Sallou et al. BMIC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

BMC
Bioinformatics

SOFTWARE Open Access

Seqcrawler: biological data indexing and
browsing platform

Olivier Sallou", Anthony Bretaudeau? and Aurelien Roult”

Abstract

Background: Seqcrawler takes its roots in software like SRS or Lucegene. It provides an indexing platform to ease
the search of data and meta-data in biological banks and it can scale to face the current flow of data. While many
biological bank search tools are available on the Internet, mainly provided by large organizations to search their
data, there is a lack of free and open source solutions to browse one’s own set of data with a flexible query system and
able to scale from a single computer to a cloud system. A personal index platform will help labs and bioinformaticians
to search their meta-data but also to build a larger information system with custom subsets of data.

Results: The software is scalable from a single computer to a cloud-based infrastructure. It has been successfully tested
in a private cloud with 3 index shards (pieces of index) hosting ~400 millions of sequence information (whole GenBank,

also provide a high availability infrastructure.

UniProt, PDB and others) for a total size of 600 GB in a fault tolerant architecture (high-availability). It has also been
successfully integrated with software to add extra meta-data from blast results to enhance users’ result analysis.

Conclusions: Seqcrawler provides a complete open source search and store solution for labs or platforms
needing to manage large amount of data/meta-data with a flexible and customizable web interface. All
components (search engine, visualization and data storage), though independent, share a common and
coherent data system that can be queried with a simple HTTP interface. The solution scales easily and can

Background
Labs and bioinformatics platforms have to manage large
amounts of data, coming from different sources, in dif-
ferent formats and holding different kinds of meta-data.
While data storage by itself is a new challenge, finding
where a specific datum is stored, and what is its meta-data
is another one. People need a way to search in their data
sets, should it be visually with a graphical interface for ana-
lysis, or with an API to integrate it with other applications.
Different tools are available on public bank web sites
(EB-eye [1], UCSC [2] or Ensembl genome browsers [3],
etc.) to find a specific gene, for example, from its name or
ID However those tools are available only for their hosted
data; they cannot be mixed up with a specific set of data
coming from a lab (except for visualization where a few
allow the user to add an extra track from his own dataset,
Ensembl for example). Those tools usually limit intensive

* Correspondence: olivier.sallou@irisa.fr
'Campus de Beaulieu, University of Rennes 1, Rennes, France
Full list of author information is available at the end of the article

(BiolMed Central

usage with a risk of being blacklisted. They can prevent
automated, frequent requests for large data sets analysis.

The idea was to provide those labs with a tool to access
efficiently the data generated in their lab, the same way
they would with those online tools, with the additional
possibility of mixing them with other data sources. The
tool had to be open source, to allow new additional file
formats or software extension; flexible, to adapt the web
interface to one‘'s own need, and scalable to support the
load requests and the size of the managed data sets.

Bioinformaticians are the primary target of the project;
they need to link their data with the tools they use in
their daily tasks. The software gives them access to ori-
ginal document location, the meta-data and some raw
data (sequence), all of this in a machine-readable format.
A bioinformatician could query the software from a blast
result, for example, to extract the features present at
alignment positions or he could extract all the information
matching a specific criteria. He can also build custom
banks from a query matching specific criteria.

© 2012 Sallou et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:olivier.sallou@irisa.fr
http://creativecommons.org/licenses/by/2.0

Sallou et al. BMC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

The web search interface targets both the bioinformati-
cians and the scientists for easy access to the information
and direct visualization of a set of data (genome browser
for example).

The Seqcrawler project started after some testing on
Lucegene [4]. Lucegene wrote some base code to link
the GMOD GBrowse browser [4] to a search engine
(based on Lucene) as well as some translation scripts to
ease the indexing of a few biological data formats. How-
ever the solution was not scalable to large indexes, and
raw data storage was not suitable to hold a very large
number of sequences. While SRS [5] offers very interest-
ing features, it is commercial software and does not
allow customization or multi-server scalability.

The Seqcrawler goal is to extend those features in an
easy to use solution, scalable to fit any need, and imple-
mentable in the cloud.

Seqcrawler has been developed to:

1. Enable full text search but also complex queries on
meta-data (example: gene position between A and B
AND chromosome ID is C).

