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Abstract

Background: Early classification of time series is beneficial for biomedical informatics problems such including, but
not limited to, disease change detection. Early classification can be of tremendous help by identifying the onset of a
disease before it has time to fully take hold. In addition, extracting patterns from the original time series helps domain
experts to gain insights into the classification results. This problem has been studied recently using time series
segments called shapelets. In this paper, we present a method, which we callMultivariate Shapelets Detection (MSD),
that allows for early and patient-specific classification of multivariate time series. The method extracts time series
patterns, calledmultivariate shapelets, from all dimensions of the time series that distinctly manifest the target class
locally. The time series were classified by searching for the earliest closest patterns.

Results: The proposed early classification method for multivariate time series has been evaluated on eight gene
expression datasets from viral infection and drug response studies in humans. In our experiments, the MSD method
outperformed the baseline methods, achieving highly accurate classification by using as little as 40%-64% of the time
series. The obtained results provide evidence that using conventional classification methods on short time series is
not as accurate as using the proposed methods specialized for early classification.

Conclusion: For the early classification task, we proposed a method called Multivariate Shapelets Detection (MSD),
which extracts patterns from all dimensions of the time series. We showed that the MSD method can classify the time
series early by using as little as 40%-64% of the time series’ length.

Background
In medical informatics, the patient’s clinical data records,
such as heart rate, are collected over time and there-
fore represent a time series. If the data is collected
from two groups of patients (for example, symptomatic
and asymptomatic with respect to heart failure), the
task of multivariate time series (MTS) classification is to
learn temporal patterns to determine whether the patient
belongs to the group of symptomatic patients.
Time series have been extensively analyzed in various

fields, such as statistics, signal processing, and control
theory. The focus of the research in these fields is on
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gaining a better understanding of the data-generating
mechanism, the prediction of future values, or the opti-
mal control of a system. From a statistical viewpoint, time
series analysis is comprised of methods for analyzing time
series data in order to extract meaningful statistics from
the data. As a part of time series analysis, time series
forecasting is aimed to use a model, e.g. AutoRegres-
sive Moving Average (ARMA), to predict future values
based on previously observed values [1]. The ultimate
objective of the signal processing community is the char-
acterization of the time series in such a manner as to
allow for transformation of the time series, with a method
like Fast Fourier Transformation (FFT), to extract use-
ful information from the time series [2]. Researchers and
practitioners in Control Theory strive to calculate solu-
tions for proper corrective action from the controller
(inputs) that result in system stability. A set of past inputs
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and outputs is observed, and new inputs are set in such a
way as to try to achieve a desired output [3].
Although all of the aforementioned methods could be

helpful in our study, and the experience of researchers
and practitioners from other fields are extremely valu-
able, the focus of our research is to classify a new time
series as early as possible by looking at and extracting pat-
terns from past observations rather than predicting future
values or analyzing a single time series’ pattern.
In the data mining community, the time series classifi-

cation problem has been studied in some detail as well.
The predictive patterns framework has been introduced
to directly mine a compact set of highly predictive pat-
terns [4]. Instead of adopting a two-phase approach by
generating all frequent patterns in the first phase and
selecting the discriminative patterns in the second phase,
this approach integrates pattern mining and feature prun-
ing into the same phase to filter out non-informative and
redundant patterns while they are being generated. A
temporal rule-based classification method for temporal
pattern representation was recently proposed to address
the deficiencies of existing methods [5].
A method that extracts all meta-features from a mul-

tivariate time series was proposed by Kadous et al. [6].
The types of meta-features are defined by the user, but are
extracted automatically and are used to construct propo-
sitional attributes (attribute-value features) for another
high-level classifier, like a decision tree, that learns a
non-linear hypothesis to distinguish among classes.
In the context of classification of unknown time series

(time series with an unknown label), models utilize the
whole time series with the unknown label to predict it
based on the information learned from training data. In
an early classification context, the objective is to provide
patient-specific classification of unknown time series as
early as possible. Therefore, instead of utilizing the whole
time series, our MSD method looks into a portion (cur-
rent stream) of the unknown time series and determines
whether it is able to predict the label of the whole time
series without looking at the rest of the time series. If MSD
is able to predict at the time point which is at the end of
the current stream, the label is predicted. Otherwise,MSD
requires more data for the unknown time series and looks
at a larger segment, and does so until it is able to predict
the label of the time series.
For early classification, a new method called Early Clas-

sification on Time Series (ECTS) has been proposed [7].
The idea behind the method is to explore the stability of
the nearest neighbor relationship in the full space and in
the subspaces formed by prefixes of the training exam-
ples. The disadvantage of ECTS is that it only provides
classification results, without extracting and summarizing
patterns from training data; thus, users may not be able
to gain deep insights from the classification results. This

drawback of ECTS has been resolved by extracting local
shapelets which distinctly manifest the target class locally,
and are effective for early classification [8]. However, the
method is applicable only to one-dimensional time series.
In this study, we generalize the definition of local

shapelets to a multivariate context and accordingly pro-
pose a method for early classification of multivariate
time series. The proposed method is called Multivari-
ate Shapelets Detection (MSD). A multivariate shapelet
consists of multiple segments, where each segment is
extracted from exactly one dimension. The test time series
is then classified based on the multivariate shapelets that
best match the test time series.
In particular, we propose the following extensions to the

existing univariate shapelet method:

• Extending the concept of univariate shapelets to
multivariate shapelets, which are multidimensional
subsequences with a distance threshold along each
dimension.

