
(A)

(D)(C)

(B)

C1 C2 C3 C4 I1 I2 I3 I4 I5

C1 .0004 .0004 .0004 .0004 .03 .03 .03 .03 .03

C2 .85 .0004 .0004 .0004 .03 .03 .03 .03 .03

C3 .85 .0004 .0004 .0004 .03 .03 .03 .03 .03

C4 .85 .0004 .0004 .0004 .03 .03 .03 .03 .03

I1 .0004 .425 .0004 .0004 .03 .03 .45 .03 .03

I2 .0004 .425 .425 .0004 .03 .03 .03 .03 .03

I3 .0004 .0004 .85 .0004 .03 .03 .03 .03 .03

I4 .0004 .0004 .0004 .85 .03 .03 .03 .03 .03

I5 .0004 .0004 .0004 .85 .03 .03 .03 .03 .03

parent()

type()

rel()

C1

I1

C2

I2

C3

I3 I4

C4

I5

C

I

SC2

SC

SI

SC1

SC3 SC4

SI1 SI2 SI3 SI4 SI5

C1

I1

C2

I2

C3

I3 I4

C4

I5

IR: information rank

IR: 2.74 IR: 2.38 IR: 2.33

IR: 1.12
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Abstract

Background: Biomedical ontologies have become an increasingly critical lens through which researchers analyze
the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such
as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data.
Current analytical techniques, however, remain limited in their ability to handle many important types of structural
complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance
relationships, non-hierarchical relationships between classes, semantic distance and sparse data.

Results: In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its
use through a MCOA-based enrichment analysis application based on a generative model of gene activation.
MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class,
class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition
probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance
of each ontology class relative to other classes and the associated data set members. On both controlled Gene
Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and
real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis
approach provides the best performance of comparable state-of-the-art methods.

Conclusion: A methodology based on Markov chain models and network analytic metrics can help detect the
relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment
analysis, has been shown to generate superior performance on both real and simulated data relative to existing
state-of-the-art approaches.

Background
Ontologies have become a crucial component for the
analysis, retrieval and integration of the data underpin-
ning modern biomedical science [1]. Whether structured
as controlled vocabularies or expressive description
logic-based models, biomedical ontologies have been
used to manually and semi-automatically annotate enor-
mous volumes of genomic, clinical and bibliographic
information. These annotated datasets support a range
of ontology-driven applications such as semantic search,
enrichment analysis, data integration and clinical deci-
sion support.
Of particular importance in the biomedical space are

the family of applications, including enrichment analysis
[2], semantic similarity clustering [3] and data-based
ontology evaluation [4], that quantify the importance of

classes in an ontology relative to a collection of domain
data. These applications, especially enrichment analysis
based on the Gene Ontology (GO) [5], have been widely
adopted by the scientific community and have proven
effective in distilling large datasets that would otherwise
be extremely difficult for researchers to interpret. Yet,
despite the extensive use and high utility of these appli-
cations, the underlying analytical methods remain lim-
ited in their ability to successfully detect and synthesize
several important types of ontological and dataset com-
plexity, including class overlaps, continuously valued
data, inter-instance relationships, non-hierarchical class
relationships, semantic distance and sparse data.
To help address these limitations, we have developed a

new methodology, Markov Chain Ontology Analysis
(MCOA), for analyzing hierarchical models relative to a
collection of domain data. Our approach represents the
combination of an ontology and the instances in an
associated dataset as a single finite ergodic Markov
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chain whose adjusted transition probability matrix is
used to compute modified eigenvector centralities, or
steady-state probabilities, for each class and instance.
The negative log of these modified eigenvector central-
ities, a quantity we call the information rank of the
class, represents the importance of each class relative to
both the data set and other classes in the ontology.
In the remainder of this paper, we outline the analyti-

cal challenges that motivated the development of our
methodology, detail the mathematical model of our
technique and demonstrate its utility in the context of
GO enrichment analysis. Following a standard bench-
marking process, we demonstrate the ability of a
MCOA-based enrichment analysis method to outper-
form existing state-of-the-art enrichment methods on
simulated gene enrichment datasets. To evaluate the
performance of MCOA on real experimental data, we
compare the enrichment results generated by MCOA
with other comparable methods using gene expression
data from a study of Parkinson’s disease. Finally, we dis-
cuss other applications that could benefit from the
MCOA approach and our plans for future investigations.

