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Abstract

Background: Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset
of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and
automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins.

Results: When considering a pair of 3D structures, they are stated as similar or not according to the local similarities
of their matching substructures in a structural alignment. This binary relation can be represented in a graph of
similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are
similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately,
because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same
cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we
first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities.
Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three
involved protein structures do have some common substructure. We propose hereunder a modification algorithm
that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints
are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the
modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such
method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise
similarities with Yakusa, a program devised for rapid 3D structure alignments.

Conclusions: We show that filtering similarities prior to standard graph based clustering process by applying ternary
similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the
classification quality of standard graph based clustering algorithms according to the reference classification SCOP.

Background
During the past decade the databases of protein sequences
have grown exponentially reaching severalmillions entries
while 3D protein structures databases grew quadratically
so as to reach, regarding the Protein Data Bank (PDB)
[1],∼ 30000 non redundant structures sharing less than
90% sequence identity. In order to assign a structure
and then a function to as many new sequences as pos-
sible, there are various methods. When a sequence is
similar enough to the sequence of one or more known
3D structures, methods based on homology modeling
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give satisfying results. When sequence similarity fall in
the “twilight zone” - i.e. under 30% of sequence iden-
tity - one has to resort to other methods. Among those,
threading methods take advantage of available 3D struc-
tures to infer a 3D structure from a new sequence. Using
statistical filters parametrized on a library of structural
cores -i.e. a bank of invariant structural motifs of pro-
tein families -, they correlate 1D (i.e. sequential) and 3D
information. In such context, the predictive ability of the
threading method directly depends on the representative-
ness and exhaustivity of the core library. Such a library
can be built upon a set of representative structures taken
from expert structural classifications [2,3] as SCOP [3]
and CATH [4]. However, due to the necessary careful
manual inspection of the data, these expert classifications
face difficulties in coping with the growing number of
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newly determined protein structures. For instance, since
the last version of SCOP (1.75), there has been a growth
of about 21% (10417 to 12643) of the total number of
non-redundant protein chain in the PDB ( VAST [5] non-
redundant set for a BLAST p-value of 10−7 available at
ftp://ftp.ncbi.nih.gov/mmdb/nrtable/). Hence automatic
and fast clustering approaches become necessary.
Over the past decade there have been many attempts

aiming at developing automatic classification procedures,
mainly applying supervised classification methods using
as labels of know 3D structures part of a reference clas-
sification. Jain and Hirst [6] proposed such a supervised
machine learning (ML) algorithm based on random for-
est to learn how to classify a new 3D structure in a
SCOP family. Thus a 3D structure is described using
a set of global structural descriptors composed from
four to six secondary structural elements (SSEs) for pro-
tein domains. However, supervised classification methods
heavily depends on the reference classification, whose
labels are fixed, and therefore only partially address the
problem of automatic classification of 3D structures.
Røgen and Fain [7] suggested an unsupervised approach

using a description of protein structures derived from
knot theory in order to describe the compared structures
globally. Zemla et al [8] proposed a similarity scoring
function that aims at automatically identifying local and
global structurally conserved regions in order to drive a
clustering algorithm. Sam et al. [9] investigated varieties
of tree-cutting strategies and found some irreducible dif-
ferences between the best possible automatic partitions
and SCOP classifications. These results have been con-
firmed by the work of Pascual-Garcia et al. [10]. They
have investigated the non-transitivity of objective struc-
tural similarity measures: a protein A can be found similar
to an other protein B, the protein B can be found similar to
a third protein ok and still proteins A and C may share no
similarity. They have shown that non transitivity, that does
occur at low similarity levels, leads to non unicity of the
partition resulting from the clustering process. For fine
granularity -i.e. high similarity levels- structural transitiv-
ity is satisfied with few violations within a given cluster
and different classification procedures converge to the
same partition. For coarser granularities -i.e. lower simi-
larity levels- as the similarity measures are computed on
distorted and divergent 3D motifs, requiring to partition
the set of structures implies choices for deciding which
transitivity violations should be ignored. Depending on
these choices classifications may differ significantly.
Furthermore, such similarity based classification pro-

cedures of 3D structures only consider a single overall
pairwise similarity measure or score, that is derived from
local similarities, and do not make use of the detailed
mapping of similar parts computed during the alignment
process. As a consequence, these procedures, ignoring the