• Proposing use of information gain-based distance
threshold.

• Proposing use of weighted information-gain based
utility score of a shapelet. A theorem is provided to
show that the weighted information gain
incorporates the earliness and assigns high utility
score to the shapelet that appears earlier given the
same accuracy performance.

The mathematical definition of the problem is pre-
sented in the Definitions section. The method for mul-
tivariate time series classification is described in the
Methods section. Datasets are described in the Dataset
and data processing section. In the Results and dis-
cussion section, the experimental results are presented.
Finally, future work and concluding remarks are discussed
in the Conclusion section.

Definitions
A time series T = {t1, t2, . . . , tL} of length L, len(T) = L,
is defined as a sequence of real values sampled at L time
stamps. Each time series is associated with a class label
c ∈ C where C is a finite set of class labels. A dataset D
is a collection of M pairs {(Ti, ci) : i = 1 . . .M} where Ti
is the time series number i and ci = Class(Ti) is its class.
Given a time series T = {t1, t2, . . . , tL}, a subsequence
s = {ti, ti+1, . . . , ti+l−1}, s ⊂ T , is a sampling of contiguous
positions of T of length l < L. Given two subsequences s
and h where len(s) = len(h) = l, the Euclidean distance
between s and h is defined as:

dist(s, h) =
√√√√ l∑

k=1
(s[ k]−h[ k] )2
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For a given time series T of length L and a subse-
quence s of length l, the distance between s and T is
defined as the minimum distance between s and all subse-
quences of T of length l. Therefore, we slide a window of
length l over the time series T to extract all subsequences
{h1, h2, . . . hL−l+1} of length l. As shown in Figure 1, the
distance between s and T is computed as:

dist(s,T) = min
∀i∈{1,2,...,L−l+1}

dist(s, hi) (1)

A shapelet is defined as f = (s, l, δ, cf ) where s is a time
series subsequence of length l. The class label cf of the
shapelet is called the target class. The other classes are
called the non-target classes, and are referred to as cf . We
call a time series Ti a target time series if the class of the
time series is cf . The distance threshold δ is computed
as follows:

• The distance di between s and every time series Ti in
the dataset is computed using Equation 1. The
distance di is represented as a point in the order line
as shown in Figure 2. If Class(Ti) = cf , then di is
represented as blue point. If Class(Ti) �= cf , then di is
represented as red square.

• The distance threshold δ is computed (as explained
in the Methods section) to separate the two groups
(blue and red groups).

In another way, the distance threshold δ is computed
such that the distance between any target time series Ti
and s is less than the threshold δ:

∀(Ti, cf ) ∈ D ⇒ dist(s,Ti) ≤ δ
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Figure 1 Illustration of computing the distance between a
subsequence s and a time series T. To compute the distance
between a subsequence s of length 5 and a time series T of length 24,
a window of length 5 is slid over T and the distance between s and T
is computed as the minimum distance between s and every
subsequence of T with length 5.

The distance between a shapelet f and time series T is
defined as dist(f ,T) := dist(s,T).
An N-dimensional (multivariate) time series of length

L is defined as T =[T1,T2, . . . ,TN ] where Tj is the jth
dimension of T and Tj[ k] is the value of the jth dimen-
sion of T at time stamp k. Hereafter, we use the terms
‘multidimensional’ and ‘multivariate’ interchangeably.
An N-dimensional shapelet (N-shapelet) of length l is

defined as f = (s, l,�, cf ). The vector s =[ s1, s2, . . . , sN ]
where sj is the jth dimension of the shapelet. Figure 3
shows an example of a 3-dimensional time series of length
15. It shows an example of an extracted 3-dimensional
shapelet of length 4. The shapelet is extracted from the
time series from position 6 to position 9.
The distance between an N-shapelet f and N-

dimensional time series T is a vector of N Euclidean
distances and is defined as:

dist(s,T) =
[
dist

(
s1,T1) , dist (s2,T2) , . . . , dist

(
sN ,TN

)]

(2)

where dist(sj,Tj) is defined as in Equation 1. Simply, the
distance between two multivariate time series is a vector
of distances where each component in the distance vector
is the distance between the corresponding dimensions of
the two multivariate time series. The distance between a
shapelet f and a time series T is defined as dist(f,T) :=
dist(s,T).
The distance threshold � =[ δ1, δ2, . . . , δN ] where δj is

computed (as explained in the Methods section) so that:

∀(Ti, cf ) ∈ D ⇒ dist(sj,Tj
i ) ≤ δj ∀j = 1 . . .N

Methods
In this section we first describe a recently proposed
method for early classification of univariate time series [8]
together with our suggested modifications. Then, we pro-
pose a new method for early classification of multivariate
time series.

