precision varies from
29% to 90%. When the precision is 29%, the size of the reported regions is three times that of the true mutation
region. This is still very useful for narrowing down the range of the disease gene location. Our program can complete
the computation for all the tested cases, where there are about 110,000 SNPs on a chromosome, within 20 seconds.

Background
Linkage analysis is the first step in the search for a dis-
ease gene. The aim is to find the rough location (a region
in which the disease gene is) of the gene in the chromo-
some. Linkage studies have facilitated the identification
of several hundred human genes that can harbor muta-
tions leading to a disease phenotype [1]. The principle
of linkage analysis is simple. All our chromosomes come
in pairs, one inherited from the mother and the other
from the father. Each pair of chromosomes contains the
same genes in the same order, but the sequences are not
identical. Thus it is possible to find out whether a par-
ticular sequence comes from the mother or father. These
sequence variants are called maternal and paternal alleles.
The key problem for linkage analysis is to infer the pairs of
alleles and identify regions whose allele is shared by all or
most of the diseased individuals but by none or few of the
normal individuals.

*Correspondence: cswangl@cityu.edu.hk
Department of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong

Linkage analysis has been extensively studied in recent
years. Almost all the existing methods are for families
with clearly given pedigrees. The pedigree information
helps a lot in the design of computational methods.
Early approaches to linkage analysis were based on sparse
microsatellite markers. With the new development of
microarray techniques, high-density SNP genotype data
can be used for large-scale and cost-effective linkage anal-
ysis [2,3]. With high-density SNP genotype data, there
exists a sufficient number of informative markers between
every pair of recombination points, and the allele-sharing
status among the family members can be unambiguously
determined. Lots of new computer programs have been
developed for dealing with high-density SNP genotype
data.
There are two categories of existing approaches to link-

age analysis, the probabilistic approaches and the deter-
ministic approaches. In probabilistic approaches, recom-
binant rates are estimated in a way to maximize the likeli-
hood of the observed data [4-7]. Software tools based on
this kind of approach include GeneHunter [5], LINKAGE
[8], Allegro [6], Merlin [7], etc. According to [2], these

© 2012 Cui and Wang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 2 of 14
http://www.biomedcentral.com/1471-2105/13/146

tools have different performances and efficiencies. Some
of them (such as those based on the Elston-Steward algo-
rithm [9]) do not work well when the number of markers is
large, while the others (such as those based on the Lander-
Green algorithm [4]) do not work well with large number
of family members. Though tremendous improvement
has beenmade to them through subsequent modifications
[6,7], this still remains a problem in practice. On the other
hand, these tools can give very accurate results when the
size of the pedigree is small.
Some deterministic approaches have been developed

recently. The main idea is to infer the haplotype segments
based on the input genotype data so that all or most of
the diseased individuals share a segment that is shared by
none of the normal individuals [10,11]. The mathemati-
cal model used here is to minimize the total number of
recombinants among all the individuals in the pedigree.
Lots of algorithms for haplotype inference with a pedi-
gree have been developed. Qian and Beckmann [12] and
Tapader et al. [13] proposed a method to minimize the
number of recombinants with a given pedigree. Zhang
et al. [14] developed a program for general pedigrees
assuming that there is no recombinant on the segment.
Doi et al. [15] designed two algorithms for haplotype
inference with a given pedigree. One of their algorithms
works well when the number of marker loci is a fixed con-
stant, while the other works well when the number of fam-
ily members is bounded by a small constant. Li and Jiang
[16,17] proposed to use an integer linear programming
approach for minimum recombinant configuration. Xiao
et al. [18] designed a faster algorithm for the case where
there is no recombinant. The algorithm in [10] uses a set
of heuristics for haplotype inference with a given pedi-
gree and can give very accurate results when the number
of family members is large enough and for each nuclear
family the genotype data for both parents are available.
An extended software package (called LIden) was devel-
oped in [19] and it focuses on handling the case where
the genotype data for the whole chromosome of one of
the parents in a nuclear family are missing. It also uses
the minimum recombinant model for haplotype inference
in pedigrees.
Throughout this paper, we study the dominant inheri-

tance situation, where sharing of one mutation allele can
cause a disease phenotype. We deal with a very important
case, where the sampled individuals are closely related,
but the pedigree is not given. This situation happens very
often in lots of villages in China when the individuals share
a common ancestor 6 or more generations ago. Handling
this case will be very helpful to identify some local genetic
diseases in China. The situation also happens when study-
ing wild animals, where the pedigree can not be identified.
To our knowledge, no algorithm can give good results
for this case. To solve this problem, we first developed

some heuristic algorithms for haplotype inference with-
out any given pedigree. We propose a model using the
parsimony principle that can be viewed as an extension
of the model first proposed in [20,21]. Our heuristic algo-
rithm uses Clark’s inference rule [22] to infer haplotype
segments. Experiments show that our program performs
well. The recall value is from 90% to 99% in various cases.
This implies that the program can report more than 90%
of the true mutation regions. The value of precision varies
from 29% to 90%. When the precision is 29%, the size of
the reported regions is three times that of the true muta-
tion region. This is still very useful for narrowing down
the range of the disease gene location. Our program can
complete the computation for all the tested cases, where
there are about 110,000 SNPs on a chromosome, within
20 seconds.

Implementation
Our software is implemented in Java. It takes the genotype
data on a chromosome as well as the disease status for
a set of input individuals without any pedigree informa-
tion as input, and outputs the predicted mutation regions.
The software is platform independent. In the following,
we show the methods we used and how we implemented
our algorithm.

The problem
Suppose that there is a (hidden) pedigree containing many
(e.g., 5 to 7) generations, where we only have the geno-
type data on a chromosome for the individuals in the
latest generation (or the latest two generations). Here
those individuals with given genotype data are referred
to as the input individuals. For each input individual, we
also know if such an individual is diseased or normal. An
example is given in Figure 1, where there are five gen-
erations in the pedigree and we only have the genotype
data for the individuals in the dashed rectangle at the
bottom of the pedigree. In such a figure, a square repre-
sents a male, while a circle represents a female. Moreover,
a filled square (respectively, circle) represents a dis-
eased male (respectively, female), while an unfilled square
(respectively, circle) represents a normal male (respec-
tively, female). Furthermore, if two squares (respectively,
circles) enclose the same number in the figure, then they
correspond to the same male (respectively, female) and
their sides (respectively, circumferences) are dashed.
For a genotype segment g of length L, the value at each

position of g can be 0,1, or 2. A position of g with 0 indi-
cates that both haplotypes have 0 at this position, while a
position of g with 1 indicates that both haplotypes have
1 at this position. If the value at a position is 2, then one
of the haplotypes is 0 while the other is 1 at this posi-
tion. A pair of haplotype segments (h, h′) is a haplotype

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 3 of 14
http://www.biomedcentral.com/1471-2105/13/146

Figure 1 Pedigree 1: a pedigree with 2 diseased individuals in the input. There are 5 generations in the pedigree. The filled squares (circles)
represent the diseased individuals. In the latest generation of this pedigree, 2 out of 10 individuals are diseased, which are numbered 44 and 48.

pair for a genotype segment g if they satisfy the following
conditions:

C1. If the value of g is 0 (or 1) at a position, the values
of h and h′ at this position are both 0 (or 1).
C2. If the value of g is 2 at a position, one of h and h′
is 0 and the other is 1 at this position.