mapping information, may lead to cluster proteins that
do not all share a common motif. This point will be fur-
ther illustrated using a Simple case studies section. Then,
prior to running a graph based clustering process, we pro-
pose to make use of the mapping information in ternary
similarity constraints applied on triples of structures.
Our experiments will compare the agreement between
automatic classifications, obtained with and without that
preliminary processing, and the SCOP reference classifi-
cation.
First we need to use the similarity degree between two

protein structures in order to build a graph of similarities
whose vertices are protein structures and edges corre-
spond to similarities exceeding a given threshold. Such
a graph can be directly given as an input to a graph
based clustering process. However, our proposal is to use
the mapping information for defining similarities between
protein alignment as follows. Let us define an alignment
between 2 proteins A and B as a one to one mapping of
(sub)parts of A onto (sub)parts of B. A similarity between
two alignments is thus defined if the two alignments
share a common sequence. More precisely, the align-
ment between protein A and protein B and the alignment
between protein B and protein C are stated as similar if
the (sub)parts of B implied in both alignments constitute
a significant part of at least one of the two alignments. In
other words, we consider a ternary similarity between A,
B and C, centered on B, and that such a ternary similarity
is stronger if the regions of B implied in its similarity with
A are also implied in its similarity with C. The aim of the
preprocessing step is then to consider that whenever there
is an edge between proteins A and B and an edge between
proteins B and C, then the ternary similarity centered in
B, quantifying the common part shared by the three pro-
teins, should be high enough. In that case we will state
that the ternary constraints are satisfied. The preprocess-
ing step will then consist in reducing the original graph to
a graph satisfying the ternary constraints.
To summarize it, the method, shortly introduced in

[11] starts with building a graph of 3D structures whose
edges represent pairwise similarities. That graph is first
transformed into its line graph that represents the adja-
cencies between the graph edges. Applying the ternary
constraints results in eliminating some vertices of the line
graph. A maximal line graph is then extracted from the
resulting graph. The graph of 3D structures correspond-
ing to this maximal line graph now satisfies the ternary
constraints: every triple of linked proteins corresponds to
a significant structural motif. In our experiments, MCL
[12], a Graph Clustering algorithm previously applied
with success to the clustering of protein sequences in
families on a large scale [13] is used for achieving the final
classification. That classification is then compared to the
expert classification SCOP at the finest granularity -ie
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the SCOP “Family level”-. We also experiment a standard
clustering method, suited for applications involving a
large and unknown number of clusters, the preprocessing
step being also applied in these experiments.

Definitions
In this work as in [11] a protein structure is identified to
an item o. Each item is defined as a set of parts o = {pi}.
Here each part pi will represent a structural unit defined
by a sequence of one or more amino-acids. We first define
the similarity of two parts by comparing their distance to
a threshold.

Items and similarities
Definition 1 (Similarity of item parts). Let pi and p′

i be
parts of two different items, D(pi, p′

i) be a distance between
parts, and TP a distance threshold defined on the distance
range. We define simP(pi, p′

i), the similarity of items parts
pi and p′

i, as follows:

• simP(pi, p′
i) is True iff D(pi, p′

i) ≤ TP .

We also suppose that we have a mapping function M
that maps subsets of items parts into a one-to-one cor-
respondence. For protein sequences such a function is an
alignment algorithm. Two items are then considered as
similar if they have enough parts in common.
Definition 2 (Similarity of two items). Let O be a set of
items and a mapping function M. Let (o, o′) be two items,
and M(o, o′) be the set of pairs of parts of o and o′ in
one-to-one correspondence, then, the symmetric similarity
simO(o, o′) between items o and o′ is defined as follows:

• simO(o, o′) iff Card(M(o, o′)) ≥ TO, where TO is a
given threshold.

Elements of M(o, o′) are denoted as mapped pairs. We
now define a ternary similarity relation over triples of
items.
Definition 3 (Centered ternary similarity of items).
Let (o′, o, o′′) be three items such that simO(o′, o) and
simO(o, o′′) are true, and Po′,o′′(o) be the subset of parts
of o related to both o′ and o′′, i.e., such that Po′,o′′(o) =
{p | (p, p′) ∈ M(o, o′) and (p, p′′) ∈ M(o, o′′)}. Then
sim3(o′, o, o′′), the ternary similarity centered around o, is
defined as follows:

• sim3(o′, o, o′′) iff Card(Po′,o′′(o)) ≥
T × min(Card(M(o, o′)),Card(M(o, o′′))),
where the ternary similarity threshold T lies in the
range 0 − 1.