Modifications of univariate shapelet for early time
series classification
An Early Distinctive Shapelet Classification (EDSC)
method, which is proposed at [8] and described in Algo-
rithm 1, is aimed to extract a small set of shapelets from
univariate time series for early classification.

Algorithm 1: UnivariateShapeletsDetection
Input: A training dataset D of M univariate time series;

minL;maxL
Output: A list of univariate shapelets

1. for each time series T ∈ D do {T is of length L}
2. for l ← minL tomaxL do {for each shapelet

length}
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Figure 2 Illustration of the distance threshold. The distance threshold is chosen such that it divides the dataset into two separate groups (red
and blue groups). It is clear that there is no unique best threshold. Any threshold between 10 and 14 or between 16 and 21 has only either one false
negative or one false positive. However, there is no perfect threshold that separates the datasets into two pure groups.

3. for k← 1 to L – l + 1 do {for each starting
position}

4. RowDist = ShapeletDist(k,l,Dist)
5. ComputeThreshold (flk ,RowDist)
6. ComputeUtilityScore (flk)
7. Add(flk , ShapeletList)
8. PruneShapelets(ShapeletList)
9. return ShapeletList

The method iterates over the time series in the dataset
D (line 1). For each time series T , all shapelets of length l
between minL and maxL (user parameters) are extracted
from T . For each shapelet flk (lines 2 and 3) the method
calls the function ShapeletDist (line 4) that computes
the distances between flk and all time series in D using
Equation 1. Then, the method computes the distance
threshold (line 5) for the candidate shapelet flk using
Chebyshev’s inequality. Then, it assigns flk a utility score
(line 6) using a weighted F1 score measure. In line 8, the
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Figure 3 Illustration of a 3-dimensional shapelet. This shows an
example of a 3-dimensional time series (red, green and blue lines) of
length 15. An example of an extracted 3-dimensional shapelet of
length 4 is illustrated in the right part of the figure. The shapelet is
extracted from the time series from position 6 to position 9.

method ranks all extracted shapelets using their utility
scores and selects a subset of the highest ranked shapelets
as the pruned set of shapelets which can exhaustively
classify time series.
The functions that compute the distance threshold and

utility score are explained in the following sections. We
describe how to prune the shapelets and use them for early
classification in the Shapelet Pruning and Classification
sections, respectively.

Distance thresholdmethod
The Chebyshev’s inequality method is proposed for com-
puting the distance threshold [8]. It guarantees that for
any distribution, no more than 1/b2 of the distribution’s
values are more than b standard deviations away from its
mean [9]. The Chebyshev’s inequality is applied to the
non-target time series distances to compute the range
where the non-target distance has a low probability of
appearing. The method refers to a one-sided test, and is
not able to find the distance threshold that can discrim-
inate among the classes well. Here we proposed infor-
mation gain [10] to find a discriminant distance thresh-
old. In Additional file 1: Table S.4 of the supplementary
document, we showed that using information gain as a
method to compute the distance threshold outperformed
the Chebyshev’s inequality method.

Information gain-based distance threshold for univariate
shapelets

The basic idea is to find the shapelet’s distance thresh-
old that maximizes the information gain and divides
the dataset into two groups, target and non-target time
series [10].
First, the entropy of the dataset is computed as

Entropy = −
∑
c∈C

mc
M

log
(mc
M

)
(3)
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where mc is the number of time series of class c and M
is the number of all time series. To compute the distance
threshold, the method sorts the distances between the
shapelet and all time series. Then, it finds the mid point
between two consecutive distances as a candidate for the
threshold. The dataset is then divided into two datasets
DL and DR as illustrated in Figure 4. The dataset DL con-
tains all time series such that the distance between the
shapelet and time series is less than or equal to the can-
didate threshold. The dataset DR contains the rest of the
time series. Then the entropies EL and ER of the datasets
DL and DR are computed, respectively. By comparing the
entropy before and after the split, we obtain a measure of
information gain which is computed as

IG = Entropy − ML
M

EL − MR
M

ER (4)

where ML and MR are the number of time series in
DL and DR. Therefore, we choose the distance thresh-
old that maximizes the information gain for the shapelet.
The algorithm is described in details in Additional file 1:
Algorithm S.2.
Figure 4 shows an example of two distance thresholds

δ1 and δ2. The threshold δ1 splits the dataset into two
datasets so that it has 4 true positives, 0 false positive,
4 true negatives, and 1 false negative. The information
gain of δ1 is 0.4090. The distance threshold δ2 divides the
dataset into two datasets so that it has 4 true positives, 1
false positive, 3 true negatives, and 1 false negative. The
information gain of δ2 is 0.1591. Therefore, the thresh-
old δ1 is chosen because it has maximum information
gain.

Utility scoremethod
The set of shapelets extracted from the dataset might be
exceedingly large. Therefore, it is important to rank the

shapelets in order to select a small subset of the shapelets
for classification. For this reason, each shapelet has to be
assigned a score that takes into consideration earliness as
well as discrimination among classes.
The weighted F1 score method is proposed to rank

shapelets [8]. In our study, we introduce the weighted
information gain as a new utility score method. In the
supplementary document (Additional file 1: Table S.5)
we showed that our proposed method outperformed the
weighted F1 method.

