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Abstract

scenarios.

to that predicted by our formula.

computational biology.

Background: Detection of false-positive motifs is one of the main causes of low performance in de novo DNA
motif-finding methods. Despite the substantial algorithm development effort in this area, recent comprehensive
benchmark studies revealed that the performance of DNA motif-finders leaves room for improvement in realistic

Results: Using large-deviations theory, we derive a remarkably simple relationship that describes the dependence
of false positives on dataset size for the one-occurrence per sequence motif-finding problem. As expected, we
predict that false-positives can be reduced by decreasing the sequence length or by adding more sequences to the
dataset. Interestingly, we find that the false-positive strength depends more strongly on the number of sequences
in the dataset than it does on the sequence length, but that the dependence on the number of sequences
diminishes, after which adding more sequences does not reduce the false-positive rate significantly. We compare
our theoretical predictions by applying four popular motif-finding algorithms that solve the one-occurrence-per
-sequence problem (MEME, the Gibbs Sampler, Weeder, and GIMSAN) to simulated data that contain no motifs. We
find that the dependence of false positives detected by these softwares on the motif-finding parameters is similar

Conclusions: We quantify the relationship between the sequence search space and motif-finding false-positives.
Based on the simple formula we derive, we provide a number of intuitive rules of thumb that may be used to
enhance motif-finding results in practice. Our results provide a theoretical advance in an important problem in

Background
Because binding of sequence specific transcription fac-
tors to their recognition sites in non-coding DNA is an
important step in the control of gene expression, the de-
velopment of computational methods to identify tran-
scription factor binding motifs in non-coding DNA has
received much attention in computational biology [1].
The low information content of transcription factor
binding motifs implies difficulty for computational ana-
lyses. For example, given a known binding motif, identi-
fication of bona fide examples is always plagued by false
positives - the so-called Futility Theorem [1].

An even more challenging computational problem is the
de novo identification of transcription factor binding
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motifs (so-called motif-finding), for which there are many
available tools (for tutorials on different methods see [2,3]
and references therein). Despite the substantial algorithm
development effort in this area, most recent comprehen-
sive benchmark studies [4-6] revealed that the perform-
ance of DNA motif-finders leaves room for improvement
in realistic scenarios, where known transcription factor
binding sites have been planted in test sequence sets.

One explanation for these observations could be that
the low information content of DNA binding sites places
limits on this problem as well - an extension of the Futility
Theorem [1] to the de novo motif-finding problem. This
has led to development of a large number of motif finding
algorithms that attempt to include additional data in the
motif-finding problem to improve the signal to noise ratio.
For example, including quantitative high-throughput gene
expression or binding measurements [7-10], phylogenetic
information [11-14], transcription factor structural class
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[15,16], nucleosome-positioning information [17], local se-
quence composition and GC content [18], improved back-
ground models [19-21], or different motif-finding models
[21] have all been shown to improve motif-finding results
in practice.

Here we argue that ‘false positive motifs; i.e., patterns
similar to typical biological motifs, may be likely to arise
due to the statistical nature of large sequence data sets.
In other words, when the dataset is large enough, motifs
with strength similar to real transcription factor binding
motifs begin to occur by chance. Consistent with this
idea, it is frequently observed that DNA motif-finders
identify seemingly strong candidate motifs, even when
randomly chosen sequences are provided as the input.
This issue has been previously recognized [22] in the so-
called “twilight zone search”- a motif-finding scenario
where the probability of observing random motifs with
higher score than real motifs is non-negligible. It was
shown that the detection of false-positives, particularly
in the twilight zone, is inevitable [22].

The prevalence of such false positive motifs in DNA
motif-finding has led to substantial research to assess the
statistical significance of motifs. It is important to distin-
guish three distinct types of research in this area. The first
aims to calculate of p-values for matches to a given motif
(e.g. [23,24]) and is not directly relevant to the motif-
finding problem considered here. The second aims to cal-
culate the p-value of a motif itself, which is an ungapped
multiple alignment [25,26]), while the third concerns the
statistical significance of a motif identified through a
‘motif-finding’ procedure (e.g., [22]).