We note and exemplify hereunder that the notion of
ternary similarity should not be confused with the notion
of transitivity, which only depends on the graph of similar-
ities, i.e. on binary relations. As an example, we consider

the case of three items, pairwise linked, i.e. forming a
clique, and highlight a case in which none of the three
centered ternary similarities exceeds the ternary similarity
threshold.
Property 1 (Cliques can not satisfy centered ternary sim-
ilarity). Here is a counterexample. Let (o = {pi, pj}, o′ =
{pi, pk}, o′′ = {pj, pk}) such that M(o, o′) = pi, M(o′, o′′) =
pj and M(o, o′′) = pk. Assuming that TO = 1 we obtain
that {o, o′, o′′} is a 3-clique, and therefore similarity is tran-
sitive. Nevertheless sim3(o, o′, o′′) is False, sim3(o′, o, o′′) is
False and sim3(o, o′′, o′) is False for any threshold T > 0,
and therefore all ternary constraints are violated.

Graphmodel
Similarities between items are encoded as edges in an
undirected graph G whose vertices are identified to items,
and whose edges represent similarities between pairs of
items. Conventional notations are those of [14].
Definition 4 (Graph of item similarities). The graph G
of item similarities with respect to the above notions of
pairwise similarities on a set of O items is defined as
follows:

• G = (O,E) where V (G) = O and
E(G) = E = {(oi, oj) ∈ O2 | simO(oi, oj) is True}.

Definition 5 (Independent connected components). A
connected component of G is a subgraph of G in which any
pair of vertices is connected through a path. Correlatively
independent connected components, named ICCs, are two
subgraphs of G for which there is no path between any node
of one component to any node of the other component.
Now we introduce a useful equivalent representation of

G as a line graph whose definition is recalled here.
Definition 6 (The line graph of a graph). Let G = (O,E)

be a graph. Its line graph is defined as L(G) = (E, F) where
F = {(eiej) ∈ E2 | ei adjacent to ej in G)}.
The line graph transformation is bijective if nodes labels

are known and has the following property:
Property 2. The connected components of G and of L(G)

are in a one-to-one correspondence.
Indeed, given gi and gj two ICCs of G, according to def-

inition 5 there is no edge linking a node of gi with a node
of gj. Consequently, by construction, there cannot be adja-
cency between any edge of gi and any edge of gj. Then,
according to definition 6 there is no edge between L(gi)
and L(gj). The reciprocal can easily be inferred.
Our purpose is to modify L(G) in order to satisfy the

constraints derived from centered ternary similarities.
Such modification relies on the following properties:
Property 3. Line-Graph

1. A vertex of L(G) is an edge of G,
2. Two connected vertices of L(G) correspond to two

adjacent edges of G: let two edges of G be (o′, o) and
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(o, o′′), the corresponding edge of L(G) is
(o′, o) − (o, o′′).

3. Removing a vertex in a line-graph L(G) leads to the
line-graph of the subgraph of G obtained by
removing the corresponding edge from G.

From property 3 and definition 3, the centered ternary
similarity can be checked on every L(G) edge as such
an edge links two vertices representing two similarities
sharing a common item.

Measures
In order to compare two classifications we use standard
comparison measures of classification similarity. More
precisely, let P = {P1,P2, . . . ,Pn} be a partition of the
set of items O, two items ok ∈ Pi and ol ∈ Pj are said
co-classified iff Pi = Pj.
Let P be a reference partition and P′ be an other parti-

tion of the same set of items O obtained by a classification
procedure. We denote as TP the number of pairs of items
co-classified in Cp and in CP′ , as FN the number of pairs
of items co-classified in the reference partition P but not
in P′, and as FP the number of pairs of items co-classified
in the partition P′ but not in P.
The Precision and Recall of the partition P′ with respect

to the reference partition P are defined as follows:

• RecallP(P′) = TP
TP+FN ,

• PrecisionP(P′) = TP
TP+FP .

RecallP(P′) measures the ability of the classification
procedure for co-classifying item pairs when a pair is co-
classified in the reference partition P (ability to retrieve
all the positives). PrecisionP(P′) measures the accuracy of
the classification procedure to co-classify correctly item
pairs according to the reference classification P (ability to
provide a correct prediction when predicting a positive).
The Jaccard similarity coefficient [15] is defined as

follows:

• Jaccard(P,P′) = TP
TP+FN+FP

It is a measure of concordance between two partitions
of a same set of items very similar to the F-measure.When
negatives are much more numerous than positives, this
measure has the advantage - over measures such as MCC
(Matthews correlation coefficient) and plain accuracy - of
not taking into account over-represented True Negatives.
As a result, variations of concordance are easier to detect.