2. Download original file (record file location and
position in file)

3. Provide an integrated, extensible and
customisable visualization environment above the
indexed data.

4. Provide a search engine and storage back-end
scalable on multiple servers

Page 2 of 6

Using a search engine as a central system for the
meta-data is interesting for several reasons:

e Search engines provide exact but also approximate
text-based search, a useful feature when the user is
in front of a search interface.

e Search engines enable storage of information beyond
search usage, this means that some data can be
stored and accessed even if not used directly for the
search.

e Search engines offer scoring and paging results.

e Search engines allow flexible schema, i.e. new fields
or document types can be added/indexed with no
redefinition.

e GMOD browsers use some drivers to access the
data (flat files, SQL...). With an appropriate driver,
they can be connected with the search engine.

This work will explain how Seqcrawler can help labs
to manage their data and how a biological information
system can be built upon it.

Implementation

Architecture

The software is made up of several independent compo-
nents Figure 1.

1. The indexer is a command-line tool to load into the
search engine biological data files, from many

¥

Search engine

Solr o
Tomcat)&
T
Query index
el |
- Apache
GBrowse ‘-’ Get data

Web interface

Figure 1 Components. Seqcrawler components (indexer, search engine, storage backend, visualization tools) and their interactions.

Storage backend |
'@ Riak

Publish
Index
Indexer
Index operations

;i ; :{ocally or remotely

Sallou et al. BMC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

common known formats (Genbank, GFF3, EMBL,
FASTA, PDB, READSEQ [6] supported formats)
and Solr native format.

2. The search engine, Apache Solr [7], manages index
queries with a REST- like interface

3. The storage backend, optional, stores sequence data
in a key/value based database (MongoDB [8] or Riak
[9]). Other backends can be easily added.

4. The web interface triggers the search engine to
get results from user query, it manages
pagination and provides specific rendering
according to original content-type (Gbrowse for
GFF/Genbank, ...).

The software uploads data (1) and ties the components
(2,3,4) to share and extract data. However, each compo-
nent can be queried or activated independently.

Components

Indexer

The indexer program is a set of Perl/Java command-line
tools used to load a document (see supported formats),
containing meta-data and/or data (DNA sequences for
example), in the search engine and the storage backend.
It supports multiple biological formats as input and maps
the document to key/value pairs. Each key is defined as
a field in the search engine. If indexed, a field can be
used as a filter with the search engine. If only stored,
it will be included in the answer but will not be part
of the filter.

Indexer can index data either offline for large inserts
(and better performance), or online on a remote server.
The online mechanism can be used for data updates,
with no server restart. However, for a very large index, it
is advised to update the index in offline mode. The pro-
gram also supports partial update of the index.

Some formats are managed directly by the software
while others are managed with the Readseq software.

The indexer also adds some additional information to
keep track of the original file location as well as the lo-
cation of the data in the file. It also adds a specific
content-type to the indexed document, which depends
on the original input. This content-type will be used
by the web interface to display the data according to
its type.

All the search engine fields of the document are indexed
by default. This can be customized in the search engine
configuration.

While adding a new file format support to the code is
quite easy, a plug-in mechanism is provided to dynamic-
ally add new ones. To add a new format, the developer
writes a new file (myplugin.js), written in JavaScript, with
dedicated methods to read the file and transform it in a
key/value set. Then, the indexer program can be

Page 3 of 6

executed with the new type (-t myplugin) to read the
new file format. This plug-in mechanism allows easy in-
tegration of new or custom data types.

Another feature is field recoding: a file document
field (db_xref of a GenBank file for example) can be
recoded (e.g. split, modified) dynamically. To do so, a
new Java file can be added and declared in the con-
figuration. This feature helps to customize the parsing
of a document.

Search engine

The search engine is Apache Solr. It provides a REST-
like interface to index a document or query the index. A
schema, flexible and customizable, defines how data
should be indexed and/or stored for later retrieval. This
server supports index shards, i.e. splitting an index into
multiple smaller ones while keeping a single point of ac-
cess to query them. The server manages the querying of
all the shards and the merge of the results.

It also supports paging, caching and complex queries on
fields with the Lucene [7] syntax. With ranged queries, a
field can be queried with upper and lower bounds.

With the REST interface, an application can directly
query the system to find an element or a subset of ele-
ments (for example, all data with the feature “gene” from
chromosome “XXX”).

While providing a filter for each indexed field, the
system also supports queries on all the fields with a full
text search. Finally, exact but also fuzzy and starts-with
searches are allowed.

Storage backend

To store large data sets (nucleic sequences for example),
in addition to the meta-data, the software uses a key/value
based storage backend. Currently designed for MongoDB
(default) and Riak, the software can be extended to sup-
port other backends.

The reason for such a storage backend is an easy
API access and its scalability with a ring architecture.
In ring architectures, each node can be queried to
get some data, even if the data are not hosted on
this node. Data can also be replicated automatically
among other nodes to ensure higher availability and
performance.