The second and third types of research are closely
related, and were both treated in the seminal work of
Hertz & Stormo [27], which used large deviations theory
to approximate the motif distribution, and provided algo-
rithms to approximate the p-value of the ungapped align-
ment. Recent work has led to highly efficient algorithms
based on Fast Fourier transforms (FFT) to compute these
p-values [26] and given a motif of interest (or ungapped
multiple alignment) it is now possible to obtain a p-value.

Hertz & Stormo [27] also proposed a method to assign
significance to motifs identified in a motif-finding proced-
ure by assuming that the motif finder can explore the entire
space of possible motifs and select the most significant one.
The p-value for the identified motif is then ‘corrected” for
the number of possible motifs considered and converted to
an E-value that is defined as the expected number of ran-
dom motifs that would have information context at least as
high as the given motif [27]. Therefore, the false-positive
rate is closely related to the motif p-value and can be
reduced if an accurate p-value is available. However, the E-
value suggested by Hertz & Stormo does not always provide
a useful measure of significance particularly in the cases
where in it desired to detect weak motifs, i.e. when there is
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a reasonable chance of finding motifs of similar strength in
random sequences [28].

In practice, significance of motifs identified through
motif-finding is often obtained through simulations (e.g.
[21]) where the motif finder is run on random sequences
either drawn from or generated based on the dataset, and
significance is assessed using the strength of motifs identi-
fied in these random datasets (‘false positives’) as the null
distribution. While it is assumed that this distribution can
be approximated by Gumbel distribution [29], it been
shown empirically that it fits very well to 3-parameter
Gamma distributions [30] and when significance is
assessed using this null-distribution, the false positive rate
can be significantly reduced [18]. While simulation-based
methods are very useful to assess the significance of a
motif-finding result, they do not provide insight as to how
the false-positive rate changes as a function of the motif-
finding problem parameters and therefore cannot be used
to design experiments to avoid false-positives.

Here, we obtain a remarkably simple analytical relation-
ship between the size of the sequence search space and
the strength of the false-positive motifs (we provide a def-
inition for the strength of a motif below). In particular, we
use Sanov’s theorem [31] to derive a bound on the p-value
of motifs with a given strength. We then use this to relate
the sample size at which less than one false-positive is
expected and the strength of the false-positives (when they
do occur) to the parameters of the motif-finding problem.

Since we have considered the underlying statistics of
the one-occurrence-per-sequence motif-finding problem,
our results should apply to any motif-finding method
that attempts to solve this problem. We confirmed this
with softwares that implement different optimization
approaches, MEME ([32,33] which uses Expectation-
Maximization, GIMSAN [34,35] and the original Gibbs
Sampler [36-38] (the latter two being MCMC methods).
Interestingly, when we compared the false positives pro-
duced by a fourth software, Weeder [39,40], which uses
combinatorial algorithm based on suffix trees to build
the motifs and does not restrict the problem to one-
occurrence-per-sequence, we also found similar statistics
for the false positives, suggesting that our theoretical
analysis may be robust to motif-finding assumptions. Be-
cause of the simplicity of the analytic relationship be-
tween dataset size and false positive strength, we present
simple rules of thumb that we believe will be useful in
study design, as well as aid in interpreting the results of
de novo motif finders.

Results

A bound on the p-value of a motif

We first consider the problem of assigning a p-value to
a motif (or ungapped multiple alignment). The patterns
in DNA sequence families (called motifs) can be
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represented by position weight matrices (PWMs), in
which each column specifies the distribution of the
DNA letters [41,42] (for a tutorial on motif-finding see
[3]). We refer to the set of n sub-sequences of width W
aligned together as a motif (see Figure 1 and Methods
for definition of motif finding problem parameters). We
define the PWM, £ for a motif as a matrix where each
column contains the parameters of a categorical distri-
bution (see Figure 1 for details). The categorical distri-
bution is defined as a probability distribution that
describes the result of a single trial where one of K pos-
sible outcomes is randomly selected (e.g. K=4 for DNA).
The categorical distribution is commonly referred to im-
precisely as the “multinomial distribution”, which
describes the result of # trials. Unless otherwise stated
all probability distributions on nucleotides throughout
the text are categorical distributions. The difference be-
tween the distribution of the motif represented by the
position weight matrix, f, and the background distribu-
tion, g is measured using the Kullback—Leibler (KL) di-
vergence [31] also known as the biological information
content [3,18], defined as follows:

w

=% Y ﬁklogz{gi’; 1)

j=1 k={A,T,C,G}

where fj is the relative frequency of base k in column j
of the motif, and g is the background distribution of
base k (e.g. the genomic distribution of nucleotides).

Motif finding problem parameters
L=35

A
[ |
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Position weight matrix (PWM)
W=10

for this motif (width W=10)

Figure 1 DNA motif finding problem parameters. In this
example, n=5 sequences of length L =35 are used to detect a motif
of width W=10. The corresponding PWM, f, is also shown. Note that
each sequence has exactly one occurrence of the motif.
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Throughout the text we use the strength of a motif, its
specificity, and its information content, interchangeably
to refer to D(f,g). According to the Law of Large Num-
bers [31], the distribution, f, of any motif generated by
sampling from a background distribution, g, should be
arbitrarily close to g (in the probability sense). Therefore,
observing a motif with f that is significantly different
from g is extremely unlikely.

Under the null hypothesis (of randomly generated
sequences) a PWM with f significantly different from g is
considered as a rare event and far from expectation. We
use the large-deviations theory, in particular Sanov’s the-
orem [31], to measure an upper bound on the probabil-
ity of these rare events. Consider a motif with PWM f
that is diverged from the background g by D(fg) (we
commonly state that the motif has a strength D(f,g)). We
define the p-value of the motif as the probability of ob-
serving a motif by chance that is diverged from the
background (or has a strength) at least by D(f,g) (see
Additional file 1: Appendix for precise mathematical def-
inition of p-value). We prove that that p-value is upper-
bounded as follows:

P — valueop<(n + 1) AI70=000) (2)

where A is the alphabet (A,C,G,T for DNA) and |A] is
the cardinality of the set A, eg. |A|=4 for DNA
sequences. Please see the Appendix (Additional file 1:
Appendix) for the proof of this theorem. We note that
the bound in (2) is not tight; depending on f it can be
significantly loose and agree poorly with the accurate
p-values (see Additional file 1: Appendix). Neverthe-
less, the qualitative behaviour of this p-value as the
parameters are varied does seem to agree with the
behaviour of p-values obtained using more accurate
methods (Additional file 2: Figure S1).

Theoretical bounds on false positives in de novo motif
finding
We now turn to our main focus, which is the problem
of false positives in de novo motif finding. We now con-
sider a set of n sequences of length L generated accord-
ing to a background distribution g of nucleotides. We
assume that we have an ideal motif-finder that will iden-
tify the n sub-sequences (one from each sequence of
length L) that when aligned will give the strongest motif,
i.e., the motif with the largest difference from the back-
ground as measured by D(f,g). This is referred to as the
‘one-occurrence-per-sequence’ (oops) motif finding
problem (see Figure 1 and Methods for definition of
motif finding problem parameters).

Our main theoretical results are as follows. If the se-
quence length (L) is less than the following bound, the
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expected number of motifs that occur by chance with
strength equal or greater than D(fg) is less than 1.

2D(f¢)

L<(W-1) +—(n TRV

(3)

Here |A| is the cardinality of the set A, eg. |A|=4
for DNA sequences. In other words, the expected num-
ber of false positives is less than 1 when the inequality
(3) holds.

Furthermore, when one or more motifs are expected
to occur by chance with strength D(fg) greater than
some threshold D*, the threshold D* is less than the
following bound:

Dr<log,L + (JA] — )W (4)

log,(n+1)
n

Thus, our theory predicts that when false positives
occur, their strength will depend differently on each of
the motif finding parameters L, W and n (see Figure 1
for explanation of these).