Simple case studies
As previously mentioned [10], similarity relations
between proteins structures belonging to the same class
show high values and are considered almost to be transi-
tive, i.e. whenever o1, o2, o3 belongs to a given class, we

should have that simO(o1, o2)∧simO(o1, o3)∧simO(o2, o3)
= True. According to our graph formalism, these
three items are represented by a 3-clique in G
(cf. Figure 1-a). Clustering strategies such as search of
max-cliques should allow identifying classes of proteins
sharing a similar set of structural motifs, which is not the
case.
For the sake of clarity the definition of items similarity

for the two first case studies is simpler than definitions 1
and 2: two items are stated as similar when they share at
least one identical common part.

Case 1: Non transitive Graph G and no common sub parts
In Figure 2-a, considering items o1 = {p1}, o5 = {p1, p2}
and o8 = {p2}, we have: simO(o1, o5) by parts {p1} and
simO(o5, o8) by parts {p2}. An item such as o5 made of
two subparts (o5 = {p1, p2}) is denoted as a modular
item. Though o5 similarities such as (o1, o5) and (o5, o8)
are adjacent inG (Figure 2-b) they represent different local
similarities: edge (o1, o5) represents part p1 and (o5, o8)
represents p2. A modular item can be considered as a
linker between two or more classes: it is similar, and
then connected to any item member of the class 1 of
items comprising part p1 (class1 = (o1, o2, o3, o4, o5)) and
to any member of the class 2 of items comprising part
p2 (class2 = (o5, o6, o7, o8)). Consequently its degree is
higher than those of its neighbors that are only linked
to members of a single class. Due to their higher degree,
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Figure 1 Similarity transitivity and common sub-motif
occurrence. Description of items (Oi) and items parts (pi) parts, and
corresponding graph of similarities G. (a) Transitive case with set of
parts common to all items, (b) Transitive case with no part common
to all of items; (c) Non-transitive case with a part common to all items.
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Figure 2 Graphmodification method. (a) the description of object parts, (b) the graph G of pair similarities, (c) the line graph L(G), (d) the graph
PT with marked edges FT not fulfilling the constraint of ternary similarity represented in dashed gray, (e) the graph PT − ET = L(GT ), with vertices ET
removed during the heuristicH and their removed incident edges represented in dashed gray, (f) the graph GT fulfilling the ternary similarity.

modular items will act as kind of “attractors” during clus-
tering processes. Consequently immediate neighbors of
different classes will tend to form around the modular
item a unique class, grouping together items having noth-
ing in common (for example o1 and o8). Thus, in such a
context, direct search of the most connected components
from G does not seem appropriate.

Case 2: Transitive Graph G and no common sub parts
In Figure 1-b, considering items o1 = {p1, p3}, o2 =
{p1, p2} and o3 = {p2, p3}, we have simO(o1, o2) due
to part(s) {p1}, simO(o2, o3) due to part(s) {p2} and
simO(o1, o3) due to part(s) {p3}. Here transitivity exists
at the similarity graph level: o1, o2 and o3 constitute a
clique. Nevertheless considering similarities at the local

level of shared sub parts, there is no transitivity as no
sub part is shared by all of the three items, which case
shows that even if transitivity is assumed at the graph
level for a set of items, nothing ensures the occurrence of
a set of subparts common to all items. Therefore direct
search for max-cliques components fromG does not seem
appropriate.

Case 3: Non transitive Graph G and common sub parts
Similarity measures used for comparing modular and
fuzzy motifs must be tolerant to take into account the
flexibility and the divergence of the compared items as in
Yakusa[16], the algorithm used here for identifying, select-
ing and mapping similar 3D protein structures. As shown
in Figure 1-c, with such a measure some similarities stated
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as not significant by use of user defined selection thresh-
old may be rejected even when a sub-part is found similar.
Again, for the sake of clarity the definition of items simi-
larity in the following case study is simplified. Two items
are considered as similar if at least 50% of the parts of
the shortest item are mapped to sub-parts of the sec-
ond item. Considering items o1 = {p1, p2, p3}, o2 =
{p1, p2, p3, p4} and o3 = {p3, p4}, we have simO(o1, o2) and
simO(o2, o3) but not simO(o1, o3), which corresponds to a
non-transitive case at the graph level with the occurrence
of a sub-part p3 common to all items o1, o2 and o3. In such
a case, the search for max-clique is not well suited.

