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Abstract

Background: The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly
packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result
in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to
this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a
transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the
annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of
functional annotation achieved for a non-model organism where no reference genome information is available.
Individual k-mers and clustered assemblies (CA) were considered using three representative software packages.
Pair-wise comparison analyses (between individual k-mers and CAs) were produced to reveal missing Kyoto
Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes
the recovery of biological information in a de novo transcriptome assembly.

Results: Analyses of single k-mer assemblies resulted in the generation of various quantities of contigs and
functional annotations within the selection window of k-mers (k-19 to k-63). For each k-mer in this window,
generated assemblies contained certain unique contigs and KOIs that were not present in the other k-mer
assemblies. Producing a non-redundant CA of k-mers 19 to 63 resulted in a more complete functional annotation
than any single k-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs)
in the assemblies of individual k-mers (k-19 to k-63) that were not present in the non-redundant CA. A workflow to
recover these unique annotations is presented.

Conclusions: This study demonstrated that different k-mer choices result in various quantities of unique contigs
per single k-mer assembly which affects biological information that is retrievable from the transcriptome. This
undesirable effect can be minimized, but not eliminated, with clustering of multi-k assemblies with redundancy
removal. The complete extraction of biological information in de novo transcriptomics studies requires both the
production of a CA and efforts to identify unique contigs that are present in individual k-mer assemblies but not in
the CA.
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Background
Transcriptomic studies using high-throughput sequen-
cing data have enabled researchers to study the global
and specific gene expression of many different organisms
without the need for a fully sequenced and annotated
genome [1,2]. Recently, de Bruijn graph-based [3] soft-
ware packages such as Oases [4], Trans-ABySS [5],
SOAPdenovo [6], and Trinity [7] have been developed to
facilitate the transcriptome assembly of massive amounts
of short read sequences produced using next generation
DNA sequencing technologies. The power and robust-
ness of these packages for forming contiguous sequences
(contigs) has been tested, and comparative evaluations
on computational resources such as execution time and
parallelization, storage, and memory usage have been
documented [8-10]. The choice of k-mer length (the
length parameter defining the sequence overlap between
two reads forming a contig) significantly affects the final
assembly product [5]. Shorter k-mer values might be a
better choice in low-coverage studies to prevent the for-
mation of complex overlapping nodes; whereas a larger
k-mer choice would be more practical for high-coverage
sequencing projects [11] to improve assembly accuracy.
As an alternative to a single best k-mer value selection,
multi-k value based methods have been adopted to com-
pile different k-mer assemblies in order to improve per-
formance, sensitivity, and specificity of the overall de novo
transcriptome assemblies [2,12]. Multi-k value based
transcriptome assemblies come along with additional
complexities, requiring algorithms to efficiently cluster
homologous sequences from each single-k assembly and
to remove redundant contigs to generate the final non-
redundant clustered assembly (CA). Several algorithms
such as CD-HIT-EST [13], VMATCH [14], and TGI Clus-
tering tools [15] have been developed to obtain an optimal
assembly clustering.
To date, the optimization studies for both single k-mer

and clustered multi k-mer assemblies have largely fo-
cused on the length and number of contigs produced as
a metric to evaluate the quality of the assembly output.
There is, however, a limited understanding of how func-
tional annotation—a primary goal of de novo transcrip-
tome analysis—is affected by k-mer selection and
clustering of multi-k assemblies. In this study, we report
the significance of k-mer selection in the de novo assem-
bly and annotation of a non-model eukaryotic organism’s
transcriptome with no reference genome information
available. We document the variations in uniqueness
and the degree of functional annotations obtained under
single k-mer and multi-k clustering methods, and
present an assembly strategy to optimize the functional
annotation to generate the gene catalogue of a non-
model eukaryotic organism. Analysis is performed on
Illumina short read sequencing of mRNA transcripts
from the microalgae Neochloris oleoabundans, a candi-
date species for the production of microalgae-based bio-
fuels [16,17].
Herein, we also demonstrate that the combination of

individual k-mer assemblies improves, but does not
complete the annotation of all available unique contigs
produced in an assembly. A workflow and useful scripts
are provided to allow retrieval of additional biological in-
formation from contigs that are present in individual k-
mer assemblies, but not in the clustered k-mer assembly.