To obtain these results, we have followed Hertz &
Stormo, and assumed that the ideal motif-finder has
tested all (L - w+1)" possible motifs. Please see Appen-
dix A (Additional file 1: Appendix) for the proof of
these results.

False positives are predicted to arise in realistic
motif-finding scenarios

We next sought to test whether the typical dataset sizes
used for DNA motif-finding are likely to produce false
positives according the formula above. Figure 2 shows L
as a function of motif information content, D(fg), for
DNA sequences with typical motif-finding parameters
including the number of sequences in the dataset
n=1{10, 20, 30} and the motif width W=10. The graph
illustrates the length of the sequences, L, below which
less than 1 false-positive motifs with strength D(f,g) are
expected to occur by chance (similar graphs for differ-
ent sets of parameters are shown in Additional file 2:
Figure S2).

We note that the bound on false positives (predicted
by Eq. 3) depends more strongly on # than on L. As an
example, for motifs with W=10 (Figure 2), a threefold
increase of n (while keeping L constant) reduces D(f,g)
by the same amount as if L were decreased by 2 orders
of magnitude (while keeping n unchanged). However,
the dependency of false-positive strength on #n decreases
as n becomes large (Eq. 4). This predicts that the effect
of adding more sequences on the reduction of false-
positives diminishes when 7 becomes large (Figure 3).

Finally, the upper bound on false-positive strength
threshold, D*, is approximately linear in W (Eq. 4, Figure 4).
Therefore, for a given motif strength (i.e. motifs with a
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Figure 2 Theoretical bound on sequence length compared with
results from MEME. Theoretical bound sequence length, L, at
which less than one false-positive motif with information content D
(f,g) is expected (solid lines) compared to experimental results of
MEME (crosses) for motif width W=10. The region of the plot above
and to the left of the traces represents the parameter space in
which less than one false positive is expected. The results are for
three different numbers of sequences, n={10,20,30} indicated by
red, blue and black symbols and traces, respectively.

given divergence), detecting real motifs with smaller
widths is less prone to false-positives. We note that the
width (W) of a real transcription factor binding motif is
set by the biophysical interaction of the transcription
factor with DNA, and is therefore not a parameter that
we can control in experimental design. Real motifs with
larger width tend to have greater information content,
and therefore are usually easier to detect in motif-
finding experiments.

MEME, the Gibbs sampler, GIMSAN, and weeder
performance is qualitatively consistent with the
theoretical expectations

To confirm our theoretical results, we conducted a series
of experiments with four popular motif finding softwares:
MEME [32,33] and the Gibbs Sampler [36-38], Weeder
[39,40], and GIMSAN [34,35] (see Methods for details of
the experimental setup). As input to these softwares, we
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Figure 3 The relationship between false-positive information
content and the number of sequences. The figure shows the
theoretical upper bound on the information content threshold, D¥,
when one or more false-positive motif is expected to be observed
in a dataset as function of the number of sequences, n (dashed line)
compared to the strength of false-positive motifs detected by MEME
(crosses). For both cases n is chosen from n={10,20,30,50,100} and
the parameters L =1000 and W= 10 are fixed. The strength of motifs
detected by MEME is consistent with the strength of motifs
predicted to occur by chance for the given sample size.

100

generated random datasets (according to a uniform nu-
cleotide distribution, see Methods) where we specified the
length of sequences (L) and the number of sequences (n).
Because the DNA sequences are randomly generated, we
can be sure that any discovered motifs are false positives.

We first performed extensive simulations with the
MEME software because it allows the user to specify
the parameters of the motif-finding problem, such as
the width of the motif and the one-occurrence-per-se-
quence assumption. This allows us to directly compare
our theoretical predictions of the dependence of false
positives on the motif finding parameters to the
observed false positives (Eq. 4). The results from
MEME qualitatively follow the theoretical prediction
(Figures 2, 3, 4 and Additional file 2: Figure S2) as they
do not appear in the regions of the plots where the
expected number of false positives is less than 1.