Method
Use of ternary similarities
These case studies emphasize some difficulties encoun-
tered by classical graph clustering approaches in grouping
together modular items in classes where all items share a
common set of parts. Searching max-clique - sets of items
with transitive relations in graph G - does not seem ade-
quate (cf. Case 2) as transitive relations in the graph may
occur between items sharing no common subparts, and
not be necessary (cf. Case 3) as items whose relations are
not transitive in the graph may share a common set of
sub-parts. Searching for the most connected components
(cf. Case 1) in considering all links of the initial graph G
is not appropriate either as some highly connected items
may force the union of two significantly different classes.
These drawbacks could be corrected by searching a

maximal subgraph GT of G in which the ternary sim-
ilarity constraint is verified, before applying any classi-
cal connectivity-based clustering approaches. Indeed, as
depicted later, application of ternary similarity constraint
will tend to reduce the connectivity between items not
sharing a same set of subparts (Cases 1 and 2) and pre-
serve links of interest (Case 3) increasing their relative
connectivity in the context of the modified graph GT .

Applying ternary similarity constraint
Let L(G) = (E, F) be the line graph of G = (O,E). From
property 3 each edge of L(G) ((o′, o), (o, o′′)) links two sim-
ilarities having one item in common and can be submitted
to the ternary similarity test. The edges of L(G) are then
divided into the subset FT of F whose elements satisfy the
ternary constraints and the subset FT whose elements will
be marked:

• FT = {((o′, o), (o, o′′)) ∈ F | sim3(o′, o, o′′) is True}
• FT

⋃
FT = F ,

The graph of pairs PT is obtained by deleting marked
edges from L(G):

• PT = (E, FT ), i.e. PT = L(G) − FT .

The modified graph PT is no more homomorphic to a
line graph, i.e. there is usually no graph G′ such that PT =
L(G′). The bijection established by the line graph transfor-
mation between L(G) andG is broken by the introduction
of the ternary similarity constraints. We will search now
for a maximal line graph L(GT ) that is a subgraph of PT .
As the edges of L(GT ) are also edges of PT , the ternary
relations for the corresponding items (o′, o, o′′) will neces-
sarily hold in GT . For that purpose a greedy heuristic H
eliminates vertices of L(G) until it finds a subgraph, with
no marked edges, corresponding to a line graph L(GT ) of
some subgraph GT of G (cf. property 3.3).

Heuristic for selecting a subgraph of L(G) homomorphic to
a line graph with nomarked edges
LetNT be the marked subgraph of L(G), i.e. NT = L(G)−
PT and E(NT ) = FT . Let us recall that L(G) − E′ where
E′ ⊆ E is the subgraph of L(G) induced by E′ (L(G) − E′
contains all edges of L(G) that join two vertices in E′). We
will search for some - minimal - subset ET of NT vertices
such that L(G)−ET contains no marked edges, and there-
fore, following property 3.3, corresponds to the line-graph
of some - maximal - subgraph GT of G.
Removing first the vertices of NT showing the maximal

degree maximizes the ratio of the number of deleted ver-
tices over the number of edges taking away the graph from
a line graph. As minimizing ET is equivalent to maximiz-
ing L(GT ) it is also equivalent to maximizing GT . This
subgraph ofG both fulfills the ternary similarity constraint
and tends to be maximal.

1/ N ← NT //initializes N as the set of marked edges
of L(G) //
2/ ET ← ∅ // initializes the set of vertices to be
removed //
3/ while E(N) �= ∅: // still some marked edges //

// identification of NT vertices of maximal
degree//

4/ �(N) ← the maximal degree among N
vertices,

5/ Ed ← {e | e ∈ ET and deg(e) = �(N)}
6/ N ← N − Ed
7/ ET ← ET ∪ Ed // iterative definition of ET
vertices set//