Weighted information gain

The utility score of a shapelet should incorporate the
earliness and the distinctiveness properties. First, we
define the earliness [8] between a shapelet f = (s, l, δ, cf )
and a time series T as

EML(f ,T) = min
∀i∈{1,2,...,L−l+1}

dist(s, hi) ≤ δ

EML measures how early the shapelet f has classified
the time series T . The weighted information gain of the
shapelet is computed as follows:

1. Compute the distance between the shapelet
f = (s, l, δ, cf ) and every time series Ti in the dataset.

2. Split the dataset D into two datasets DL and DR such
that DL contains all time series where dist(f ,Ti) ≤ δ

and DR contains all time series where dist(f ,Ti) > δ.
3. For each time series T in the dataset DL, if

Class(T) = cf , then T is weighted by EML(f ,T).
Otherwise, the time series is weighted by 1.

4. ComputeML as the weighted count of the number of
time series in the dataset DL andMR is the size of the
dataset DR.

5. Compute the weighted information gain using
Equation 4.

The following theorem proves that the weighted informa-
tion gain incorporates the earliness and assigns high utility
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Figure 4 Candidate distance threshold. The distance threshold δ1 splits the dataset into two datasets so that it has 4 true positives, 0 false
positive, 4 true negatives, and 1 false negative. The information gain of δ1 is 0.4090. The distance threshold δ2 divides the dataset into two datasets
so that it has 4 true positives, 1 false positive, 3 true negatives, and 1 false negative. The information gain of δ2 is 0.1591. Hence, δ1 has better
information gain than δ2.
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score to the shapelet that has better earliness given the
same accuracy performance.

Theorem: If f1 and f2 are two shapelets that have the same
distance threshold (same splitting point), the same class,
and different earliness (f 1 has better earliness than f 2),
then f 1 has better weighted information gain than f 2.
Proof: Suppose that the number of target time series in
DL is NT and the number of non-target time series in DL
is NNT . Without loss of generality, since f 1 has better ear-
liness than f 2, suppose that for every target time series T
in DL, EML(f1,T) = P1 and EML(f1,T) = P2 such that
P1 < P2. The weighted count ML1 and ML2 of the time
series in DL for f1 and f2 is P1NT +NNT and P2NT +NNT ,
respectively. Since P1 < P2, then ML1 < ML2. Hence
the weighted information gain of f1 is greater than the
weighted information gain of f2.

Therefore, the weighted information gain gives high
scores to the shapelets that come early in the time series.

Shapelet pruning
To select a subset of the shapelets for classification, the
shapelets are sorted in descending order using their utility
scores. In this manuscript, two methods have been used
to select a subset of the shapelets.
The first method iterates over the shapelets starting

from the highest ranked shapelet. We select the shapelet
and remove all training examples that are covered by that
shapelet. The shapelet f covers a training time series T if
dist(f ,T) ≤ δ and Class(T) = cf . We use the next high-
est ranked shapelet to see if it covers any of the remaining
training time series. If it covers some of them, then we
select the shapelet and remove all time series that are cov-
ered. Otherwise, we discard it and proceed to the next
one. This process continues until all training time series
are covered.
The second method simply involves keeping the top

x shapelets from each class where x is a user-defined
parameter. In our experiments, we used the top 5, 10, 15
and 20 shapelets from each class.

Classification
If the length of the shortest shapelets extracted by
Algorithm 1 is l, then we can not classify any time series
before observing l time points. Hence, the classification
method (Additional file 1: Algorithm S.1) initially reads
l time stamps from the test time series. It then gets the
highest-ranked shapelet. If the shapelet covers the current
stream of the test time series then the time series is classi-
fied as the class of the shapelet and the prediction is done.
Otherwise, it gets the next shapelet from the ranked list
and repeats the process. If none of the shapelets cover
the current stream of the test time series the method
reads one more time stamp and continues classifying the

time series. Therefore, the test time series could be clas-
sified after reading number of time points greater than
the shapelet’s length. If the method reaches the end of the
time series and none of the shapelets covers it, the method
marks the time series as a not-classified example. In the
results section, we report the relative accuracy as well as
the percentage of the covered test time series.

Multivariate shapelets detection for ECMTS
In a dataset of N-dimensional time series, the method
extracts all N-dimensional shapelets f = (s, l,�, cf ). The
method assumes that all subsequences sj are extracted
from the same starting position. Hence, we slide a win-
dow of length l over the time series. At each time stamp
p, a subsequence sj of length l starting from time point
p is extracted from the jth dimension to construct s =
[ s1, s2, . . . , sN ]. An example of a 3-dimensional shapelet is
shown in Figure 3.
We follow the same procedures as in the univariate case.