We also say that the pair of haplotype segments (h, h′)
can explain g.
Throughout this paper, we study the dominant inher-

itance situation, where sharing of one mutation allele
can cause a disease phenotype. The general problem is
as follows: we are given two sets of genotypes on the
whole chromosome D = {G1,G2, . . . ,Gk} and N =
{Gk+1,Gk+2, . . . ,Gn}, where the k genotypes inD are from
diseased individuals and the n − k genotypes in N are
from normal individuals. The n individuals inD andN are
closely related (in the same hidden pedigree). The objec-
tive is to detect themutation regions on the chromosome,
where all the diseased individuals share a common hap-
lotype segment on the mutation region and none of the
normal individuals has such a common haplotype seg-
ment on the mutation region. Note that each individual
has two haplotype segments on each region. If we know
the haplotypes of each input individual over the chromo-
some, the shared mutation regions can be computed by
finding the haplotype segments which are shared by all the
diseased individuals but by none of the normal ones. The
truemutation region is a shared mutation region contain-
ing the disease gene. Therefore, to solve the problem, the
key issue is to infer the haplotype segments.
The task of inferring the haplotypes of each individual

over the whole chromosome is extremely hard. For our
purpose, we divide the whole chromosome into a set of

disjointed length L segments, where L is a parameter to
be determined later. For each length L segment, we try to
infer the two haplotype segments of each individual based
on the following mathematical model.

Mutation Region Haplotype Inference Problem (MRHIP)
Given two sets DR = {gR1 , gR2 , . . . , gRk } and NR = {gRk+1,
gRk+2, . . . , g

R
n } of genotype segments on a length L region R,

where the first k genotype segments in DR are from dis-
eased individuals and the n − k genotype segments in NR

are from normal individuals, we want to compute a center
haplotype segment hR and a pair of haplotype segments
hRi,1 and h

R
i,2 for each gRi inDR∪NR, such that the following

conditions hold:

(1) hRi,1 = hR for any gRi ∈ DR.
(2) hRt,r �= hR for gRt ∈ NR and r = 1, 2;
(3) the total number xR of distinct haplotype segments

on R is minimized.

Without loss of generality, we assume that all the geno-
type segments on R in DR are distinct. Similarly, all the
genotype segments on R in NR are also distinct. However,
a genotype segment on R from a diseased individual and
a genotype segment on R from a normal individual may
be identical. In this case, such a genotype segment on R
should be in both DR and NR.
Condition (1) makes sure that all the diseased individ-

uals have a haplotype segment which is identical to the
center haplotype segment hR. Condition (2) ensures that
all the normal individuals do not have hR. Condition (3)
uses the parsimony principle, i.e., we want the total num-
ber of distinct haplotype segments to be minimized. Due
to condition (3), this mathematical model can be viewed
as an extension of the parsimony model first proposed

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 4 of 14
http://www.biomedcentral.com/1471-2105/13/146

by Gusfield in [20] for haplotype inference. The parsi-
mony model has been extensively studied in [20,21,23,24].
MRHIP can be viewed as a simplified version of the Max-
imum Resolution (MR) Problem which is proved to be
NP-hard in [20].
It should be emphasized that for some input of MRHIP

on a region R, the solution of MRHIP may not exist. Even
if the solutions exist, the values of xR may vary for different
inputs. If R is themutation region, the solution forMRHIP
on R always exists and the value of xR should be small.
Our approach contains three steps. First, we decompose

the whole chromosome into a set of disjointed length L
(L = 500) segments and try to give a solution for MRHIP
on each length L segment. We then have an algorithm
to merge length L segments based on the computational
results to form longer segments and try to get solutions
for MRHIP on those longer segments. After that, we have
a method to further extend the longer segments to the left
and right. Finally, our algorithm reports all the detected
mutation regions.

The algorithm for MRHIP
For the Mutation Region Haplotype Inference Prob-
lem(MRHIP), we designed an algorithm to solve it. Given
an instance of MRHIP, there may or may not exist a
solution. If a solution does not exist, there are two cases:

1. There does not exist a center haplotype hR which is
shared by all the genotype segments in DR. This case
is referred to as type I. Type I cases occur when one
element in DR has genotype value 0 and the other
element in DR has genotype value 1.

2. We can find a center haplotype hR, but some
genotype segments in NR must be explained by a pair
of haplotype segments and one of the haplotype
segments is identical to hR. This case is referred to as
type II.

An example of a type II case is the following:DR = {g1 =
111, g2 = 121}, and NR = {g3 = 112, g4 = 102}. Based
on g1 and g2, the shared center haplotype hR must be 111.
However, g3 indicates that normal individuals also have
a haplotype segment 111 on R which is identical to the
shared center hR. Thus, condition (2) in MRHIP does not
hold.
In our algorithm, we first compute the center haplo-

type hR based on the diseased genotype segments in DR.
We look at the positions in R one by one. Based on C1
and C2, if one of the diseased individuals has genotype
value 0, then the haplotype value of hR at this position
should be 0; if one of the diseased individuals has geno-
type value 1 at a position, then the haplotype value of hR
at this position should be 1. If there exists a position p at
which one diseased individual has genotype value 0 and

the other diseased individual has genotype value 1, then a
conflict occurs and position p is called a conflicting posi-
tion. Once a conflict occurs, we simply conclude that there
is no MRHIP solution on this segment R. We say the Type
I False occurs in this case. If all the diseased individuals
have genotype value 2 at a position p in R, then the haplo-
type value of hR cannot be determined at this step. We call
such a position the wild card position and put a ∗ at the
wild card position to indicate that the haplotype value of
hR will be determined later. The detailed procedure (Pro-
cedure P1) for computing the center haplotype segment
hR is given as follows:
for each position p in R do

1. if all the diseased individuals have genotype value 0
or 2, then set the haplotype value of hR at p to 0.

2. if all the diseased individuals have genotype value 1
or 2, then set the haplotype value of hR at p to 1.

3. if some diseased individuals have genotype value 0
and some other diseased individuals have genotype
value 1, then return Type I False.

4. if all the diseased individuals have genotype value 2,
then set the haplotype value of hR to ∗ (indicating that
the haplotype value of hR will be determined later).