Material
SCOP database is an expert classification of structures of
protein domains. It is used as a source of data for our
clustering studies and as reference classification to which
classes formed by clustering procedure are compared to.
SCOP offers a hierarchical classification organized as

a 6-levels tree. Protein domains are successively divided
into “Classes”, “Folds”, “SuperFamilies” and “Families”. The
leaves of the tree are the protein domains. In this study
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automated classifications will be compared to the finest
grained SCOP level, a group of protein domains belonging
to the same SCOP Family are then considered as a SCOP
cluster.
The set of items is taken from 3D protein structure

of domains of SCOP database [3]. Over the 488.567
available domain structures we restrict our search to a
non-redundant subset made of the 10.569 SCOP domain
representatives exhibiting less than 40% sequence identity
- i.e. the ASTRAL 40 data set (version 1.75) [17].
The mapping function of two objects is performed by

the YAKUSA software [16]. The program searches for the
longest common similar substructures, between the query
structure and every structure in the structural database.
Such common substructures consist of amino-acids of
proteins o and o′ and are represented by the mapped parts
M(o, o′).
The set of protein pairs showing a YAKUSA z-score over

or equal to TO = 7.0 defines the edges E of our graph G.
Before applying the graph modification method we

remove all the isolated proteins (proteins not similar
to any other protein of the database), i.e. we remove
all objects o such that deg(o) = 0. We obtain then
the graph G(O,E) representing the pairwise similari-
ties between 6606 items (proteins) encoded in 18199
edges (cf. Figure 3). Items are grouped into 856 con-
nected components with a large component contain-
ing 2901 items (cf. Figure 4), achieving a initial coarse
grained clustering.
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Figure 4 Sizes of the connected components of the modified
graph GT. (top) Size of the largest independent connex components
(ICCs) and (bottom) mean size of independent connex components
of the modified graph GT for increasing threshold of ternary similarity
T. The sparsification of the graph GT for more stringent threshold
reduce both the size of the largest ICCs and themean sizes of the ICCs.

Results
Clustering effect of the modification graph process
In order to experiment the method, G was submitted
to the modification process using different values of the
ternary similarity threshold T ranging from T = 0.05 to
T = 0.95 by step of 0.05.
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Figure 3Modification of the graph G. Evolution of the size (top) and the number (bottom) of independent connex components (ICCs) of the
modified graph GT for increasing threshold of ternary similarity T. (top) Higher is the threshold more stringent is the constraint and higher is the
number of deleted edges from original graph of pair similarities G. (bottom) As a direct consequence, graph GT becomes more and more sparse,
and connected components more numerous.
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The heuristic H selecting vertices ET to be removed
from PT can potentially select any vertex (oi,oj). If (oi,oj)
is the only vertex where item oi appears, deletion of (oi,oj)
leads to removal of item oi. AsGT is built from the inverse
line-graph transformation (every vertex of PT − ET leads
to an edge of GT ), item oi is absent from GT vertices.
By construction, our modification graph process implies

a reduction of G connectivity. This results from removal
of marked edges (PT = L(G) − FT ) and then of vertices of
PT that kept the graph away from a line graph (L(GT ) =
PT −ET ). Removal of vertices from PT corresponds to the
removing of edges from G to GT . As expected, this loss of
connectivity is directly correlated to the value of threshold
T. Higher values of T lead to a more stringent constraint
of ternary similarity, and finally to a less connected graph
(cf. Figure 3-top).
Moreover, ICC’s formed in the building of PT are trans-

ferred to L(GT ) and from property 2 to GT . As shown
in Figure 3-bottom and 4 this leads to a pre-partition of
the objects. More stringent constraint of ternary similar-
ity leads to more ICC’s of lower sizes facilitating the work
of the clustering algorithm.

Pre-clustering effect of ternary similarity constraints
Our modification graph process implies two edge dele-
tion steps. First step is the suppression of L(G) edges
failing at the centered ternary similarity test. Second step
is the removal of L(G) nodes through application of the
heuristic H. According to property 3, node removal from
L(G) is equivalent to edge removal from G.
In the second step, edge deletion can potentially split

an ICC of G into one or more ICC’s in GT . For a sim-
ilarity threshold of T = 0.65, nine ICC’s are split into
two or three ICC’s. As shown in Figure 5, in eight cases,
the deleted edge isolates a group of items of the same
SCOP Family from items classified differently, showing
that application of ternary similarity constraint tends to
separate items that are to be found in different SCOP
Families.
One can notice in this Figure that protein domains from

different SCOP Classes are linked in G. This is due to the
flexibility of the YAKUSA similarity measure. Hopefully,
the ternary constraint identify some of these issues, and
do remove such links.