Results and discussion
Sequencing and de novo transcriptome assembly
Following the removal of short and low-quality reads, the
remaining read set was assembled using the combined
Velvet and Oases packages [4,11] with single-k value selec-
tion of odd numbers ranging from 19 to 63. The assembly
metrics are provided in Table 1 for the representative k-
mers: 19, 21, 23, 27, 33, 37, 43, 53, and 63. The number of
reads assembled increased gradually from ~18.1 M (for k-
19 assembly) to ~30.2 M (for k-63 assembly), whilst the
number of reads mapped was within the range of ~27.8 to
33.3 M for all assemblies. Contig numbers, length distri-
butions, and length-weighted medians (N50 and N90)
were comparable among all assemblies, except the k-19
assembly (Table 1). The highest number of contigs pro-
duced per assembly was 99,438 for the k-19 assembly. The
contig number steadily decreased to 32,780 as the k-mer
value increased to 63. Individual contig length and count
frequencies are also depicted in Figure 1 for the same rep-
resentative set of k-mers from 19 through 63. These length
data (calculated as N50 and N90 in Table 1) and the contig
length distribution histograms (Figure 1) demonstrate that
a greater contiguity was achieved in mid-range assemblies
with k-mer selection of 21 to 43 as compared to k-19, k-
53, and k-63 assemblies. The average contig length for k-
21 to k-43 assemblies was approximately 1.4 times longer
than that of k-19, k-53, and k-63 assemblies. Additionally,
the longest average contig length assembled was 1,463 bp
in the k-23 assembly.

Effects of k-mer selection on mapping, functional
annotation, and coverage
To compare the differences in attainable functional an-
notation between each assembly, the contigs originated
from single-k value assemblies were separately mapped
to the KEGG gene and protein families, and the number
of unique KEGG Ortholog Identifiers (KOIs) was deter-
mined. The number of KOIs identified for a single k-
mer value reflected the trend previously observed with
the contig number (Figure 2). The highest number of
KOIs was generated from the k-19 assembly, and the
number of identified KOIs decreased as the k-mer value
increased to 63.



Table 1 Transcriptome sequencing and assembly summary

k-19 k-21 k-23 k-27 k-33 k-37 k-43 k-53 k-63

Sequencing

Raw sequencing reads 44,568,122

Read length 99

Pre-assembly

Reads requiring trimming 29,264,547

Minimum read length 1

Lower quartile read length 65

Median read length 87

Upper quartile read length 99

Maximum read length 99

Assembly

Number of reads assembled 18,097,635 18,481,043 18,018,855 16,878,820 16,918,312 17,188,419 26,970,166 30,231,540 28,058,816

Number of reads mapped 28,449,200 31,893,197 33,199,219 32,903,930 33,395,304 32,523,018 31,939,290 30,267,756 27,808,027

Number of contigs (≥ 100 bp) 98,094 64,000 47,448 46,461 40,965 46,442 34,489 33,344 32,639

Number of contigs (≥ 5,000 bp) 470 1,296 1,587 1, 315 1,025 742 636 253 115

Number of contigs (≥ 8,000 bp) 42 155 215 165 119 72 105 17 22

Average length of contigs 700 1,114 1,463 1,356 1,383 1,115 1,402 1,120 914

Longest contig length 46,754 29,394 16,393 14,115 13,754 13,685 12,571 9,484 12,582