Namely, for each N-shapelet f, we compute the minimum
distance between f and every time series T in the dataset.
The distance between f and T is a vector of distances (N-
dimensional distance) and is computed as in Equation 2.
To compute the distance threshold of a shapelet, we need
to provide a way to compare two multi-dimensional dis-
tances. Therefore, two multidimensional distances d1 =
[ d11, d

2
1, . . . , d

N
1 ] and d2 =[ d12, d

2
2, . . . , d

N
2 ] are defined to

be ordered according to the following criterion:

d1 < d2 ⇔ dj1 < dj2 ∀j = 1 . . .N (5)

Equation 5 requires all N dimensions of d1 to be less
than all corresponding N dimensions of d2. Therefore,
we would require all N dimensions to be less than the
shapelet’s threshold. This way, the method would try to
find a pattern very similar to the shapelet at hand, which
could lead to overfitting. In order to prevent overfitting,
Equation 5 is relaxed and redefined to be partially ordered
according to the following criteria:

d1 <Perc d2 ⇔ dqj1 < dqj2 ∀j = 1 . . .Perc × N (6)

where Perc ∈ ] 0, 1].
The algorithm for extracting the multivariate shapelets

from a dataset is similar to Algorithm 1. The algorithm
iterates over each time series and extracts all multivari-
ate shapelets. For each candidate multivariate shapelet,
it computes the distances with every time series. Note
that each distance is a vector of length N. Hence, the
distances between a multivariate shapelet and all time
series is a matrix with dimensions N × M where M is
the number of time series. Then, the method computes
the distance threshold and utility score for each candidate
multivariate shapelet as explained in the following section.
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Finally, it prunes the shapelets using the same procedure
as mentioned in the univariate case.

Distance thresholdmethod

Multivariate information gain-based distance threshold
for multivariate shapelets

The multivariate information gain (Additional file 1:
Algorithm S.3 ) is computed in a similar way to the one
that computes the information gain in the univariate case.
It takes as input an N-shapelet f; a matrix Dist, that stores
the multivariate distances between the shapelet and allM
time series in the dataset; and Perc, which determines the
percentage of dimensions used to compute Equation 6. It
sorts the matrix Dist, and then the multivariate candidate
threshold is computed as the mid-point between two suc-
cessive distances (columns in the matrix Dist). Using the
candidate threshold, the information gain is computed.
Finally, the algorithm returns the multivariate threshold
� =[ δ1, δ2, . . . , δN ] that has maximal information gain.

Utility scoremethod
The steps to adapt the utility scores defined on univariate
time series are similar to the steps we have followed to
adapt the distance threshold method.
After computing the score for each shapelet, themethod

sorts them in descending order according to their utility
scores and then selects a subset of shapelets as explained
in the Shapelet Pruning section. The classification process
is similar to the process described in the Classification
section, taking Equation 6 into consideration when com-
puting the distance between the shapelet and the current
stream of the query time series.

Dataset and data processing
Viral challenge datasets
We used two datasets for blood gene expression from
human viral studies with influenza A (H3N2) and live
rhinovirus (HRV) to distinguish individuals with symp-
tomatic acute respiratory infections from uninfected indi-
viduals [11].
H3N2 dataset: A healthy volunteer intranasal challenge

with H3N2 was performed in 17 subjects. Of those sub-
jects, 9 became symptomatic and 8 remained asymp-
tomatic. Blood samples were taken from each subject at
16 time points. Some subjects have missed certain mea-
surements at time points 1,5,6 and/or 7. Hence, the gene
expression values were measured on average 14-16 times
for each subject. 30 genes were identified, in ranked order,
as contributing to respiratory infection [11]. We used 23
unique genes from that list that were found in the available
dataset.
HRV dataset: A healthy volunteer intranasal challenge

with HRV was performed in 20 subjects. Of those

subjects, 10 became symptomatic and 10 remained
asymptomatic. Blood samples were taken from each sub-
ject at 14 time points. We ignored time stamps 8-11
because the majority of the subjects missed the measure-
ments at those time points. Thus, the gene expression val-
ues were measured on average 6-10 times for each subject.
30 genes were identified, in ranked order, as contribut-
ing to respiratory infection [11]. We used 26 unique genes
from that list that were found in the available dataset.

Drug response dataset
Another clinical dataset was generated for studying the
changes in cellular functions in multiple sclerosis (MS)
patients in response to drug therapy with IFNβ [12].
The dataset contains time series gene expression for 52
patients. The patients were classified as good responders
(33 patients) or bad responders (19 patients) to the drug.
The blood samples were taken every 3 months in the first
year and every 6 months in the second year. Some patients
missed certain measurements, especially at the 7th time
point. Thus, the gene expression values were measured on
average 5-7 times for each subject. The list of the genes
used in our experiments is provided (Additional file 1:
Table S.1).
Identification of triplets of genes for a Bayes classi-

fier of time series expression data of multiple sclero-
sis patients’ response to the drug has been performed
[12]. Previous research identified 12 genes in terms of
triplets. Hence, we generated four datasets: Baranzini3A
and Baranzini3B, consisting of one triplet of the best two
triplets of genes, respectively; Baranzini6 has the top two
triplets; and Baranzinin12 has all 12 genes identified by all
triplets.
A discriminative hidden Markov model has been devel-

oped and applied to the MS dataset to reveal the genes
that are associated with the good or bad responders to the
therapy [13]. A total of 9 genes were found that are asso-
ciated with the therapy. Hence, we constructed a dataset,
called Lin9, consisting of those 9 genes.
A mixture of hidden Markov models has been devel-

oped to identify the genes that are associated with the
patient response to the treatment [14]. A total of 17
relevant genes were found. Therefore, we constructed
a dataset called Costa17 that contains data for these
17 genes.