Since our theory is based only on the statistics of ran-
dom sequences, it should be applicable to any motif
finder that solves the one-occurrence-per-sequence
motif finding problem, regardless of the algorithm used
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Strength of false positive motif, D(f,9)
\
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5 T :
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Width of motif, W

Figure 4 The relationship between false-positive information
content and the motif width. The figure shows the theoretical
upper bound on the information content threshold, D*, when one
or more false-positive motif is expected to be observed in a dataset
as function of motif width W (dashed line) compared to the
strength of false-positive motifs detected by MEME (crosses). For
both cases W is chosen from n={5, 10, 15} and the parameters
L=1000 and n=30 are fixed. The strength of motifs detected by
MEME is consistent with the strength of motifs predicted to occur

by chance for the given sample size.

for optimization. To test this, we compared the strength
of each false positive motif discovered by MEME and
the Gibbs Sampler to the bound predicted by Eq. 4. For
both MEME and the Gibbs Sampler, we found similar
agreement between the observed false positives and the
theoretical bound (R* > 0.85, Figure 5-a,b).

We also tested GIMSAN because of its unique approach
for computing p-values based on the estimation of the null
distribution for motifs. We asked GIMSAN to find motifs
with widths (W =5,10,15) in our randomly generated data-
sets (see Methods for experimental details). We consid-
ered only motifs with p-value less than 0.01. The strength
of motifs detected by GIMSAN is also consistent with our
theoretical bound (R* = 0.83, Figure 5c).

We note that most de novo motif-finding algorithms
do not allow the user to control the number of occur-
rences of the motif in the sequence dataset. For example,
Weeder is a combinatorial algorithm based on suffix
trees that implements an efficient search algorithm for
finding similar sub-sequences in the dataset in order to
build a consensus and ultimately motifs. Because
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Figure 5 Comparison of theoretical bound and observed false-positive motif strengths. The strengths of observed false positive motifs
identified by a) MEME, b) the Gibbs Sampler, ¢) GIMSAN and d) Weeder show reasonable accordance with our theoretical bound. Each cross
represents one false positive motif, while the dashed line represents 'y =x" where the theoretical bound equals the observations. The results
include motifs for L =50,100,500,1000 and n=10,20,30,50,100. For a), b) and ¢) the results are for motifs of W =5, 10 and 15, while for d) the
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Weeder was among the best performing algorithms, in
terms of false-positive rate, in a benchmark comparison
[4], we sought to test whether it would also produce
false positives, and if so, how they would deviate from
the theoretical bound made based on the one-
occurrence-per-sequence assumption.

Because Weeder does not allow the user to specify the
width of the motif or the number of motif instances that
each sequence will contain, we simply ran it repeatedly
on random sequence sets of various sizes and identified
false positive motifs (See Methods for more details). To
compare the strength of the false positive motifs to the
predicted bound on strength of these motifs based on
our theoretical results, we defined " in Eq. 4 above to
be the actual number of sequences in the input set in
which Weeder identified a motif, and required that at
least 5 sequences were included in the motif. Figure 5d
shows the comparison of the predicted and observed
false positive strengths for each motif identified by
Weeder. Interestingly, the strength of the false positive
motifs identified by Weeder also shows reasonable ac-
cordance with our predictions (R*=0.60). That the
Weeder results show such good agreement with our pre-
dictions is somewhat surprising, as Weeder violates the

assumptions we made in deriving Eq. 2. This suggests
that our theoretical results may be quite robust to the
assumptions made in the motif finding procedure (see
Discussion).

For all four motif-finders, the false positives identified
tend to be weaker than the theory predicts (Figure 5a-d),
which is consistent with Eq. 2 giving an upper bound on
the p-value, which leads to the upper bound on false posi-
tive strength in Eq. 4. Taken together, these data strongly
support our hypothesis that false positives are due in part
to large size of the motif-finding search space.