N50 1,594 2,415 2,745 2,624 2,497 2,202 2,349 1,836 1,498

N90 249 470 795 696 733 488 730 515 372
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To investigate if each assembly contained a distinct
collection of identified genes, the KOIs unique to each
k-mer assembly were identified and their quantities are
presented in Figure 3. This matrix table displays the
number of unique KOIs (for a specific row k-mer value
assembly) not found in the set of column k-mer assem-
blies in a pair-wise comparison. Moving down the k-mer
column on Figure 3, the k-63 assembly resulted in the
highest number of unique KOIs that were missing in the
other assemblies, followed by k-61, k-59, k-57, and k-19.
The number of missing KOIs decreased as k-mer value
increased from 19 to 37 and then increased afterwards.
This analysis has clearly shown that the number of

missing KOIs was minimal for mid-range k-mers, i.e.
from 21 to 41, but it was more prominent for short and
long k-mer sizes, i.e. 19, 43, and above. The fact that the
highest quantities of missing KOIs corresponded to the
highest and lowest number of generated contigs, in k-19
and k-63 assemblies respectively, was not surprising as
these two extreme assemblies likely contained more
unannotated contigs compared to other single k-mer as-
semblies, where higher accuracy in biological annotation
is achieved with optimal mid-range k-mer length and ul-
timately contig length.
To further characterize the relationship between the

single k-mer assemblies and the quantities of generated
contigs, trimmed reads were mapped to individual k-19
to k-63 transcriptome assemblies and the fold coverage
for each assembly was determined (Figure 4). The
results plotted in Figure 4 for the representative k-mer
set demonstrate that under all mismatch parameters
tested (i.e. 0, 1, and 2) the coverage was above 1600×
for all k-mer values except k-19. When one or two mis-
matches were allowed, more than 2300× coverage was
obtained for k-mers 23 to 53 except 37. Although lower,
the contig coverage for the k-19 assembly was still
greater than 1000× (Figure 4).
Despite the fact that k-mer 19 has resulted in a lower

quality assembly in terms of coverage and missing annota-
tions as discussed above, utilization of the k-19 assembly
might still have value in annotating the transcriptome.
Overall, lower k-mer assemblies are more successful in
capturing transcripts with lower abundances, but as k-mer
length increases, transcripts with higher abundances are
more likely to be detected. Therefore, all individual assem-
blies of k-19 to k-63 were utilized to generate a multi-k
based CA [11].

Assembly clustering and optimization
The generation of CA was performed using three differ-
ent sequence clustering programs: Oases (through its
own multi-k option), CD-HIT-EST, and VMATCH. The
CAs obtained with varying clustering scenarios allowed
by these packages were annotated and the number of



Figure 2 Total contig and KOI counts for each k-mer assembly.

Figure 1 Cumulative contig length frequency distributions for individual assemblies.
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Figure 3 Comparative matrix of number of unique KOIs missing in each single k-mer assembly. Each value represents the number of
unique KOIs (for a specific row k-mer value assembly) not identified in the set of column k-mer assemblies.
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KOIs present in individual k-mer assemblies but not in
the CA were determined (Table 2). The best performing
package in this regard was the CD-HIT-EST program
with 456 missing KOIs in total when a sequence identity
threshold parameter of 1.0 was chosen. The Oases pack-
age also produced similar results with 635 missing KOIs
in total when its multi-k option was enabled (Table 2).
Furthermore, a reversed comparative analysis was con-
ducted based on the Oases multi-k and CD-HIT-EST
(1.0) results to determine the number of KOIs annotated
in the CA, but not present in individual k-mer assem-
blies (Figure 5). This analysis demonstrated that the CAs
resulted in considerably less missing KOIs than did the
individual assemblies. In addition the number of missing
unique KOIs was ~2.5-7 times less for the CA generated
by CD-HIT-EST and ~5-40 times less for CA generated
Figure 4 Contig coverages of representative single k-mer assemblies
by the Oases multi-k compared to the single assemblies
of k-mers 19 to 63.
Nevertheless, Table 2 and Figure 5 collectively indi-