Environment setup and evaluation measure
In all experiments we set minL = 3 and maxL to be 60%
of the time series’ length. Since the number of subjects
was small, bootstrapping was used for estimating the gen-
eralization error [15,16]. We sample with replacement a
subset (75%) from the original dataset.We train ourmodel
on the sample data and then test it on the subjects that
are not used in the training data. This process is repeated
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1000 times and the final reported statistics (like relative
accuracy) is the median of the statistics over all bootstrap
samples. We report the median instead of the average
since the distribution of the statistics is skewed and not
symmetric.
In the results, we report the median of the accuracy,

the coverage (the percentage of the time series that are
covered by the method), and the earliness (the fraction
of the time series length used for classification). Note
that the earliness varied from test example to another. In
other words, each test example could be classified at dif-
ferent time point, so that our method is patient-specific
and there is no fixed length of the time series used for
classification.
Because there is an imbalance in the drug response

dataset, the accuracy (Acc) is calculated as the average
between sensitivity and specificity:

Sensitivity = tp
tp + fn

, Specificity = tn
tn + fp

,

Acc = Sensitivity + Specificity
2

where tp is the number of true positives, tn is the number
of true negatives, fp is the number of false positives, and
fn is the number of false negatives.
Since the objective of the paper is to provide a method

for early classification, we propose an evaluation measure

that incorporates both the earliness (Ear) and the accu-
racy (Acc). We use Fβ-measure as the weighted average
between Acc and Ear. Fβ-measure is defined as:

Fβ = (
1 + β2) Acc.(1 − Ear)

β2(1 − Ear) + Acc

where smaller values of β putmore weight on the earliness
and larger values of β put more weight on the accuracy.
Note that we use (1 − Ear) because we want to penal-
ize larger values of Ear. In our experiments, we used the
balanced F1-score, which gives both the accuracy and the
earliness the same weight. F1-score reaches its best value
at 1 and worst score at 0.

Results and discussion
Evaluation of MSDmethod
First, we show the effectiveness of the MSD method on
a single patient from the H3N2 dataset. In Figure 5, the
top panel shows genes RSAD2 and IFI44L observed at 15
time steps for an asymptomatic test subject from H3N2
data that is correctly and early classified byMSD at the 5th
time point. The MSD method used a shapelet of length
5 to classify the test subject. In the bottom panel, MSD
used a shapelet of length 6 that was extracted from the
time series of a symptomatic subject, so it correctly clas-
sified the symptomatic test subject at the 8th time point
(it used only 50% of the time series’ length to classify the
test subject).
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Figure 5 Illustration of the effectiveness of the MSDmethod on a case from H3N2 dataset. The effectiveness of the MSD method is illustrated
on a single patient from H3N2. In the top panel, a 2-dimensional H3N2 asymptomatic test subject (genes RSAD2 and IFI44L observed at 15 time
steps) has been correctly classified by MSD method at the 5th time point. In the bottom panel a 2-dimensional H3N2 symptomatic test subject
(genes RSAD2 and IFI44L observed at 16 time steps) has been correctly classified by MSD method at the earliest possible time stamp number 8. Red
lines represent time series of the symptomatic subject. Blue lines represent time series of the asymptomatic subject. Shapelets are represents by
solid markers.
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Table 1 Evaluation of theMSDmethod on the viral infection and drug response datasets using all genes

Dataset Number of genes Accuracy Relative accuracy Coverage Earliness F1

H3N2 23 77.78 85.71 100 62.50 0.5060

HRV 26 70.00 71.43 100 40.00 0.6462

Baranzini3A 3 70.00 73.91 95.83 46.26 0.6080

Baranzini3B 3 66.67 68.00 100 44.81 0.6039

Baranzini6 6 70.83 70.83 100 42.86 0.6325

Baranzini12 12 66.67 66.67 100 42.86 0.6154

Lin9 9 67.86 69.57 100 44.00 0.6136

Costa17 17 68.00 69.23 100 45.24 0.6067

The performance of the MSDmethod on 8 datasets is shown in the table. The MSDmethod achieved good accuracy on most of the datasets using a small fraction of
the time series. The distribution of the statistics were skewed and not symmetric, so we report the median of the statistic.