Enrichment Analysis
Although the analysis approach we propose is relevant
to any application that quantifies the importance of
ontology classes relative to a dataset, we frame the dis-
cussion in this paper in the context of enrichment ana-
lysis. Our focus on enrichment analysis is motivated
both because of the widespread use of enrichment ana-
lysis in the biomedical field as well as the fact that the
technical challenges faced by enrichment analysis meth-
ods are directly relevant to many other ontology-based
data analysis activities.
Enrichment analysis assesses whether classes in an

ontology are statistically over or under-represented in a
specific dataset based on the semantic annotations of
dataset members relative to some baseline distribution.
In the biomedical field, enrichment analysis methods are
commonly employed to determine the statistical enrich-
ment of GO categories for gene expression data by com-
paring the annotation frequency in a target gene list
with the annotation frequency in a background collec-
tion of genes. The widespread use of the method in this
context has motivated the extensive manual annotation
of genomic and proteomic data with GO categories and
the development of a wide range of enrichment analysis
techniques and tools [2]. Although analysis relative to
GO is the most common use case, the underlying
enrichment analysis techniques are relevant to any bio-
medical ontology (or even flat categorization) and corre-
spondingly annotated dataset (e.g., enrichment of
pathways defined in KEGG [6]). Recent successes apply-
ing enrichment analysis outside the genomic domain

include efforts by Tirrel et al [7] who performed enrich-
ment analysis of the ontologies contained in BioPortal
[8] relative to both MEDLINE and the collection of bio-
medical repositories aggregated by the NCBO Resource
Index [9].
Whether analyzing genomic data for enrichment of

GO categories or bibliographic data for enrichment of
classes in a clinical ontology, the same set of enrichment
methods can be employed. Huang et al [2] decomposed
the existing diversity of 68 different enrichment meth-
ods into three broad classes: singular enrichment analy-
sis (SEA, Class 1), gene set enrichment analysis (GSEA,
Class 2) and modular enrichment analysis (MEA, Class
3). SEA represents the traditional linear enrichment ana-
lysis strategy and approaches in this category evaluate
ontology classes one-at-a-time for enrichment against a
fixed list of interesting dataset members using a statisti-
cal test like Fisher’s exact test following the hypergeo-
metric distribution. Methods in this class vary according
to the statistical test employed, the criteria by which the
dataset is selected and any special heuristics or weight-
ings applied during analysis. The GSEA class of meth-
ods, which includes the original Gene Set Enrichment
Analysis (GSEA) technique [10]) as well as the more
recent Random sets [11] and LR Path [12] methods,
take advantage of experimentally derived weights to
evaluate the entire dataset. Methods in the MEA cate-
gory evaluate the enrichment of multiple ontology
classes simultaneously by taking into account the full
network of ontology and dataset relationships. Similar to
the methods in the SEA category, most MEA methods
do not consider continuous instance weights and must
therefore be run against a fixed list of interesting data
set members.
The MEA category includes the MCOA-based enrich-

ment analysis approach described in this paper as well
as a number of state-of-the-art techniques developed
since the publication of the Huang et al [2] survey such
as NOA by Wang et al [13], TopoGSA by Glaab et al
[14], GenGO by Lu et al [15] and MGSA by Bauer et al
[16,17]. NOA attempts to capture the functional enrich-
ment of inter-instance relationships through the calcula-
tion of link annotations and subsequent application of
standard statistical enrichment methods to these anno-
tations (e.g., hypergeometric distribution). TopoGSA
supports the visualization and analysis of network analy-
tic properties for gene and protein sets mapped to inter-
action networks. GenGO and MGSA, which both adopt
a generative probabilistic model of gene activation, are
particularly well suited to the challenge of class overlaps
in the presence of noise and are among the best meth-
ods in terms of benchmarked enrichment performance.
GenGO uses the generative model and a maximum like-
lihood approach to identify a small set of GO categories
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that best explains an observed experimental gene list. P-
values for this optimal set of GO categories are then
computed using the standard Fisher’s exact test, or any
other desired test statistic, including optional multi-
hypothesis correction. Motivated by the GenGO
approach, Bauer et al [16] also adopted a generative
model of gene activation for their MGSA method.
MGSA uses a Bayesian network to model gene activa-
tion and represents GO enrichment using the marginal
posterior probabilities of each GO category computed
using a Markov Chain Monte Carlo algorithm. Rather
than identifying a fixed set of classes that maximize the
objective function based on the generative model,
MGSA provides a posterior probability enrichment
score for all classes. Although not directly comparable
against GSEA methods, when evaluated against existing
SEA and MEA methods, the GenGO and MGSA meth-
ods are significantly better, as measured on synthetic
data, at correctly identifying enriched GO categories
while minimizing reported false positives and false nega-
tives [15,16].
Despite the extensive use and high utility of enrich-