Without loss of generality, for each diseased individual
gRi ∈ DR, we set hRi,1 = hR for i ≤ k. Then we can set
hRi,2 in such a way that (hRi,1, h

R
i,2) is a haplotype pair for

gRi with i ≤ k. Note that, the values of (hRi,1, h
R
i,2) at wild

card positions in R are still not yet determined. Here we
refer to hRi,2 as a partially inferred haplotype segment on
R. Let intQ = {hR1,2, hR2,2, . . . , hRk,2}, where if two haplotype
segments hRi,2 and hRi′,2 are identical, then we just keep one
of them. Note that if any haplotype segment hRi,2 ∈ intQ
is undetermined at a position p, then all the haplotype
segments in intQ are undetermined at p.
After partially determining hR and (hRi,1, h

R
i,2) for every

gRi in DR, we use a heuristic method to infer the haplotype
segments for gRi ∈ NR. Since we want to minimize the
total number of resulting distinct haplotype segments on
R, our strategy is to let the inferred haplotype segments for
gRi ∈ NR share as many haplotype segments as possible.
This is actually Clark’s inference rule [22].
LetQ be a queue that contains a set of (partially) inferred

haplotype segments on R. Initially, Q = intQ. A par-
tially inferred haplotype segment h in Q can solve gRj if the
following conditions hold:

1. if h is 0 at a position p then gRj is 0 or 2 at position p.
2. if h is 1 at a position p then gRj is 1 or 2 at position p.

We can use h to solve gRj by constructing two haplotype
segments (hRj,1, h

R
j,2) as follows:

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 5 of 14
http://www.biomedcentral.com/1471-2105/13/146

Using h to solve gRj :

1. if h is 0 at position p in R then we set hRj,1 = 0 at p
and hRj,2 at p is set according to rules C1 and C2.

2. if h is 1 at position p in R then we set hRj,1 = 1 at p
and hRj,2 at p is set according to rules C1 and C2.

3. if h is undetermined at position p in R, and gRj is 0
(or 1) at p, then set hRj,1 = h = hRj,2 = 0 (or
hRj,1 = h = hRj,2 = 1) at p. Here we also have to
determine the value of h at position p accordingly.
After the undetermined value of h at p is
determined, if h is obtained from a gRi ∈ DR, then we
also have to determine the values of hR and other hRi,2
for gRi ∈ DR at position p according to the haplotype
value of h at p and rules C1 and C2.

4. if h is undetermined at position p in R, and gRj is 2 at
p, then hRj,1 and hRj,2 remain undetermined at p.

A genotype segment gRi ∈ NR is solved if the pair of
haplotype segments (hRi,1, h

R
i,2) for g

R
i are (partially) deter-

mined. In our algorithm, we use P to store the set of
genotypes in NR that have not been solved. Initially, P =
NR. We then use the haplotype segments in Q one by one
and try to solve each of the genotypes in P. After trying
to use a h ∈ Q to solve all gRj ’s in P, we delete h from Q.
Two haplotype segments on R in Q are compatible if there
does not exist any position p in R such that one segment
has value 0 and the other segment has value 1 at p. For
two compatible haplotype segments h1 and h2 on R, we
can merge them to form one haplotype segment h, where
the value of h is determined as 0 or 1 if at least one of h1
and h2 is 0 or 1 and the value of h remains undetermined
if both h1 and h2 are undetermined. Again, for any posi-
tion p, if the value of h1 or h2 is not identical to that of h,
then the value of h1 or h2 is changed from undetermined
to 0 or 1. Thus, we have to update some of the previously
inferred haplotype segments accordingly.
When we use a h ∈ Q to solve a gRj in P, we can obtain

another new haplotype segment h′ on R. If h′ is com-
patible with a haplotype segment in Q, we then merge
them. Note that, h′ might be compatible with more than
one haplotype segment in Q. In this case, we arbitrarily
choose a compatible haplotype segment in Q and merge
the two haplotype segments. If h′ is not compatible with
any haplotype segment in Q, we add h′ into Q.
We give an example to illustrate the above process.

Example 1. DR = {g1 = 10211, g2 = 12221, g3 = 10221}
andNR = {g4 = 10121}. After Procedure P1, hR = 10∗11
and consequently intQ = {h1,2 = 10 ∗ 11, h2,2 = 11 ∗
01, h3,2 = 10 ∗ 01}. After that , we can use h1,2 = 10 ∗ 11
in intQ to solve g4 = 10121 in NR. Based on h1,2 =

10 ∗ 11, g4 = 10121 can be solved as h4,1 = 10111 and
h4,2 = 10101. Moreover, since we want h1,2 and h4,1 to be
identical (to minimize the number of distinct haplotype
segments), h1,2 is updated as h1,2 = 10111. Correspond-
ingly, we update hR = h1,1 = 10011, h1,2 = 10111,
h2,2 = 11101,and h3,2 = 10101. After that, the set of
distinct haplotype segments we have obtained so far is
{hR = 10011, h1,2 = h4,1 = 10111, h2,2 = 11101, h3,2 =
10101, h4,2 = 10101}. Note that h3,2 and h4,2 are compat-
ible (actually identical), and the set of distinct haplotype
segments is {hR = 10011, h1,2 = h4,1 = 10111, h2,2 =
11101, h3,2 = h4,2 = 10101}.

After trying to use all the h’s in Q to solve all gRj ’s in P,
Q will become empty. When Q is empty and P still con-
tains at least two genotype segments, we consider all pairs
of genotype segments gRj and gRj′ in P and use the follow-
ing method to infer the haplotype segments. Inferring the
haplotype segments from a pair gRj and gRj′ in P:
A position p in R is a conflicting position for gRj and gRj′

if one of gRj and gRj′ has the genotype value 0 and the other
has genotype value 1 at p. The pair of gRj and gRj′ can share a
common haplotype segment on R if there is no conflicting
position in R for gRj and gRj′ . The shared haplotype segment
can be computed as follows: (1) if one of the genotype val-
ues at position p is 0, then the haplotype value is 0 at p;
(2) if one of the genotype values is 1 at p, then the haplo-
type value is 1 at p; (3)if both genotype values are 2 at p,
then the haplotype value at p is undetermined. Once the
shared haplotype segment for gRj and gRj′ are computed, we
can determine the other haplotype segments for gRj and gRj′
based on C1 and C2.
After inferring the haplotype segments from a pair gRj

and gRj′ that can share a common haplotype segment, we
delete gRj and gRj′ from P, merge compatible inferred hap-
lotype segments, and insert the newly obtained haplotype
segments into Q. Once Q is not empty, we can use hap-
lotype segments in Q to solve the genotype segments in
P again. The process is repeated until P is empty. The
detailed algorithm is given as Algorithm 1.

Algorithm 1
Mutation Region Haplotype Inference
Input: Two sets of genotype segments DR = {gR1 , gR2 , . . . ,
gRk } and NR = {gRk+1, g

R
k+2, . . . , g

R
n } on R.

Output: True if there is a solution. Type I false if two
diseased haplotype segments are conflict at a position in
R; Type II false otherwise.

1: Compute the center haplotype hR as in Procedure P1.
2: if hR does not exist then
3: return Type I False

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 6 of 14
http://www.biomedcentral.com/1471-2105/13/146

4: else
5: set hRi,1 = hR for gRi ∈ DR;
6: compute hRi,2 according to hRi,1 and C1 and C2 for

each gRi ∈ DR; Set Q = {hR1,2, hR2,2, . . . , hRk,2}
(removing identical segments) and P = NR.