Next, the MSD method was evaluated on the viral and
drug response datasets using all genes defined by the
dataset. In Table 1, we report the median of the cover-
age, the relative accuracy, and the earliness. The list of
the parameters that have been used for each method is
provided in Additional file 1: Table S.2.
From Table 1, it is clear that the MSD method achieved

high accuracy using a small fraction of the time series.
For example, MSD on the H3N2 dataset covered approx-
imately 100% of the dataset, and out of the covered time
series it achieved 85.71% accuracy using 62% of the time
series’ length. On another benchmark dataset called Lin9,
the method developed in [13] achieved 85% accuracy
using the full time series (F1 ≈ 0.01) while our MSD
method achieved approximately 68% accuracy using less
than half of the time series’ length on average (F1 ≈ 0.51).
For the viral infection dataset, a list of 23 genes asso-

ciated with the viral infection sorted by their relevance
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Figure 6 Performance of MSDmethod on the H3N2 dataset
using different numbers of top genes. This figure illustrates the
performance of the MSD method on the H3N2 dataset using different
numbers of top genes from the provided ranked list [11]. Red, green,
and blue lines represent coverage, relative accuracy, and accuracy,
respectively.

to the infection diagnosis is provided in a recently pub-
lished study [11]. Starting from this list, we searched for a
subset of genes that could be used to achieve more accu-
rate results. We ran MSD using different numbers of top
genes provided by the ranked list. The coverage, the rel-
ative accuracy, and the accuracy of MSD on H3N2 are
shown in Figure 6. It is clear that the method becomes
more accurate when using 11 genes instead of using 23
genes.
For the drug response dataset, no ranked list of genes

is provided in previous publications. In 4 out of the 6
drug response datasets the number of the genes is small,
therefore, on these datasets, we ran our MSD method
on all combinations of genes. The number of genes used
for each dataset to achieve the highest accuracy is pro-
vided in Table 2. The accuracy of the MSD method on
those datasets is improved by using less number of genes.
For example, the accuracy of MSD on the Lin9 dataset
using only two genes is significantly improved (F1-score
increased from 0.61 to 0.67).
Since our method achieved high accuracy using a small

number of genes (in some cases only one gene), we ran the
univariate method [11] (using the Chebyshev’s inequal-
ity as distance threshold method and the weighted recall
as utility score method) on each gene in the dataset and
report the best accuracy achieved. As shown in Table 3,
our methods significantly outperformed the univariate
method on all datasets except the H3N2 dataset, where
they have similar accuracy but the univariate method is
much earlier. The reason of achieving less accurate results
usingMSDmethod as compared to the univariate method
may be due to the non-robustness of the MSD method
to noisy variables so that MSD does not extract meaning-
ful features from the multivariate data in an automated
fashion. Therefore, Equation 6 is affected by the noise
in the variables which may lead to poor discrimination
among the classes. In future work, we will investigate
more resilient multivariate shapelet detection techniques
that effectively utilize a subset of the variables providing
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Table 2 Evaluation of theMSDmethod on the drug response datasets using a subset of genes that gives the highest
accuracy

Dataset genes Accuracy Relative accuracy Coverage Earliness F1

H3N2 Top 11 genes 80.00 87.50 88.89 64.29 0.4938

HRV RSAD2 71.43 75.00 100 38.89 0.6587

Baranzini3A Caspase 10 75.00 76.00 100 45.45 0.6316

Baranzini3B Caspase 2 , Caspase 3 75.00 76.19 100 44.05 0.6409

Baranzini6 Caspase 10 , IL-4Ra 75.00 76.00 100 43.45 0.6448

Lin9 Caspase 2, Caspase 3, Jak2 81.82 82.61 100 43.43 0.6689

The MSDmethod has been evaluated on all combinations of the genes on 4 datasets. The accuracy of the classifier is improved than using all genes. For example, the
performance of MSDmethod on the Lin9 dataset is improved significantly from 68% to 82% when using only 3 genes instead of 9 genes.

maximum discrimination power as compared to using all
the variables.

Baseline classifier for early classification
We compared the MSD method with a random classifier
to evaluate MSD by comparison. The results of the ran-
dom classifier are shown in Table 4. It is clear that the
MSDmethod is much accurate than the random classifier.
In addition, we compared MSD to the baseline clas-

sical classifier, which uses shorter time series. Recent
research strongly suggested that the 1-nearest neighbor
(1NN) method with Dynamic Time Warping (DTW)
is exceptionally difficult to beat [17]. Therefore, we
compared MSD to the 1NN classifier using DTW. We
compared (data is not shown) 1NN using Euclidean dis-
tance to 1NN using DTW and we found that 1NN with
DTW is more accurate than 1NNwith Euclidean distance.
We constructed 2 datasets out of H3N2, which we call

1NN(70) and 1NN(60).We also constructed 2 datasets out
of the HRV dataset, which we call 1NN(50) and 1NN(40).
The 1NN(k) dataset was constructed from the prefixes
of the original dataset such that all its time series are of
fraction k of the original time series. For each dataset,
1NN was applied using all genes. The results are shown
in Figure 7.

On the HRV dataset (right group), the accuracy of 1NN
using 50% of the time series’ length (gray bar) is worse
than our early classification method MSD (yellow bar),
andMSD used a smaller fraction of time series on average.
For instance, 1NN achieved 55% accuracy on 1NN(50)
dataset (F1 ≈ 0.46) while MSD was more accurate using
on average 40% of time series’ length (F1 ≈ 0.64). The
results were consistent with the H3N2 dataset.
Therefore, for the early classification task, using con-

ventional classification methods on shorter time series is
not as accurate as using methods specialized for early
classification, such as our proposed method.