ment analysis applications and the important recent
advances made in the GSEA and MEA categories, exist-
ing analytical methods remain limited in their ability to
successfully analyze the full spectrum of ontological and
dataset complexity. Challenging structural features
include overlaps between ontology classes, continuous
instance and annotation weights, relationships between
instances, non-hierarchical relationships between classes,
semantic distance and sparse data. These analytical chal-
lenges, and how current enrichment methods attempt to
address them, are discussed in further detail below.

Analysis Challenges
Class overlaps
Methods in the SEA and GSEA categories commonly
generate enrichment results comprising long lists of
highly correlated classes, leaving users to determine
which of multiple, largely redundant, classes are actually
relevant. This problem is due to both the overlaps
between class members and the fact that SEA and
GSEA methods evaluate each class independently for
enrichment and thus fail to take class interdependencies
into account. Overlaps between the member sets of dif-
ferent classes can result from several structural features:
• Inheritance: one class is an ancestor of the other

class and therefore all dataset members annotated to the
descendant are implicitly annotated to the ancestor.
• Multiple parents: both classes share a common des-

cendant and therefore are implicitly annotated with the
same dataset members.
• Multiple annotations: a dataset member is anno-

tated to both classes (or descendants of both classes).

Overlaps between classes are very common in practice
with each GO term overlapping with an overage of 1078
other terms based on common human gene annotations
(see Additional File 1 for details). When overlaps
between enriched classes exist because of multiple anno-
tations, the results are also skewed in favour of instances
associated with a large number of classes. This distor-
tion can be particularly problematic for cases where
annotation bias exists (e.g., protein annotation bias [18])
or cases where the total amount of enrichment evidence
should be based on the number of instances and their
weights rather than on the number of annotations (e.g.,
web page ranking using the PageRank algorithm [19]).
The class overlap problem has been explored by sev-

eral existing enrichment analysis approaches including
MGSA, GenGO, parent-child union by Grossmann et al
[20] and elim and weight by Alexa et al [21]. The par-
ent-child union, elim and weight methods all address
overlaps by computing statistical enrichment using the
hypergeometric distribution with counts weighted
according to the hierarchical structure of the ontology.
Parent-child union computes enrichment for a specific
class in the context of dataset members annotated to
the parents of the class. Elim removes genes annotated
against enriched subclasses when computing enrichment
for parent classes and weight generalizes the elim
approach by adjusting gene weight to a value between 0
and 1. Because the weighting heuristics used by parent-
child union, elim and weight utilize just the structure of
the ontology, these methods only address overlaps due
to inheritance or multiple parents. Although GenGO
and MGSA are able to detect all cases of overlaps, the
fact that these methods collapse the ontology hierarchy
means that they are unable to distinguish between the
different cases of overlap, which impacts support for
semantic distance and annotation bias.
Continuously valued data
A key drawback of methods in the SEA category and
most methods in the MEA category is their inability to
model continuously valued data. For most biological
data of interest in an enrichment analysis scenario, data-
set members have varying levels of experimental signifi-
cance and continuous weights can be associated directly
with each instance (e.g., differential gene expression, test
statistic associated with SNP-to-gene analysis, etc.) or
with each instance-to-class annotation (e.g., probabilistic
confidence score generated via statistical classification,
GO annotations weighted according to source of evi-
dence, etc.). Continuous weights can also be associated
directly with classes or with inter-instance and inter-
class relationships (e.g., protein-protein interaction
scores, gene co-expression scores, etc.). Analyzing con-
tinuously valued datasets using SEA or MEA methods
requires the use of an arbitrary cut-off with all dataset
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members or annotations above the cut-off given equal
weighting in the analysis, potentially leading to signifi-
cantly skewed enrichment results. Addressing this short-
coming is the primary objective of methods in the
GSEA category including Gene Set Enrichment Analysis
(GSEA) [10], which computes statistical significance for
all genes in all differentially expressed arrays using a
weighted Kolmogorov-Smirov test; LRPath [12], which
uses a logistic regression likelihood ratio test compute
significance of enrichment for all genes taking expres-
sion level into account; Random-sets [11], which incor-
porates quantitative instance scores to compute class
enrichment values using an analytical approximation of
the statistical distribution and is asymptotically equiva-
lent to the LRPath technique; and ProbCD [22], which
supports probabilistic instance and annotation weights
and computes statistical significance using Goodman-
Kruskal gamma and comparison against a null distribu-
tion estimated via random permutations.
Although the GSEA methods avoid a potentially arbi-