cated that there were still missing KOIs in both CAs and
single k-mer assemblies. Although the number of miss-
ing KOIs in the CA was low compared to the total num-
ber of KOIs identified, there was still some relevant
biological information lost during this clustering step.
This was attributed to the heuristic-based search used in
both CD-HIT-EST and Oases to reduce computation
time and memory usage, resulting in minor inconsisten-
cies during the removal of redundant sequences.
To further characterize the degree of lost biological in-

formation, the missing KOIs identified during the pair-
wise comparisons in Figure 5 were subjected to full bio-
logical annotation using KEGG BRITE gene and protein
as a function of mismatches allowed by Bowtie mismatches.



Table 2 Number of KOIs present in individual k-mer
assemblies but missing from the combined assemblies
generated with different programs

k OASES
multi-k
merged

CD-HIT-EST
(0.90)1

CD-HIT-EST
(0.95)1

CD-HIT-EST
(1.0)1

VMATCH

19 58 108 86 33 481

21 19 55 41 9 433

23 9 37 23 3 402

25 7 44 28 4 409

27 8 45 29 5 415

29 8 53 36 7 420

31 8 47 30 8 413

33 10 43 27 9 413

35 13 51 35 8 422

37 17 60 40 10 432

39 19 57 38 9 412

41 17 59 45 9 412

43 22 63 49 14 413

45 22 67 52 14 420

47 24 76 58 19 426

49 33 81 63 25 432

51 36 89 73 28 446

53 38 95 75 33 447

55 42 100 80 35 449

57 46 103 83 37 460

59 55 113 93 42 473

61 56 112 97 43 468

63 68 125 110 52 472

TOTAL 635 1683 1291 456 9970
1Represents sequence identity.
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families. The missing KOI lists and their full biological
annotations are presented as Additional file 1 and
Additional file 2 [annotated KOIs missing in single k-
mer assemblies otherwise present in CAs, corresponding
to an average 0.19% of total KOIs, identified with CD-
HIT-EST 1.0 scenario (Additional file 1) and 0.27% in
Oases multi-k (Additional file 2)], and Additional file 3
and Additional file 4 [annotated KOIs missing in CAs
otherwise present in single k-mer assemblies, corre-
sponding to an average 3.43% of total KOIs, identified
with CD-HIT-EST 1.0 scenario (Additional file 3) and
3.48% in Oases multi-k (Additional file 4)]. The detailed
discussion of lost biological information would be out of
the scope of this paper, as its nature and value would
differ for each researcher and assembly goal. Neverthe-
less, a general important interpretation is that there were
relevant genes encoding enzymes and proteins (of par-
ticular interest for a lipid producing microalgae species
with respect to this study) identified as missing in single
k-mer assemblies but present in CAs (Additional file 1
and Additional file 2) and vice-versa (Additional file 3
and Additional file 4). This suggests that comprehensive
annotation should include, in addition to the CA, an in-
terrogation of unique genes in the assemblies of individ-
ual k-mers from 19 and 63.

Suggested workflow for optimizing de novo transcriptome
annotation
Although the generated CA provided the best annota-
tion results, comparison with single k-mer assemblies
suggested that this approach still results in the loss of
some biological information as discussed above. A work-
flow is presented in Additional file 5, along with several
useful scripts, as a guide to improve the annotation of
de novo assembled transcriptome. The workflow first
includes quantifying the number of annotations that
could possibly be generated in single k-mer assemblies
via quick annotation services (such as KAAS) to deter-
mine the optimal k-mer value range targeted to capture
the most comprehensive functional annotation. Next, a
clustered assembly should be generated using these k-mer
values to produce the full set of non-redundant contigs.
Finally, pairwise comparisons are performed to identify
the unique contigs that are not present in the multi-k
clustered assembly (otherwise detected in single k-mer as-
semblies). These missing contigs should be incorporated
into the final assembly product prior to annotation.