7: end if
8: while Q �= ∅ and P �= ∅ do
9: Delete a haplotype segment hRi,2 from Q;
10: if hRi,2 can solve gRj then
11: use hRi,2 to solve gRj . Add the newly

obtained haplotype segments (after
merging compatible segments) into Q and
delete gRj from P.

12: end if
13: end while
14: if there are at least 2 genotype segments in P then
15: if there exists a pair of genotype segments gRj and

gRj′ that can share a haplotype segment on R then
16: infer the haplotype segments of gRj and gRj′

and insert them (after merging) into Q,
goto line 8.

17: end if
18: if any inferred haplotype segments for some

gRj ∈ NR on R is identical to hR then
19: return Type II False.
20: end if
21: fix hRs,1 and hRs,2 for each gRs ∈ P so that hRs,1 �= hR

and hRs,2 �= hR.
22: if Line line 21 fails then
23: return Type II False
24: else
25: return True.
26: end if
27: end if

The following is an example to illustrate the case when
Q becomes empty.

Example 2. DR = {g1 = 12110, g2 = 11210} and NR =
{g3 = 21111, g4 = 11121}. After Procedure P1, hR =
11110 and intQ = {10110, 11010}. After trying all the h’s
in intQ to solve gi’s in NR, Q becomes empty and P =
NR = {21111, 11121}. In this case, we look at both 21111
and 11121 in P and infer a shared haplotype h3,1 = h4,1 =
11111 and the other two haplotype segments h3,2 = 01111
and h4,2 = 11101.

The algorithm for the whole chromosome
For an input segment R on a chromosome, if Algorithm
1 returns true, then R is a valid segment. In order to get
the mutation regions, we decompose the whole chromo-
some into a set of disjointed length L segments. (In this

paper, we performed experiments on chromosomes with
about 110,000 SNP sites. In this case, we set L = 500.) For
each segment, we run Algorithm 1 to test if the segment
is valid. After finding all the valid segments, we repeatedly
merge two valid segments into a long valid segment if the
two segments are within 2L SNPs and Algorithm 1 returns
Type II false on all the segments in the gap.After the above
merging process, we obtain several long valid segments.
For each such long valid segment [sb, se), we run Algo-
rithm 1 on the three segments [sb − 0.5L, se + 0.5L),
[sb−0.2L, se+0.2L) and [sb, se) and select the longest one
(denoted as [b, e)) which returns true. Since we impose
that Algorithm 1 returns Type II false for the segments in
gaps in the merging process, we can always ensure that
Algorithm 1 returns true for [sb, se). Extending [b,e) to the
left and right:
After we obtain R =[b, e) as discussed above, we try

to extend the segment [b, e) to the left and right. On the
segment R =[b, e), we have inferred hRi,1 and hRi,2 for each
gRi ∈ DR ∪ NR. These hRi,1 and hRi,2 form a collection of dis-
jointed sets H1,H2, . . . ,Hm, where each Hk (1 ≤ k ≤ m)

is a set of identical haplotypes in {hRi,1, hRi,2|i = 1, 2, . . . , n}
on R.
We extend the segment [b, e) to the left and right by

looking at each position p. We first try p = b − q for
q = 1, 2, . . . (to the left) and then p = e − 1 + q for
q = 1, 2, . . . (to the right). For each Hk (1 ≤ k ≤ m),

1. If there exist some hi,j in Hk such that gi are 0 (or 1)
and others are 2, then every hi,j in Hk should be 0 (or
1). If there exists a hi,j in Hk that has been set to the
conflict value 1 (or 0) before, then we know that
position p is a conflicting position and p should not
be extended to be part of R and the extension process
to the current direction (left or right) should stop.
Otherwise, we set every hi,j in Hk to be 0 (or 1). If p is
not a conflicting position, after setting hi,j in Hk to be
0 (or 1), we can determine the value of hi,j′ (j′ = 1 if
j = 2 and j′ = 2 if j = 1) according to the value of hi,j
at p, the value of gi at p and rules C1 and C2. Again,
we should test if such a value of hi,j′ is consistent with
the value of hi,j′ determined before (if any). If conflict
exists, then p is a conflicting position and the
extension process to the current direction (left or
right) should stop. Let hi,j′ ∈ Hk′ . If there is no
conflict, we should also update the value of all h’s in
Hk′ . This recursive process continues until no further
change can be made.

2. If all hi,j in Hk are 2, we set hi,j as undetermined.

The extension process stops when we find conflicts
in both directions. The extended region obtained from
[b, e) is denoted as [rb, re]. After the extension process,
our program reports all the mutation regions obtained

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 7 of 14
http://www.biomedcentral.com/1471-2105/13/146

in the algorithm. The complete algorithm to find the
mutation regions on the whole chromosome is shown as
Algorithm 2.

Algorithm 2
The algorithm for the whole chromosome
Input: Two sets of genotype on the whole chromosome
D = {G1,G2, . . . ,Gk} and N = {Gk+1,Gk+2, . . . ,Gn}.
Output: The detected mutation regions

1: Decompose the whole chromosome into segments of
length L=500.

2: for each segment do
3: use Algorithm 1 to test if the segment is valid.
4: end for
5: Merge the valid segments (see The algorithm for the

whole chromosome in Implementation, the first
paragraph) to form longer segments.

6: for each segment [sb, se) obtained in line 5 do
7: Select the longest segment of

[sb − 0.5L, se + 0.5L), [sb − 0.2L, se + 0.2L)

and [sb, se) which will return true by calling
Algorithm 1. Denote it as [b, e).

8: Extend [b, e) to get a candidate mutation
region.

9: end for
10: Output all the mutation regions obtained in the for

loop of lines 6-9.

Results
In this section, we first show some experiments on sim-
ulated data. We then give a real case study to show that
our program can also handle real data (with errors). A
discussion is given at the end of this section.

Experiments on simulated data
In order to evaluate the performance of our method and
the feasibility of the mathematical model proposed in
this paper, we write a program in C++ to produce simu-
lated data. The program takes a pedigree (e.g., Figure 1)
and the haplotype data for the whole chromosome of
each founder in the pedigree as the input. It gener-
ates the haplotype data for the remaining individuals in
the pedigree using the standard χ2 model for recom-
bination with m (the degree of freedom divided by 2)
equal to 4 ([25]) and according to the male/female aver-
aged genetic map for chromosome 1 downloaded from
HapMap (http://hapmap.org). Also see [26]. The haplo-
type data of a non-founder in the pedigree are generated
to randomly inherit one strand of the four-strand chro-
matid bundle from each parent of the non-founder. A
mutation point is selected uniformly at random from the
SNP sites of the chromosome. Each diseased offspring is
forced to inherit (from each of its parents) the strand with

the mutation point and the normal offspring are forced
to inherit the strand without the mutation point. In this
way, we can guarantee that there is exactly one true muta-
tion region. Note that the true mutation region must be a
shared mutation region. See Implementation for the def-
inition. Moreover, since we know the haplotype data of
all the individuals in the simulations, we can easily find
the sharedmutation regions. By definition, theremay exist
more than one shared mutation region.
To generate the simulated data, we randomly chose