Discussion

We used large-deviations theory to approximate the re-
lationship between false positives and the parameters of
the one-occurrence per sequence de novo DNA motif-
finding problem. A similar approach has been previously
proposed to quantify the so-called twilight zone [22] in
terms of the parameters of the motif-finding problem in-
cluding the dataset size, and our work can be regarded
as an extension of that work to the more general ‘matrix’
or probabilistic representation of motifs. However, the
previous work did not reveal the surprisingly simple re-
lationship between false positives and the motif-finding
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parameters. Nevertheless, both our work and the previ-
ous findings suggest that false positives are likely due at
least in part to the statistics of random sequences, rather
than any algorithmic or biological reason.

We note that the situation we considered is where
each position in the DNA sequence is considered to be
drawn from a background distribution g independently
and identically. However, real genomic sequences do not
follow this simple assumption [43-46]. DNA bases at ad-
jacent positions are correlated, likely due to the complex
mutational processes that create them. Interestingly, this
means that our theoretical and simulation results repre-
sent a ‘best case scenario’. In real, correlated genomes,
even stronger false positive motifs will be identified by
an ideal motif-finder.

Simple rules of thumb for DNA motif finding

To reduce the false-positive strength in experimental de-
sign, it is generally desired to move towards weaker
false-positive motifs. The theoretical predictions provide
intuition about how to adjust motif-finding parameters
to reduce the strengths of motifs that are due to chance
(using Eq. 4 or using the curves in Figures 2, 3 and 4).
We have the following rules of thumb for this purpose:

e As it is intuitively expected, it is generally preferred
to use shorter sequences (when it is biologically
plausible) to avoid false-positives.

e Adding more sequences to the dataset reduces the
false-positive rate considerably (e.g. using 30
sequences compared to 10 reduces the false-positive
motif strengths by more than 6 bits (~25%) for
W =10, see Figure 3). This effect, however,
diminished for larger n (e.g. increasing » from 30 to
50 has only 2 bits reduction in false positive motif
strengths. This suggests that in order to reduce
false-positive rate in motif finding, only a “sufficient”
number of sequences is needed (in this case ~30).

e The dependency of false-positives (the strength of
false-positive motifs) on L is weaker than
dependency on n. Therefore, using many sequences
(but not too many) is generally preferred to using
shorter sequences.

e For a given information content, the detection of
motifs with smaller width is less prone to false-
positives. Therefore, to avoid false positives, it is
generally preferred to choose the smallest possible
width that adequately summarizes the biological
motif.

Examples of applications

In using the theoretical results in Eq. 3 or the graphs in
Figure 2, it is generally desired to move towards weaker
false positive motifs (towards the bottom on the graphs).
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To illustrate this we chose the Zfp423 and the TATA-box
motifs from the Jaspar database [47] with D(fg) =17.93
and D(f,g) =10.20, respectively (both with a width of
W=15).

It can be seen from Figure 6 that real motifs as strong
as ZFP423 in n =20 sequences of length L =1000 will be
below the theoretical traces, and will therefore be
expected to be buried among false-positives. To avoid
this situation, one can reduce L (along Arrow-2) or add
more sequences (along Arrow-1) to the dataset. Simi-
larly, it would be very difficult to identify a weak motif
such as the TATA-box motif in a set of 30 sequences,
even with length L =100, because it is well below the
bound where less than 1 false positive is expected. Since
using shorter sequences is unlikely, one can increase the
number of sequences to # =100 (along Arrow-3) so that
the motif is above the bound. Alternatively, trimming all
but the core bases of the TATA-box is equivalent to mov-
ing along the theoretical curve from W=15 to W=5,
and reduces the false-positive bound enough to detect
this motif (data not shown).

Comparison of false positives from different motif finders
To test whether our results were applicable beyond the
one-occurrence per sequence setting, in addition to
MEME and the Gibbs Sampler, we tested Weeder, a
non-probabilistic motif-finder that implements a
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Figure 6 Examples of applications of the theoretical results.
Two real motifs of width W =15 from the JASPAR database (ZFP423
and TATA-box, TBP) are used to illustrate the application of the
theoretical predictions. For a strong motif like Zfp423, increasing the
number of sequences, n, from 20 to 30 (arrow 1) or reducing the
sequence length from 1000 to 100 (arrow 2) could sufficiently
reduce the bound so that the real motif is found in a region where
the expected number of false positives is less than 1. For a weak
motif like TBP, detection in sequences of length 100 might still be
prone to false positives, so instead a large increase in the number of
sequences, n, (arrow 3) is needed.