Conclusions
For the de novo transcriptome assembly of non-model
organisms from short read sequencing data, de Bruijn
graph based algorithms use k-mer hash lengths to accom-
modate transcripts with different sizes. Here, we provide
an in-depth analysis of the effects of individual k-mer
length and multiple k-mer assembly methods on transcrip-
tome annotation. Results demonstrate that different k-mer
choices result in different quantities of unique contigs per
single k-mer assembly, which in turn impact the amount
of biological information that is retrievable from the tran-
scriptome. Although this undesirable effect could be mini-
mized with clustering of multi-k assemblies, it is not
completely eliminated due to limitations in the heuristic
algorithms used in redundancy removal when clustered k-
mer assemblies are used. We present useful scripts and a
workflow to retrieve some of the missing biological infor-
mation. With high-throughput DNA sequencing methods
removing limitations in transcriptome coverage, assembly-
based optimization is important for continually improving
the completeness of transcriptomes, particularly in non-
model organisms for which the reference genome is not
available. Taken together, our results provide important
guidance on selecting and combining k-mer lengths to



Figure 5 Number of missing KOIs compared in reverse between clustered assemblies and single k-mer assemblies. Data represent a
reverse comparative analysis where the number of KOIs annotated in the CAs, but missing in single k-mer assemblies (open triangles for CD-HIT-EST
1.0 and squares for Oases), and the number of KOIs annotated in the single k-mer assemblies but missing in the CAs (closed triangles for CD-HIT-EST
1.0 and squares for Oases).
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improve the extraction of biological information from de
novo transcriptome assemblies.

Methods
Algae growth, cDNA sequencing, read trimming, and
assembly
Neochloris oleoabundans (a Chlorophyceae class green
microalgae) was grown in batch cultures under nitrogen
stressed and unstressed conditions [17,18]. Total RNA
was extracted after 11 days of growth using Rneasy Plant
Mini Kit (Qiagen, Germantown, MD). Library prepar-
ation was conducted using mRNA-Seq Kit supplied by
Illumina (Illumina, Inc., San Diego, CA). Briefly, the
mRNA fraction was isolated from total RNA using two
rounds of hybridization to Dynaloligo(dT) magnetic
beads (Invitrogen, Carlsbad, CA). The mRNA was then
fragmented in the presence of divalent cations at 94°C,
and subsequently converted into double stranded cDNA
following the first- and second-strand cDNA synthesis
using random hexamer primers. After polishing the ends
of the cDNA using T4 DNA polymerase and Klenow
DNA polymerase for 30 min at 20°C, a single adenine
base was added to the 3’ ends of cDNA molecules.
Illumina mRNA-Seq Kit specific adaptors were then
ligated to cDNA 3’ ends. Subsequently, the cDNA was
PCR-amplified for 15 cycles and amplicons were purified
using the Qiagen PCR purification kit (Qiagen,
Germantown, MD). The size and concentration of the
cDNA libraries were determined on Agilent 2100 bioa-
nalyzer (Agilent Technologies, Santa Clara, CA). Each
cDNA library was loaded onto a lane of the Illumina
flow cell and sequenced at the Yale Center for Genome
Analysis using a Genome Analyzer IIx and the 99 bp
single-read recipe. An additional lane was also used to
run sequencing controls. Raw sequencing reads
(44,568,122 reads; 99 bp single-ended) of cDNA were
analyzed with the FastQC quality control tool (v0.10.0)
to evaluate the read sequence quality [19]. Low quality
reads with a Phred score value of 13 and less were
removed using the SolexaQA software package (v1.1)
[20]. After trimming, the FastQC analysis was conducted
again to ensure quality measures were met in the
remaining reads.
Based on their common application in de novo tran-

scriptomic studies using Illumina reads [21,22], the
Velvet (v1.2.03) [11] and Oases (v0.2.06) [4] packages
were utilized to assemble the high quality reads. In order
to investigate the impact of k-mer choice on the assem-
bly dynamics, separate assemblies were performed for
odd k-mer values ranging from 19 to 63 using the “oase-
s_pipeline.py” script provided in the Oases package. The
raw sequence data used in this study has been submitted
to National Center for Biotechnology Information
(NCBI) Short Read Archive (SRA), and are available for
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public access with accession numbers: SRR391512.1 and
SRR391513.1.