some of the haplotype data for chromosome 1 of 170 unre-
lated Japanese in Tokyo and Han Chinese in Beijing in the
database of HapMap project (http://hapmap.ncbi.nlm.nih.
gov/) as the haplotype data for each founder. There are
about 110,000 SNP sites on this chromosome.
Recall that our program takes two sets of individuals D

and N and their genotype data as input. After generating
the haplotype data of each individual, we only use some of
the individuals (in the dashed rectangle at the bottom of
the pedigree, say, e.g., Figure 1) and their associated geno-
type (obtained from the simulated haplotype data) data as
the input of our program.
To evaluate the performance of our method, we used

different pedigrees to evaluate our algorithm. Figures 1, 2,
3 and 4 are pedigrees of 5 generations with 2 to 5 diseased
individuals in the dashed rectangle at the bottom. Those
individuals in the dashed rectangle at the bottom of each
pedigree are the input of our program.
The correctly detected mutation regions are the inter-

section of the regions reported by the computer program
and the true mutation region. Here, precision is defined
as the number of SNPs in the correctly detected mutation
regions divided by the total number of SNPs in the regions
output by the program. The value of recall is defined as
the number of SNPs in the correctly detected mutation
regions divided by the total number of SNPs in the true
mutation region. So, if the value of recall is 1, then all
the SNPs in the true mutation region have been reported
by the program. Similarly, if precision is 1, then all the
reported SNPs are in the true mutation region.
We performed 200 experiments for each pedigree. Since

there are about 110, 000 SNP sites on the chromosome, we
set L = 500. For each region [rb, re] reported by our algo-
rithm, we define a score as follows: LetDH be the number
of distinct haplotypes on this region and LENGTH =
(re−rb+1) the length of this region. Then the score of this
region is defined as SCORE = (2 ∗ n − DH) ∗ LENGTH ,
where n is the total number of input genotypes in D ∪ N .
This score can balance the length of the mutation region
and the number of distinct haplotype segments on the
region. With the longer region and smaller DH , the score
becomes higher. To illustrate the quality of our program,
we report the results when our program reports the region
with the highest score and the first three regions with the

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 8 of 14
http://www.biomedcentral.com/1471-2105/13/146

Figure 2 Pedigree 2: a pedigree with 3 diseased individuals in the input. There are 5 generations in the pedigree. The filled squares (circles)
represent the diseased individuals. In the latest generation of this pedigree, 3 out of 10 individuals are diseased, which are numbered 43, 44 and 48.

highest scores, respectively. In fact, our program does not
need this score in the computation. The program simply
reports all the mutation regions. See the Genotype data
error handling in Discussion.
The precision and recall on the experiments are shown

in Table 1. Only the genotype of the individuals in the
latest generation of Pedigree 1 − 4 are known in this
experiment. Several mutation regions may be detected by
our algorithm. In Table 1, the results when our program
reports the region with the highest score are shown in the
columns under “one region”. The results when our pro-
gram reports three regions with the highest scores are
shown in the columns under “three regions”. The preci-
sion and recall are calculated based on the true mutation

region, the reported region(s), and the intersection of the
reported region(s) and the true mutation region. The pre-
cision’ and recall’ are calculated by replacing the true
mutation region with shared mutation regions. The col-
umn “time” indicates the average time of our program by
running 200 experiments on each pedigree.
From Table 1, we can see that the values of recall are

from 82.71% to 98.07% and the values of precision are
from 23.07% to 39.94% in the four pedigrees. When the
number of diseased individuals is increased, the values
of both recall and precision are improved significantly.
When there are 4 or 5 diseased individuals, the value of
recall is more than 97%. That is, the program can report
most of the SNPs in the true mutation region.

Figure 3 Pedigree 3: a pedigree with 4 diseased individuals in the input. There are 5 generations in the pedigree. The filled squares (circles)
represent the diseased individuals. In the latest generation of this pedigree, 4 out of 12 individuals are diseased, which are numbered 43, 45, 49
and 50.

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 9 of 14
http://www.biomedcentral.com/1471-2105/13/146

Figure 4 Pedigree 4: a pedigree with 5 diseased individuals in the input. There are 5 generations in the pedigree. The filled squares (circles)
represent the diseased individuals. In the latest generation of this pedigree, 5 out of 15 individuals are diseased, which are numbered 44, 46, 51, 54
and 55.

In practice, one can often get the genotype data for the
individuals of the latest two generations. Thus, we study
this case by looking at different input individuals based on
the pedigrees in Figures 1, 2, 3 and 4.
Now, we study different sets of input individuals in

the latest two generations of Pedigree 1. These differ-
ent sets of input individuals in the latest two generations
in the pedigree are given in Figure 5, a square/circle
with a slash indicates that such individual is not included
as part of the input though the individual is used in
generating the simulated data. For the rest of test, we
performed 200 experiments for each case and show the
average values. Table 2 shows the results for the differ-
ent sets of input individuals in Figure 5. The individuals
in the latest and latest two generations are not distin-
guished in our algorithm. We just input the genotype
for all the individuals without the slash. Again, the set-
ting is similar to that of Table 1. From Table 2, we can
see that the values of recall for different inputs are close
to 99% except for 2d-3fam-3, 2d-2fam-2 and 2d-2fam-3,
where the input contains only 2 or 3 diseased individu-
als. Comparing Table 1 and Table 2, we can see that more
input individuals do help improve the values of precision
and recall.

We also performed similar experiments for Pedigree
2-4 (see Figures 2, 3 and 4). The results are similar to that
in Table 2 and are given in Additional file 1.
We also tested the program using pedigrees containing

6 and 7 generations and 2, 3, 4, 5 diseased individuals,
respectively, in the latest generation. The four pedigrees
containing 6 generations are shown in Additional file 1:
Figure S4, Figure S5, Figure S6 and Figure S7 in the Addi-
tional file. The four pedigrees containing 7 generations are
shown in Additional file 1: Figure S12, Figure S13, Figure
S14 and Figure S15 in the Additional file. Again, the input
individuals are the individuals in the dashed rectangle at
the bottom of the pedigree. The experiment results for 6
generations and 7 generations are shown in Table 3 and
Table 4, respectively. The settings of Table 3 and Table 4
are similar to that of Table 1. Table 3 and Table 4 show that
the performance of our program for 6 and 7 generations is
similar (but slightly worse than) to that for 5 generations.
Similar to the case of 5 generations, for pedigrees with 6

and 7 generations, we also tested various cases when some
individuals of the latest two generations are available as
input individuals. The results for 6 and 7 generations are
similar to that of 5 generations. The detailed results are
given in the Additional file.