Zia and Moses BMC Bioinformatics 2012, 13:151
http://www.biomedcentral.com/1471-2105/13/151

consensus-based search. We found that the theoretical
relationship held quite well for the false-positives pro-
duced by Weeder, suggesting that the simple formula we
obtained will be quite generally applicable, or that heur-
istic post-processing steps in Weeder (implemented by
the so-called “advisor” program) to reduce the false-
positives (by removing the highest scored motifs that do
not qualify a redundancy criteria, see [40] for detail)
tend to approximate the one-occurrence per sequence
constraint.

Regardless of their generality, our theoretical results
quantify the limit to how well we can expect even the
ideal motif-finder to perform. This will be useful to fu-
ture benchmarking studies, so they can take into ac-
count whether the ‘real’ motif in test cases is strong
enough to be distinguished from false positives that
spontaneously arise.

Conclusions

We have derived a remarkably simple formula to de-
scribe the relationship between false positive strength
and dataset size in the one-occurrence per sequence
DNA motif finding problem, and confirmed it using
simulations. We conclude that false positives in de novo
DNA motif finding may result in part because of statis-
tical properties of random DNA sequences, rather than
any weaknesses in specific algorithms.

Methods

Simulations

In each experiment, we generated a set of
n =1{10,20,30,50,100} sequences with length L = {50, 100,
500, 1000} drawn from a uniform background distribu-
tion g=[0.25 0.25 0.25 0.25]. For each particular » and
L, we repeated the experiments for many Monte-Carlo
runs (so there are multiple datasets with the same # and
L and therefore many possible false positive motifs for
each set of parameters).

We presented each dataset as input to the softwares.
For each detected motif, we computed the information
content or divergence, D(f,g), using the PWMs or fre-
quency matrices reported. Since the input to these pro-
grams was sets of random sequences, all detected motifs
are false-positives. We then compared the false-positives
detected with the theoretical predictions.

Particular notes for each software are as follows:

MEME: We ran MEME using OOPS model (one oc-
currence per sequence) using parameter (-m oops) and
restricted MEME to generate only one motif (the most
significant) with widths W={5,10,15} (using -w param-
eter). We ran MEME on 50 random datasets for each n,
L and W combination, except for n=20, L =50, W=10
where we obtained 100, yielding a total of 3050 false
positive motifs
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Gibbs Sampler: we used the “site sampler” model that
restricts the software to include in the PWM only one
occurrence of the motif in each sequence and with
widths W={5,10,15}. We ran the gibbs sampler on 50
random datasets for each n, L and W combination,
yielding a total of 3000 false positive motifs.

GIMSAN: we used the OOPS model and considered
motifs with widths W={5,10,15}. For each experiment,
we used the same set of sequences to compute the back-
ground distribution to increase the chance of software
for rejecting false-positives. We ran GIMSAN and
obtained 11100 motifs. We then rejected any motifs with
a p-value (that is provided by GIMSAN) larger than
0.01, yielding 2216 false positive motifs.

WEEDER: We ran Weeder on the random datasets
using the “large” parameter. Because Weeder does not
allow the user to specify the width of the motif (W) or the
number of motif instances that each sequence will contain,
we simply ran it 29108 times on random sequence sets of
various sizes. We then parsed out detected motifs with
widths W=1{6, 8, 10, 12}. To compare the strength of the
false positive motifs to the predicted strength of these
motifs based on our theoretical results for Weeder, we
defined 7’ in Eq. 3 above to be the actual number of
sequences in the input set in which Weeder identified a
motif, and removed any motifs with fewer than 5
sequences included, yielding 18700 false positive motifs.
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