KOI assignment and functional annotation
The resulting contigs from each individual k-mer assembly
were submitted to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) Automatic Annotation Server (KAAS)
(v1.6a) [23] for KOI assignment using the default settings
with single-directional best hit (SBH) method and data-
bases that included several eukaryotic organisms (includ-
ing the green microalgae C. reinhardtii) [23]. Functional
annotation of the KOI assignments was derived from the
KEGG BRITE genes and protein families database [24].
Comparison of KOIs for each k-mer assembly to KOIs for
all other individual k-mer assemblies was performed to
determine the number of KOIs unique to each k-mer as-
sembly. This analysis was generated using a custom built
script in the R programming language. This script is pro-
vided in Additional file 6.

Mapping reads to the assembled transcriptome
To understand the relationship between coverage and
generated contigs, trimmed reads were mapped against
each assembly (k-19 to k-63) using Bowtie [25] and the
contig coverage was estimated. Prior to mapping, any
read shorter than the k-value of the assembly was
removed from the set of trimmed reads. This was done to
ensure that reads, which were not used in the assembly,
were not mapped to the assembly. Bowtie produced all
alignments [5] with 0, 1, and 2 mismatches allowed and
utilized the following settings: -a -phred64 -quals -suppress
1,2,4,5,6,7,8 -q -best. Fold coverage was calculated based
on the average number of reads mapped per contig in a
given k-mer assembly. This calculation was performed
using a custom designed Python script (provided in
Additional file 6).

Assembly clustering and optimization
Clustered assemblies (CA) were generated from the single
k-mer assemblies of 19 to 63. Clustering of contigs and re-
dundancy removal were performed using the following
three different programs: Oases (by using its incorporated
multi-k option), CD-HIT-EST (v4.0-2010-04-20) [13], and
VMATCH (v2.1.6) [14]. CD-HIT-EST was run with the fol-
lowing parameters: -n 8 -T 4, and 3 different values for the
'-c' parameter (0.9, 0.95, 1.0). VMATCH was run with the
following parameters: -d -p -l 18 -dbcluster 100 0 -v -non-
redundant for vmatch and -allout -pl -dna for mkvtree.
Contigs from the combined assemblies were submitted to
KAAS for KOI assignment as previously described.
Pair-wise comparison of single k-mer assemblies ver-

sus CA was performed to determine if unique KOIs
existed in specific k-mer assemblies but not in the clus-
tered assemblies, and vice versa. To make these
comparisons, scripts written in the Python programming
language were developed (See Additional file 6).

Additional files

Additional file 1: This spreadsheet contains the list of annotated
KOIs missing in single k-mer assemblies (provided as separate tabs),
but present in the clustered assembly obtained by CD-HIT-EST with
1.0 sequence identity.

Additional file 2: This spreadsheet contains the list of annotated
KOIs missing in single k-mer assemblies (provided as separate tabs),
but present in the clustered assembly obtained by Oases multi-k
option.

Additional file 3: This spreadsheet contains the list of annotated
KOIs missing in the clustered assembly obtained by CD-HIT-EST
with 1.0 sequence identity, but present in the corresponding single
k-mer assemblies (provided as separate tabs).

Additional file 4: This spreadsheet contains the list of annotated
KOIs missing in the clustered assembly obtained by Oases multi-k
option, but present in the corresponding single k-mer assemblies
(provided as separate tabs).

Additional file 5: This file provides the reader with a representative
workflow to generate optimized de novo transcriptome assembly.

Additional file 6: This file contains in-house designed scripts used
during the course of the study.
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