Table 1 Results on input individuals of the latest generation of Pedigrees 1-4

One region Three regions Time

Precision Recall Precision’ Recall’ Precision Recall Precision’ Recall’

Pedigree 1 29.97% 49.83% 48.79% 54.03% 23.07% 82.71% 40.60% 86.75% 16.80s

Pedigree 2 44.36% 63.09% 58.49% 64.06% 30.66% 93.48% 48.94% 93.18% 17.60s

Pedigree 3 58.54% 80.42% 74.57% 81.07% 34.12% 97.28% 67.73% 97.56% 15.55s

Pedigree 4 75.91% 96.07% 91.27% 96.99% 39.94% 98.07% 86.64% 98.18% 17.89s

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 10 of 14
http://www.biomedcentral.com/1471-2105/13/146

32 33 34 35 36 3839

41 42

37

44

40

45 46 49 50

31

47 4843

2d-5fam-3

32 33 34 3539

41 42

37

44

40

45 46

31

47 4843

2d-4fam-1

33 34 3537

44

40

45 46

31

47 4843

2d-4fam-2

33 34 3537

44

40

45 46

31

47 4843

2d-4fam-3

33 34 3537

44

40

45 46

31

47 4843

2d-3fam-1

33 34 3537

44

40

45 46

31

47 4843

2d-3fam-2

33 34 3537

44

40

45 46

31

47 4843

2d-3fam-3

33 3537

44

31

47 4843

2d-2fam-1

33 3537

44

31

47 4843

2d-2fam-2

33 3537

44

31

47 4843

2d-2fam-3

32 39

41 42

32 39

41 42

32 33 34 35 36 3839

41 42

37

44

40

45 46 49 50

31

47 4843

2d-5fam-2

32 33 34 35 36 3839

41 42

37

44

40

45 46 49 50

31

47 4843

2d-5fam-1

Figure 5 The different sets of input individuals based on Pedigree 1. Just the latest two generations are selected in this experiment. Squares
and circles with a slash are individuals whose genotype is unknown. From top to bottom, the families in the input decrease.

A real case study
To illustrate the usefulness of our program, we applied
our method to a set of real data originally from the
phase II HapMap database and was studied in [27]. In
[27], the authors studied two CEU (Utah residents with
European ancestry from the CEPH collection) families
(parent-offspring trios) CEPH 1341 and CEPH 1375 (see
Figure 6). They identified a segment (107M to 110M) on
chromosome 9 shared by the four individuals NA06991,
NA10863, NA06985 and NA12264. For this set of data,
there are totally 168,321 SNP sites on the chromosome
after the unknown genotypes are eliminated from the
database. There are totally 6,519 SNP sites between 107M

and 110M on chromosome 9 starting at the 122348-th
SNP site and ending at the 128866-th SNP site.
We applied our program with the six individuals in the

two families CEPH 1341 and CEPH 1375 as input and
set the four individuals NA06991, NA10863, NA06985
and NA12264 as diseased individuals. We set L = 500.
Our algorithm found several segments shared by the
four diseased individuals. The lengths of all the reported
segments are approximately 500 SNP sites except the
longest ones. All these segments are shown in Table 5.
Table 5 shows the starting and ending point of the seg-
ments, the number of distinct haplotypes on the seg-
ment (DN), and the score for each segment. As there is

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 11 of 14
http://www.biomedcentral.com/1471-2105/13/146

Table 2 Results on Figure 5

Three regions

Input Precision Recall Precision’ Recall’ Time

2d-5fam-1 38.49% 99.85% 78.88% 99.41% 18.62s

2d-5fam-2 39.93% 99.35% 72.21% 99.51% 18.66s

2d-5fam-3 36.04% 95.78% 61.51% 96.61% 19.55s

2d-4fam-1 34.96% 99.77% 70.00% 99.46% 16.10s

2d-4fam-2 26.49% 99.40% 64.78% 99.23% 15.93s

2d-4fam-3 30.48% 94.81% 57.94% 95.87% 17.16s

2d-3fam-1 32.20% 98.75% 66.97% 99.13% 11.73s

2d-3fam-2 32.61% 96.75% 61.95% 97.24% 12.35s

2d-3fam-3 26.58% 89.62% 53.55% 92.88% 13.13s

2d-2fam-1 29.86% 98.97% 65.87% 98.66% 8.21s

2d-2fam-2 26.34% 93.98% 53.01% 93.93% 8.61s

2d-2fam-3 23.10% 88.96% 50.37% 91.97% 9.23s

only one conflicting position 126786 between segments
[124561,126785] and [126787,129451], we should con-
sider such a conflicting position as a data error. Therefore,
segment [124561,129451] should be the predicted muta-
tion. This segment starts at the 124561-th SNP site and
ends at the 129451-th SNP site. The details are shown
in Figure 7. We can see that the shared segment found
by PLINK in [27] (the blue line) starts at the 122348-
th SNP site while the starting position of our reported
segment (the red line) is 124561. For the subsegment
[122348, 124560] that we did not report, we found 79
conflicting positions in this subsegment containing 2,213
SNP sites. (See the filled dots on the blue line.) However,

Figure 6 The pedigree of family CEPH 1341 and CEPH 1375. The
filled individuals are the individuals sharing the segment. We take
them as the diseased individuals.

on the segment [124561, 129451] containing 4,891 SNP
sites reported by our program, there is only one conflict-
ing position. This is strong evidence that the subsegment
[122348, 124560] is not shared by all the four diseased
individuals. We also looked at the segment [129452,
131664] with length of 2,213 SNP sites on the right of
our reported segment [124561, 129451], and found 52
conflicting positions among the 2,213 SNP sites. We can
see that the subsegments [122348, 124560] and [129452,
131664] on the left and right of our reported segment have
approximately the same number of conflicting positions.

Discussion
Haplotype inference methods
As discussed before, if the haplotype data for each input
individual are known, the problem of finding the true
mutation region is straightforward. Currently, there are

Table 3 Results for the pedigrees containing 6 generations in Additional file 1: Figure S4, Figure S5, Figure S6 and Figure
S7 in the Additional file

One region Three regions Time

Precision Recall Precision’ Recall’ Precision Recall Precision’ Recall’

Pedigree 5 20.28% 36.46% 30.00% 37.94% 18.39% 79.96% 29.15% 80.77% 16.09s

Pedigree 6 26.79% 43.65% 34.74% 43.73% 20.60% 91.63% 31.82% 92.79% 16.40s

Pedigree 7 65.76% 89.97% 80.98% 89.56% 35.47% 97.34% 74.12% 97.11% 16.81s

Pedigree 8 69.21% 91.16% 82.77% 91.34% 36.17% 97.55% 79.53% 97.74% 15.82s

Table 4 Results for the pedigrees containing 7 generations in Additional file 1: Figure S12, Figure S13, Figure S14 and
Figure S15 in the Additional file

One region Three regions Time

Precision Recall Precision’ Recall’ Precision Recall Precision’ Recall’