Data are stored as objects with a unique identifier, and
can be stored on multiple servers, replicated if needed.
This solution provides storage for a very large amount of
data elements, with no storage/size limitation.

Datum is split in small chunks in the backend and the
application can retrieve it from its ID (chunks will be
merged again).

If the original file cannot be accessed by the application,
using this storage is a way to keep the data available. It
can also be used to store additional data related to the

Sallou et al. BMC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

original document (translation field content in a GenBank
sheet for example).

The software provides a web interface and a REST-
like interface to query the storage backend. It also sup-
ports additional start and stop parameters to extract a
part of the data (to retrieve a gene from its position in a
chromosome for example).

Web interface

The web interface is the end-user entry point. This mod-
ule is not needed for software interaction, as all other
components are reachable via a HTTP-based interface.

Accessible with any recent browser, the web interface
uses Ajax calls to query the index engine and offers ex-
port mechanisms to extract all or part of the results.

It displays a Google-like result presentation with paging,
ordered by score. The search engine calculates the score
with internal rules.

A few additional meta-data can be displayed depend-
ing on the original content type.

The display of the results per content-type can be cus-
tomized (on the server) to add new content-type support
or modify the rendering for a specific content-type with
the inclusion of a custom JavaScript file.

For each result, additional links are available to:

1. Get the details of a result where all key/value stored
elements will be displayed as well as a link to the
original document for download.

2. Display the data recorded in the storage backend,
depending on content-type.

3. Link to a visualization tool, dependent on content-

type.

The content-type (one per supported format, e.g.
biosequence/gff for gff based documents), recorded at
indexing time by the indexer component, gives some
extra information on the original data format. It defines
the visualization tool to use (GBrowse for GFF based
data, no renderer for UniProt based data, custom ones if
any). The software currently embeds 2 visualization tools:
GBrowse and ChemDoodle [10].

GBrowse is a well-known sequence browser from
GMOD. Linked to the biosequence/gff type (for GFF and
GenBank files), it displays the sequence with information
extracted from the search engine.

Features information and position are queried via a
dedicated DBI interface, and are used by GBrowse to dis-
play the information. The DBI interface also queries the
storage backend to extract the sequence data to be dis-
played in the “details” window.

We have developed this specific driver to link the
GBrowse software to the Solr engine as an extension of
the driver developed by the Lucegene project.

Page 4 of 6

The ChemDoodle renderer is an experimental viewer
we have plugged in the system. It displays in the browser
a 3D, rotating, image of a protein from a PDB file, in
pure JavaScript. This feature needs a recent browser sup-
porting WebGL and is quite CPU consuming.

Scalability and high availability

The search engine component supports index sharding,
i.e. having multiple parts of an index located on different
servers but managed as a single, large, index.

The other components are stand-alone components
using the search engine to collect the required data.

Each component (1,2,3 and 4, cf. Implementation
paragraph) can be scaled and extended on multiple ser-
vers to reach expected dimension/load. We could have,
for example, 2 search engine shards (2) installed on 2
different servers and a single browser (4) collocated with
1 storage system (3). If the system were to manage add-
itional data after a few months and were in need of add-
itional servers, an additional search engine (2) server
could be added and/or an additional storage backend (3)
with no breakage on current installation.

The search engine shards can be scaled (and optionally
replicated) to add new data on new shards, with no im-
pact on existing shards. One shard (index handler) will
query the other shards and merge the results. Each shard
can be an index handler.

The data browser /visualization components are inde-
pendent, as they hold no data/visualization, and can be
scaled to face load requests (Figure 2).

The storage backend supports a very large quantity of
data on a single server (hundreds of GB), and adding
new servers can increase its capacity. The data will auto-
matically be dispatched and replicated, with backend
support for node failure and multi-master nodes.

To provide high availability and dispatch the requests
to the components, a web load balancer can be set in
front of the other servers, balanced per component.

Results and discussion
The software is successfully installed and used on the
GenOuest platform, in a private cloud, hosted on 5 vir-
tual servers (6 to 8 GB RAM, 2 CPU). Several public
data banks (genomes from GenBank at NCBI [11], pro-
tein data structure from PDB [12], bacteria genomes
from NCBI [13], and protein database from Swiss-Prot
and UniProt [14]) are indexed for more than 400 mil-
lions of records.

The current implementation manages 3 index shards,
1 web dispatcher and 1 server combining storage back-
end and genome browser.

We have also successfully tested the high availability
with duplication of the servers/components and a load
balancer.

Sallou et al. BMC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

Page 5 of 6

T .