Run-time analysis
In Table 5, we show the run time of the MSD method
on viral infection and drug response datasets. All experi-
ments were conducted on a PC Intel Core i7 2.8 GHz with
8GB RAM. It is evident that the run time grows expo-
nentially with the number of examples and the time series
length.

Conclusion
For the early classification task, we proposed a method
called Multivariate Shapelets Detection (MSD). It extracts
patterns from all dimensions of the time series. In

Table 3 Evaluation of the univariate method on all datasets

Dataset gene Accuracy Relative accuracy Coverage Earliness F1

H3N2 LOC26010 77.78 85.71 100 38.34 0.6879

HRV RSAD2 42.86 80.00 55.56 52.50 0.4506

Baranzini3A Caspase 10 12.00 100.00 12.25 42.86 0.1983

Baranzini3B Caspase 3 26.09 80.00 31.38 40.26 0.3632

Baranzini6 Caspase 10 12.00 100.00 12.25 42.86 0.1983

Baranzini12 Caspase 3 26.09 80.00 31.38 40.26 0.3632

Lin9 Caspase 3 26.09 80.00 31.38 40.26 0.3632

Costa17 Caspase 3 26.09 80.00 31.38 40.26 0.3632

The univariate method (using the Chebyshev’s inequality as distance threshold method and the weighted recall as utility score method) has been evaluated on each
gene on all datasets. The best accuracy is reported.



Ghalwash and Obradovic BMC Bioinformatics 2012, 13:195 Page 11 of 12
http://www.biomedcentral.com/1471-2105/13/195

Table 4 Evaluation of the random classifier on all datasets

Dataset Accuracy

H3N2 55.2833

HRV 52.1869

Baranzini3A 49.7893

Baranzini3B 49.6808

Baranzini6 50.8227

Baranzini12 53.9255

Lin9 50.7689

Costa17 51.5093

addition, we proposed using of information gain-based
distance threshold and weighted information-gain based
utility score of a shapelet. The weighted information
gain incorporates the earliness and assigns high utility
score to the shapelet that appears earlier. In order to
adhere to the limitations of clinical settings (in which
only a small pre-specified number of genes is provided
in shorter time series), datasets comprised of fairly short
time series were used in reported experiments. However,
our method is applicable to any domain. We showed that
MSD can classify the time series early by using as little as
40%-64% of the time series’ length. We compared MSD
to a baseline classifier and showed that using the method
proposed for early classification is more accurate than
using conventional methods.
The run time of the MSD method grows exponen-

tially with the number of examples and the length of
the time series which limits the applicability of the pro-
posed approach to datasets with smaller number of data
instances and/or temporal observations. In practice, this
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Figure 7 Comparison of the MSDmethod to the baseline
classifier. The performance of 1NN with DTW using different time
series length and MSD on the viral infection datasets. The left (right)
group shows accuracy of the classifiers on H3N2 (HRV) dataset,
respectively. The x-axis within a group is ordered by the fraction of
the time series, shown in parenthesis. The results provide evidence
that the MSD method is more accurate than 1NN.

Table 5 Run-time analysis of MSD on the viral infection
and drug response datasets

Dataset Number Number TS length Time
of genes of examples in seconds

H3N2 23 17 16 295.1

HRV 26 20 10 77.7

Baranzini3A 3 52 7 49.3

Baranzini3B 3 52 7 36.1

Baranzini6 6 52 7 41.1

Baranzini12 12 52 7 64.3

Lin9 9 52 7 48.8

Costa17 17 52 7 131.9

The run time of the MSDmethod is reported for all datasets. The number of
genes, number of examples, the time series length, and the run time in seconds
are reported in the table.

is not a limitation for early classification in many health
informatics applications (e.g. sepsis) since decisions typi-
cally have to be made very early by learning from a small
number of patients. However, in future work, we will
speed up the run time of the method by incorporating
parallelism in the algorithm.
We are working to improve MSD by allowing the com-

ponents of the multivariate time series shapelet to have
different starting positions. Since the number of candi-
date shapelets grows exponentially, the concept of closed
shapelets, and maximal closed shapelets can be intro-
duced to pruning redundant shapelets that are super-
sets of smaller shapelets. Another extension to our work
is to let the horizon between the time stamps in the
subjects vary.

Additional file

Additional file 1: Supplementary document. The supplementary
document (ECMTS-Supp.pdf) contains additional analysis of the obtained
results. These details are omitted for lack of space but are consistent with
the findings reported here.

Competing interests
Both authors declare that they have no competing interests.

Author’s contributions
MG designed the algorithms, implemented software, carried out the analysis,
and drafted the manuscript. ZO inspired the overall work, provided advice,
and revised the final manuscript. Both authors read and approved the final
manuscript.

Acknowledgements
We thank everyone in Prof. Obradovic’s laboratory for valuable discussions.
Special thanks to the reviewers for their valuable suggestions that helped
improving presentation and characterizing the proposed method, and to
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