Pedigree 9 25.72% 47.53% 37.12% 46.78% 20.67% 85.42% 34.28% 86.16% 14.66s

Pedigree 10 31.06% 49.51% 44.08% 50.35% 22.10% 90.34% 37.78% 90.59% 13.54s

Pedigree 11 64.78% 88.80% 80.53% 88.45% 34.19% 97.73% 76.43% 97.30% 16.64s

Pedigree 12 71.73% 92.31% 86.48% 92.44% 37.05% 96.31% 82.85% 96.63% 16.15s

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 12 of 14
http://www.biomedcentral.com/1471-2105/13/146

Table 5 The segments found by our program

Segment DN Score

[20935,21543] 8 2436

[41826,42748] 8 3692

[54648,55612] 8 3860

[58385,59106] 8 2888

[59895,60644] 8 3000

[75984,76525] 8 2168

[93972,94699] 9 2184

[97475,98191] 8 2868

[110440,111044] 8 2420

[124561,126785] 8 8900

[126787,129451] 9 7995

several population-based phasing methods that can give
accurate haplotype segments [28-30]. However, these
methods can only phase a small number of SNPs effec-
tively and take an extremely long time to infer the hap-
lotype for the whole chromosome. LRP in [31] can phase
more than 1,000 SNPs simultaneously within a reason-
able time. However, it is still very slow for phasing 110,000
SNPs of a whole chromosome (as our program does).
Moreover, they cannot directly report the true mutation
region for a set of input individuals. On the other hand,
our program can complete the computation in less than
20 seconds for about 110,000 SNPs with about 10 to 20
individuals.

Related mutation region detection methods
To our knowledge, all the existing software packages
(except PLINK in [27]) need a clearly given pedigree as
part of the input. If the pedigree is not known, most of the
software packages do not work. Our algorithm deals with

the case where the input individuals are closely related but
the pedigree is not given.
Merlin is widely used for linkage analysis, where a pedi-

gree is required as part of the input. It works well on SNP
data due to the use of sparse trees. However, it can only
analyze pedigrees of moderate size. When the family size
is big, a large memory space is needed and the computa-
tion cannot successfully be completed. As shown in [19],
Merlin cannot report the results for some pedigrees, e.g.,
P14 and P16 in [19], where there are less than 16 input
individuals. However, our program can deal with the cases
where the number of input individuals is large. The first
row in Table 3 of the Additional file shows the results
for 20 (not including those without known genotype data)
input individuals. We can see that our method can give
very high precision and recall in this case (without taking
the pedigree as part of the input). Therefore, our algo-
rithm can handle some cases which cannot be handled by
Merlin.
The rule-based algorithm in [10] uses a set of heuristics

for haplotype inference with a given pedigree. It can give
very accurate results when the number of family members
is large enough and for each nuclear family the genotype
data for both parents are available. However, it does not
work well when the genotype data of one of the parents are
missing in the nuclear family. If the data for both parents
are missing, it does not work. LIden [19] is an extended
software package of the algorithm in [10]. It focuses on
handling the case where the genotype data for one of the
parents in a nuclear family are missing for the entire chro-
mosome. But it still does not work when the genotype data
for both parents in a nuclear family are missing or the
family pedigree is not given in the input.
PLINK in [27] and Beagle in [30,32] can identify the

shared haplotype segment between two individuals based
on population-based linkage analysis. But it cannot auto-
matically identify the mutation region taking a set of

122348 124561 128866129451 131664

107M
↑↑

110M

Figure 7 The region from 107M to 110M on chromosome 9. There are totally 6,519 SNP sites on this region, as shown by the blue line. The
region with the highest score reported by our program contains 4,891 SNP sites, as shown by the red line.

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 13 of 14
http://www.biomedcentral.com/1471-2105/13/146

individuals as the input, which is expected to give more
precise prediction. The above real case study has illus-
trated this.

Genotype data error handling
The real datasets often contain errors. Handling the geno-
type data errors is an important issue in practice. For
our program, we have a pre-process step to delete all the
SNPs containing missing data. That is, if the genotype
data for an input individual at an SNP site are missing,
we delete this SNP site from the input. Without this step,
we cannot get reasonable results for the real case study.
When the genotype data contain errors, it is hard to detect
and correct them. The errors may affect our program’s
results in two ways: (a) an SNP site in the true mutation
regionmay become a conflicting position due to error; and
(b) the number of distinct haplotype segments to explain
the genotype data is increased.When (b) occurs, our score
for the detected mutation regions becomes worse. When
(a) occurs once, our program reports two detected regions
with the conflicting position in between. See [124561,
126785] and [126787, 129451] in Table 5 of the real case
study. When this kind of error occurs many times, our
program reports many regions separated by a few SNPs
in the middle. When the user looks at the results of
our program, it is possible to realize that the few SNPs
between two closely located reported regions are due to
errors. This is similar to other linkage analysis programs
such as Merlin, where each SNP site has a score, and the
user decides a region (by ignoring fluctuations) with high
scores as the true mutation region.
Our programmaywork for the situation where the input

individuals are frommultiple families. Our algorithm tries
to find regions shared by all the diseased individuals.
Thus, as long as the diseased individuals from multiple
families share the same (or similar) haplotype segment on
the true mutation region, our program should be able to
find such region. Even if the haplotype segments from dif-
ferent families on the true mutation region are slightly
different, the program should be able to report several
smaller regions with a few missing SNPs in the middle.
Again, it is possible for users to figure out the whole true
mutation by ignoring the few missing SNPs in the middle.

Conclusion
We developed a software package for linkage analysis
where the input individuals are closely related, but the
pedigree is not known. We propose a model using the
parsimony principle that can be viewed as an extension
of the model first proposed by Dan Gusfield ([20,21]).
Our heuristic algorithm simply uses Clark’s inference rule
to infer haplotype segments. Experiments show that our
program can give very high value (90%-99%) of recall in
various cases. This implies that the program can report

more than 90% of the true mutation region. The value of
precision varies from 29% to 90%. When the precision is
29%, the size of the reported regions is three times that
of the true mutation region. This is still very useful for
narrowing down the range of the disease gene.

Availability and requirements
• Project name:MRD
• Project homepage: http://www.cs.cityu.edu.hk/∼

wenjuacui/software/mutationRegion/index.html. The
source code is also available.

• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.6.0 or higher
• License: None
• Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary Material: This file includes several
figures and additional experimental results mentioned in the paper.
It contains the different set of input individuals on Pedigree 2-4 in the
paper, the pedigrees containing 6 and 7 generations and 2,3,4,5 diseased
individuals in the latest generation respectively. The tables show the results
on the input of the above figures.

Competing interests
The authors declare that they have no competing interests

Author’s contributions
LW proposed the topic and ideas for algorithms, WC implemented the
program, and both authors devised and developed the method and prepared
the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
This work is supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 121608].
Lusheng Wang is the corresponding author.

Received: 29 November 2011 Accepted: 7 June 2012
Published: 25 June 2012

References
1. Emahazion T, Feuk L, Sawyer S, Fredman D, St Clair, D, Prince J, Brookes A:

SNP association studies in Alzheimer’s disease highlight problems
for complex disease analysis. Trends Genet 2001, 17(7):407–413.