Ternary similarity threshold and 3D structural comparisons
Picked-up from one of the nine splits presented in
Figure 5, Figure 6 illustrates the way the fractional ternary
similarity threshold identifies the candidate edges to be
deleted in the context of the ternary relation. Consid-
ering the three domains d1w0pa2, d1uaia and d1j1ta ,
pairwise similarities are significant: 73 amino acids are
mapped in the alignment (d1w0pa2,d1uaia ) and 75 amino
acids are mapped in the alignment (d1uaia ,d1j1ta ). But

considering the ternary relation, one considers the over-
lap of mapped part on the common domain d1uaia , and
finds only 48% (35 aa) of the amino acids common to both
alignments. Therefore, with a threshold T=0.65=65%,
the ternary similarity is considered to be not significant
(48% ≤ T) and one of the two edges of the ternary rela-
tion (d1w0pa2,d1uaia ,d1j1ta ) has to be deleted. There,
the heuristic selects the edge (d1w0pa2,d1uaia ) split-
ting the iccs into two components according to SCOP
classification.

Classifications granularities
Application of ternary similarity constraints has a clus-
tering effect taking into account shared similarities. It
bears an incidence on the classes formed by MCL, the
main clustering algorithm of our procedure. Granularity
of the clustering has been studied for varying thresholds of
ternary similarity T and inflation parameter I (cf. Figure 4).
The inflation parameter I is the main MCL parame-

ter that rules the clustering granularity. Lower values of I
lead to coarser clustering. Different values of I were tested
(I ∈[ 1.2, 2.0] by step of 0.1 and I ∈[ 2.0, 3.0] by step of 0.2).
As expected, large ICC’s are rapidly split into small

clusters when inflation parameter increases as shown in
Figure 7-top. The size of the largest clusters formed for
low inflation parameters 1.2 < I ≤ 1.4 (coarsest granu-
larity) depends directly on the ternary similarity threshold
used which rules the granularity of the pre-clustering pro-
cess. For higher inflation parameters (fine granularity) the
sizes of the largest clusters appear to be almost indepen-
dent from T, and the cluster mean size (Figure 7-bottom)
is also independent from T.
Thus, if the reduction of G to GT changes the clustering

of items, the granularity is not significantly affected.

Comparison of the MCL classes to standard expert
classifications
We compare the MCL classifications obtained with or
without the application of ternary similarity constraints to
the reference classification SCOP. This is done by mean of
Precision/Recall (PR) curves rather than by ROC curves
because i) the information contained in both curves are
quite equivalent [18] and ii) PR curves are usually pre-
ferred in a context where the number of negative examples
greatly exceeds the number of positives examples, which
is the case here.
As shown in Figure 8-left, increasing values of MCL

inflation parameter I-i.e. making smaller clusters-, in-
crease (cf. Precision) the ability to provide a correct pre-
diction when co-classifying two items , and decreases
(cf. Recall) the ability to retrieve all the positives. As ex-
pected, the recall decreases when the precision increases.
Differently, for increasing values of threshold T (triplet

must share higher similarities), precision increases, but
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Figure 5 Connected components split during graphmodificationG → G0.65. Cuts of the ICC’s are represented by the thick (vertical) lines.
Links removed (resp. kept) by the modification are shown in dashed (resp. continuous) lines. Items belonging to the same SCOP Family are circled in
gray and SCOP Family is given in caption.
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Figure 6 Protein domain structures comparison in the ternary relation context. Domains d1w0pa2 (Sialidase with SCOP “Family” Id. b.29.1.8),
d1uaia (Polyguluronate lyase with SCOP “Family” Id. b.29.1.18) and d1j1ta (Alginate lyase with SCOP “Family” Id. b.29.1.8) are respectively figured in
gray, white and black. (Top) 73 amino acids long mapped parts of (d1uaia , d1w0pa2) pairwise alignment, (Bottom) 75 amino acids long mapped
parts of (d1uaia , d1j1ta ) pairwise alignment, and (Middle) 35 amino acids long mapped parts of d1uaia common to both pairwise alignments.
(Left) mapped parts are represented by boxes along the domain sequence and no-mapped parts are represented by a line. (Right) mapped parts
are represented by a stylized ribbon according to its secondary structure, and non-mapped parts are represented with a thin licorice. For the ternary
point of view (middle), only the domain common to the two pairwise alignments is represented (d1uaia). In the 3D structures, the blocks mapped in
the two alignments are shown in white, the blocks mapped only in the top alignment (d1uaia , d1w0pa2) are shown in gray and the blocks
mapped only in the bottom alignment (d1uaia , d1j1ta ) are shown in black.
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Figure 7MCL classifications.Mean sizes (dashed lines) and ±2σ - standard deviation - (gray zones) of the greatest (top) and mean (bottom) MCL
cluster sizes, obtained from the subgraph GT , when the ternary similarity threshold T varies in the range 0.05-0.95, as a function of the inflation
parameter I. Greatest and mean MCL cluster sizes obtained from G are also reported (continuous lines).
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Figure 8 Comparison of MCL classes to reference classification SCOP. Comparison of classes obtained from application of MCL to the initial
graph G (black dashed line) and modified graph GT (continuous lines). Lighter continuous lines correspond to more stringent ternary similarity
constraint (varying from 0.2 to 0.8 by step of 0.2). Left top (resp. bottom): represents Recall (resp. Precision) for increasing values of parameter I (MCL
inflation parameter). Right: Precision versus Recall curves points, from right to left, correspond to decreasing inflation parameter I.