(I Customer web requests}

Data browser/visualization

°e

’ Raw data or index query

N

Web frontend

Request load balancer

A\

Request load balancer

Key/value ring
backend
¥

Apache Solr index shards ‘

‘i replica I’

Figure 2 Architecture and high availability. The different components can scale independently on one or more servers and can be
independently activated or deactivated depending on needed functions. Each component is assigned a different colour. A web front-end can

load balance the requests on each component to provide high availability.
A\

This high availability test was made with 3 + 3 servers
hosting the index shards, 1+ 1 servers hosting the stor-
age backend components with the genome browser soft-
ware, and one web load balancer. This architecture
reduces node failure impact and increases load support.

Documents update, after a remote bank update for ex-
ample, is automatically managed with the BioMA] [15]
tool, providing a seamless update mechanism.

The software has been integrated with other tools
(KoriViewer [16] and other local software) to automate
the extraction of additional meta-data from blast results,
or to extract the nucleic sequence of a specific id (gene,
rnatm, etc.) in the Mobyle portal [17].

Query time can take from 1 to 20 seconds according to
the query and the index size. A cache mechanism helps to
reduce response times. Each system has to be optimally
designed according to the volume of data to manage.

Indexing time also depends on the volume of data. On
our platform, using a cluster to parallelize indexing
tasks, we index UniProt/Swiss-Prot files in 2 h30.

Future developments
Expected future developments will add an ontology layer to
the data. It is expected to link meta-data and ontologies to

be able to extract subsets of data. A query like “get all
chromosome identifiers for the species Fish” would match
all fish sub-elements in the species ontology. Users of the
software will have the possibility of extracting custom banks
with a more accurate selection than the current one.

We also expect to add a DAS (Distributed Annotation
System) [18] interface to the system to enable DAS com-
patible tools queries.

Conclusions

Seqcrawler provides a free and open source solution to
meta-data storage and search. While some other solu-
tions on specific web sites will be more accurate, be-
cause it is focused on a specific set of data, Seqcrawler
offers a flexible solution to locally manage the data, with
no restriction on data type and data mixing.

The components of the software are modular, ie. are
component-optional and can be inactivated if not used.
Additional components can be introduced to extend the
system for other usages; one just needs to query the search
engine to extract the meta-data matching one’s criteria.

The system is customizable to fit other requirements,
and the plug-in mechanism of the indexer eases the
addition of new file formats.

Sallou et al. BMC Bioinformatics 2012, 13:175
http://www.biomedcentral.com/1471-2105/13/175

Limitations, from a hardware point of view, are the
disk requirements. Index and backend storage require a
substantial amount of disk space in addition to the ori-
ginal data. Though, with the sharding support and the
ring architecture, data can be split to remove single ser-
ver disk space restrictions.

The software can scale from single user and small
data, up to multi-user and larger data for large organiza-
tions. It can also easily be used in a cloud with its pack-
aged installation (Debian/Ubuntu).

Availability and requirements

The Seqcrawler software is freely available for download
with installation instructions at http://seqcrawler.source-
forge.net

e DProject name: Seqcrawler

e Project home page: seqcrawler.sourceforge.net

e Operating system(s): Platform independent

e Programming language: Java/JavaScript

e Other requirements: Java 1.6 or higher, Tomcat 5.0
or higher

License: CeCILL

e Any restrictions to use by non-academics: none

e Demo: http://seqcrawler.genouest.org

While the software depends on multiple components,
not always easy to install, a deb package is available for
Debian/Ubuntu distributions. In case of missing depend-
ency, dependencies are available on Debian mirrors. The
package is installed with a sample bank for immediate
testing.

Complete installation is detailed on the project web
site in the Installation section.

Abbreviations

Ajax: Asynchronous JavaScript and XML. Techniques used in web
programming for asynchronous requests and rendering; API: Application
Programming Interface (http://en.wikipedia.org/wiki/
Application_programming_interface); DAS: Distributed Annotation System
(http://www.biodas.org/documents/spec-1.53.html); DBI: DataBase Interface,
i.e. driver to database; GMOD: Generic Model Organism Database project;
REST: Representational state transfer (http://en.wikipedia.org/wiki/REST). All
requests are available with HTTP GET requests and URL parameters;
WebGL: Web based Graphics Library, JavaScript library to use the computer
display card's Graphics Processing Unit (GPU).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

OS developed the software and packaged it. AR installed the infrastructure
and made all the system installation on the GenOuest platform. AB helped
on the design of the web interface. All authors read and approved the final
manuscript.