2. Leykin I, Hao K, Cheng J, Meyer N, Pollak M, Smith R, Wong W, Rosenow C,
Li C: Comparative linkage analysis and visualization of high-density
oligonucleotide SNP array data. BMC Genet 2005, 6:7.

3. Sellick G, Longman C, Tolmie J, Newbury-Ecob R, Geenhalgh L, Hughes S,
Whiteford M, Garrett C, Houlston R: Genomewide linkage searches for
Mendelian disease loci can be efficiently conducted using
high-density SNP genotyping arrays. Nucleic Acids Res 2004,
32(20):e164.

4. Lander E, Green P: Construction of multilocus genetic linkagemaps in
humans. Proc Nat Acad Sci USA 1987, 84(8):2363–2367.

5. Kruglyak L, Daly M, Reeve-Daly M, Lander E: Parametric and
nonparametric linkage analysis: a unifiedmultipoint approach. Am J
Human Genet 1996, 58(6):1347–1363.

6. Gudbjartsson D, Jonasson K, Frigge M, Kong A: Allegro, a new computer
program for multipoint linkage analysis. Nat Genet 2000, 25:12–13.

7. Abecasis G, Cherny S, Cookson W, Cardon L:Merlin-rapid analysis of
dense genetic maps using sparse gene flow trees. Nat Genet 2002,
30:97–101.

http://www.cs.cityu.edu.hk/~wenjuacui/software/mutationRegion/index.html
http://www.cs.cityu.edu.hk/~wenjuacui/software/mutationRegion/index.html
http://www.biomedcentral.com/content/supplementary/1471-2105-13-146-S1.pdf

Cui and Wang BMC Bioinformatics 2012, 13:146 Page 14 of 14
http://www.biomedcentral.com/1471-2105/13/146

8. Lathrop G, Lalouel J, Julier C, Ott J: Strategies for multilocus linkage
analysis in humans. Proc Nat Acad Sci USA 1984, 81(11):3443–3446.

9. Elston R, Stewart J: A general model for the genetic analysis of
pedigree data. Human Heredity 1971, 21(6):523–542.

10. Lin G, Wang Z, Wang L, Lau Y, Yang W: Identification of linked regions
using high-density SNP genotype data in linkage analysis.
Bioinformatics 2008, 24:86–93.

11. Cai Z, Sabaa H, Wang Y, Goebel R, Wang Z, Xu J, Stothard P, Lin G:Most
parsimonious haplotype allele sharing determination. BMC
Bioinformatics 2009, 10:115.

12. Qian D, Beckmann L:Minimum-recombinant haplotyping in
pedigrees. Am J Human Genet 2002, 70(6):1434–1445.

13. Tapadar P, Ghosh S, Majumder P: Haplotyping in pedigrees via a
genetic algorithm. Human Heredity 2000, 50:43–56.

14. Zhang K, Sun F, Zhao H: HAPLORE: a program for haplotype
reconstruction in general pedigrees without recombination.
Bioinformatics 2005, 21:90–103.

15. Doi K, Li J, Jiang T:Minimum recombinant haplotype configuration
on tree pedigrees. In Proceedings of Workshop on Algorithms in
Bioinformatics(WABI) 2003:339–353.

16. Li J, Jiang T: Computing the minimum recombinant haplotype
configuration from incomplete genotype data on a pedigree by
integer linear programming. J Comput Biol 2005, 12(6):719–739.

17. Li J, Jiang T: An exact solution for finding minimum recombinant
haplotype configurations on pedigrees with missing data by integer
linear programming. In Proceedings of the eighth annual international
conference on Resaerch in Computational Molecular Biology(RECOMB). San
Diego, California, USA: ACM; 2004:20–29.

18. Xiao J, Liu L, Xia L, Jiang T: Fast elimination of redundant linear
equations and reconstruction of recombination-free mendelian
inheritance on a pedigree. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete Algorithms. New Orleans, Louisiana USA:
SIAM; 2007:655–664.

19. Wang L, Wang Z, Yang W: Linked region detection using high-density
SNP genotype data via the minimum recombinant model of
pedigree haplotype inference. BMC Bioinformatics 2009, 10:216.

20. Gusfield D: Inference of haplotypes from samples of diploid
populations: complexity and algorithms. J Comput Biol 2001,
8(3):305–323.

21. Gusfield D: Haplotype inference by pure parsimony. In Combinatorial
Pattern Matching. Morelia, Michocan Mexico: Springer; 2003:144–155.

22. Clark A: Inference of haplotypes from PCR-amplified samples of
diploid populations.Mol Biol Evol 1990, 7(2):111–122.

23. Wang L, Xu Y: Haplotype inference by maximum parsimony.
Bioinformatics 2003, 19(14):1773–1780.

24. Brown D, Harrower I: Integer programming approaches to haplotype
inference by pure parsimony. IEEE/ACM Trans Comput Biol
Bioinformatics 2006, 30(2):141–154.

25. Broman K, Weber J: Characterization of human crossover
interference. Am J Human Genet 2000, 66(6):1911–1926.

26. Yang W, Wang Z, Wang L, Sham P, Huang P, Lau Y: Predicting the
number and sizes of IBD regions among family members and
evaluating the family size requirement for linkage studies. Eur J
Human Genet 2008, 16(12):1535–1543.

27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M: PLINK: a tool set
for whole-genome association and population-based linkage
analyses. Am J HumGenet 2007, 81:559–575.

28. Stephens M, Smith N, Donnelly P: A new statistical method for
haplotype reconstruction from population data. Am J Human Genet
2001, 68(4):978–989.

29. Scheet P, Stephens M: A fast and flexible statistical model for
large-scale population genotype data: applications to inferring
missing genotypes and haplotypic phase. Am J Human Genet 2006,
78(4):629–644.

30. Browning B, Browning S: A fast, powerful method for detecting
identity by descent. Am J Human Genet 2011, 88(2):173–182.

31. Kong A, Masson G, Frigge M, Gylfason A, Zusmanovich P, Thorleifsson G,
Olason P, Ingason A, Steinberg S, Rafnar T, et al.: Detection of sharing by
descent, long-range phasing and haplotype imputation. Nature
Genet 2008, 40(9):1068–1075.

32. Browning S, Browning B: High-resolution detection of identity by
descent in unrelated individuals. Am J Human Genet 2010,
86(4):526–539.

doi:10.1186/1471-2105-13-146
Cite this article as: Cui and Wang: Identifying mutation regions for closely
related individuals without a known pedigree. BMC Bioinformatics 2012
13:146.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	The problem
	Mutation Region Haplotype Inference Problem (MRHIP)

	The algorithm for MRHIP
	Algorithm 1
	The algorithm for the whole chromosome
	Algorithm 2

	Results
	Experiments on simulated data
	A real case study

	Discussion
	Haplotype inference methods
	Related mutation region detection methods
	Genotype data error handling

	Conclusion
	Availability and requirements
	Additional file
	Additional file 1

	Competing interests
	Author's contributions
	Acknowledgements
	References