surprisingly, this gain in precision is not correlated to a
loss of recall. Indeed, for T in range 0.0-0.6, the recall
remains stable up to high values of T = 0.8 (correspond-
ing to very high required similarities between triplets
alignments). As a consequence, ternary constraints allow
increasing the precision while preserving the recall. As
shown in Figure 8-right, we can consider the use of
ternary similarity as an improvement of the classification
(PR curves are shifted toward the upper-right part of the
graphic when using increasing values of T).

Choice of the final clustering algorithm
In order to evaluate the real impact of the ternary sim-
ilarity constraint independently from the choice of the
final clustering algorithm, we compared classifications

obtained with MCL to those obtained with a standard
approach. We used a normalized spectral clustering algo-
rithm [19] with a final k-means clustering initialized with
centroids [20] computed from a hierarchical clustering of
our data [21].
Both MCL and Spectral methods do not tend to form

clusters with only one member. As shown in Figure 9, for
a number of clusters between 1100 and 1450 - close to
the number of clusters found in SCOP at the “Family level”
and having more than one member (1241) - MCL and
Spectral Clustering algorithms give very similar results,
applying or not the ternary constraint. For a number of
clusters closest to the real number of represented SCOP
Families (1977), MCL algorithm gives better results and
appears to be more robust.
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Figure 9 Impact of final clustering algorithm. Jaccard similarity coefficient between reference classification SCOP and MCL (in black) or spectral
clustering (in gray) automated classifications obtained with no ternary similarity constraint (dashed lines) or with a ternary similarity constraint
T=0.65 (continuous lines). The vertical line at 1977 clusters (resp. 1241 clusters) gives the number of classes in SCOP (resp. with more than one
protein domain).
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Whatever the final clustering algorithm, Figure 9 high-
lights the enhancement of the quality of the automated
classification procedure (with respect to SCOP reference)
introduced by the ternary similarity constraint.

Discussion and conclusions
Classification of objects such as protein structures based
on pairwise similarity relations is a classical problem. We
have shown the advantages of applying ternary similarity
constraints in the clustering process.
The method proposed here is in line with many con-

strained clustering methods as recently investigated [22].
However in most of these methods, only pairwise con-
straints are considered: a must-link (ML) constraint states
that two objects should be placed in the same cluster
while a cannot-link (CL) constraint states that two objects
should not be placed in the same cluster. Constraints
acting on groups of objects have also been considered,
as ε-constraints and δ-constraints. However both can
be represented as conjunction or disjunction of pairwise
constraints. Indeed it should be clear that themethod pro-
posed here deals with ternary constraints that cannot be
represented as any combination of pairwise constraints.
Besides the ternary constraints introduced here concern
the initial graph representation of data: they are not con-
straints for which satisfaction is required (or maximized)
in the clustering result. As a matter of fact, the initial
graph representation, by directly linking only nodes that
are similar enough, exerts some pairwise constraints on
clustering: obviously two nodes belonging to two different
connected components are submitted to a CL constraint.
This is true for any graph based clustering approach.
In such approaches, the similarity (or distance) matrix
defines the initial weighted graph, and edges are then
removed until the graph is partitioned. For instance in
[23,24] a minimum spanning tree (in term of distances) is
computed, and then using some similarity threshold, a for-
est is obtained. However, for large datasets, starting from a
sparse graph by first applying some simple neighborhood
criteria, as we do here, is a much more efficient procedure
(see for instance [25] about clustering results dependency
on such sparsification preprocessing). It would be inter-
esting to investigate the use of our ternary constraints on
various graph-based clustering schemes, as long as objects
are modular. In biology, beyond protein structures, adding
ternary constraints would also be relevant for clustering
protein sequences using graph based methods [26].
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