Funding
This work has been funded by the University of Rennes 1, INRIA, IRISA and
Région Bretagne.

Page 6 of 6

Acknowledgements

We would like to thank the GenOuest platform for hosting the software and
the use of its cluster to index the data.

Thank you to Carryn Hayward, Delphine Gourault and Olivier Collin for their
contribution to the article review.

Author details
1Campus de Beaulieu, University of Rennes 1, Rennes, France. INRIA, Campus
de Beaulieu, Rennes, France.

Received: 28 November 2011 Accepted: 19 June 2012
Published: 24 July 2012

References

1. Valentin F, Squizzato S, Goujon M, McWilliam H, Paern J, Lopez R: (2010) -
Fast and efficient searching of biological data resources-using EB-eye.
Brief Bioinform 2010, 11(4):375-384. doi:10.1093/bib/bbp065.

2. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler
D: The Human Genome Browser at UCSC. Genome Res 2002, 12:996-1006.

3. Stalker J, Gibbins B, Meidl P, Smith J, Spooner W, Hotz HR, Cox AV: The
Ensembl Web site: mechanics of a genome browser. Genome Res 2004,
14:951-955. GMOD, LuceGene: Document/Object Search and Retrieval
(2007) http//www.gmod.org/, http://www.gmod.org/wiki/LuceGene.

4. GMOD, GBrowse. http://gmod.org/wiki/GBrowse.

5. Etzold T, Ulyanov A, Argos P: SRS: information retrieval system for
molecular biology data banks. Methods Enzymol 1996, 266:114-128.

6. Gilbert D: Sequence file format conversion with command-line Readseq.
Curr Protoc Bioinformatics 2003, Fed; Appendix1: Appendix 1E (http://www.
ncbi.nlm.nih.gov/pubmed/18428689).

7. Apache Solr. http://lucene.apache.org/solr/.

8. MongoDB. http://www.mongodb.org/.

9. Riak. http//wikibasho.com/.

10. ChemDoodle. http://www.chemdoodle.com/.

11. GenBank at NCBI. GenBank format files (seq.gz) at ftp://ftp.ncbi.nih.gov/
genbank.

12. PDB. files from ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdby/.

13. Bacteria genomes from NCBI. GFF files at ftp://ftp.ncbi.nih.gov/genomes/
Bacteria/.

14. Swiss-Prot/UniProt. ftp:/ftp.ebi.ac.uk/pub/databases/uniprot/current_release/
knowledgebase/complete/.

15. Filangi O, Beausse Y, Assi A, Legrand L, Larré JM, Martin V, Collin O, Caron C,
Leroy H, Allouche D: BioMAJ: a flexible framework for databanks
synchronization and processing. doi:10.1093/bioinformatics/btn325.

16. Swiss-Prot/UniProt. http://www.korilog.com/index.php/KoriViewer.html.

17. Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S,
Tuffery P, Letondal C: Mobyle: a new full web bioinformatics framework.
doi:10.1093/bioinformatics/btp493.

18. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L: The Distributed
Annotation System. BMC Bioinformatics 2001,

2:7. doi:10.1186/1471-2105-2-7.

doi:10.1186/1471-2105-13-175
Cite this article as: Sallou et al.: Seqcrawler: biological data indexing and
browsing platform. BMC Bioinformatics 2012 13:175.

(R

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolVied Central

http://seqcrawler.sourceforge.net
http://seqcrawler.sourceforge.net
http://seqcrawler.genouest.org
http://dx.doi.org/10.1093/bib/bbp065
http://www.gmod.org/
http://www.gmod.org/wiki/LuceGene
http://gmod.org/wiki/GBrowse
http://www.ncbi.nlm.nih.gov/pubmed/18428689
http://www.ncbi.nlm.nih.gov/pubmed/18428689
http://lucene.apache.org/solr/
http://www.mongodb.org/
http://wiki.basho.com/
http://www.chemdoodle.com/
ftp://ftp.ncbi.nih.gov/genbank
ftp://ftp.ncbi.nih.gov/genbank
ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/pdb/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/knowledgebase/complete/
ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/knowledgebase/complete/
http://dx.doi.org/10.1093/bioinformatics/btn325
http://www.korilog.com/index.php/KoriViewer.html
http://dx.doi.org/10.1093/bioinformatics/btp493
http://dx.doi.org/10.1186/1471-2105-2-7

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Architecture

	link_Fig1
	Components
	Indexer
	Search engine
	Storage backend
	Web interface

	Scalability and high availability

	Results and discussion
	Future developments

	Conclusions
	link_Fig2
	Availability and requirements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18