trary dataset “cut-off” through the use of continuous
dataset weights, this requirement can be problematic in
cases where a single biologically meaningful value for
each gene does not exist. GSEA methods are further
limited by their one-at-a-time analysis of ontology
classes and, in practice, have been found to generate
enrichment results very similar to those output by SEA
methods on actual experimental data [2].
Inter-instance relationships
Meaningful relationships often exist between the mem-
bers of the datasets targeted for enrichment analysis (e.
g., citation links between publications, protein-protein
interaction links, gene-gene links in gene regulatory net-
works, etc.). Network models are particularly well suited
for representing the interconnections in real biological
systems [23-25]. Similar to the links in a social network
or hyperlinks between web pages, such instance-level
relationships provide evidence of a relative ranking
between instances that can be quantified using network
analysis metrics such as eigenvector centrality. The use
of such network analysis techniques is commonly per-
formed on biomedical networks comprising data
instances. Although the output from this type of analysis
can be used to adjust the weight of genes for subsequent
enrichment analysis using GSEA category methods cap-
able of handling continuous values, current state-of-the-
art methods do not compute or use such metrics for
enrichment analysis. While the NOA method of Wang
et al [13] does directly focus on the relationships
between dataset members, the goal of this approach is a
functional analysis of the gene-to-gene links themselves
rather than the use of gene-to-gene links to adjust the
functional enrichment of specific genes. Analysis of

datasets lacking links between dataset members is not
possible with NOA.
Non-hierarchical class relationships
Standard enrichment analysis only considers hierarchical
relations between classes (is-a, part-of), however, many
relevant biomedical ontologies, including GO, include
non-hierarchical class relationships (e.g., regulates).
Accounting for such inter-class relationships may be
even more relevant in scenarios where multiple inter-
related ontologies are jointly analyzed and inter-class
relationships are used to capture mappings between
classes in different ontologies (e.g., relationship between
GO categories and KEGG pathways). Although the same
network analytical methods used to analyze instance-
level links can be applied on the ontology graph, the
current set of state-of-the-art enrichment methods do
not do so, and, for most enrichment approaches, their
incorporation is not feasible due to the nature of the
underlying statistical tests.
Semantic distance
When analyzing data against hierarchical ontologies, it is
generally desirable to bias more specific classes over
more general classes when both classes are associated
with the same number of dataset members. Standard
SEA category methods like Fisher’s exact test measure
significance based solely on annotation frequency and
ignore semantic distance. Although semantic distance is
incorporated into methods such as parent-child union,
elim and weight, the state-of-the-art MEA methods
GenGO and MGSA use flattened representations of the
ontology and therefore fail to explicitly incorporate
semantic distance.
Sparse data
Real datasets frequently suffer from sparsity due to a
variety of data collection and experimental design issues
[26]. Bayesian approaches, which incorporate prior prob-
abilities based on knowledge about the likely statistical
distribution of the data, are better able to handle sparse
data then frequentist approaches like those based on
Fisher’s exact test, which need to employ some type of
smoothing (e.g., Laplace or add one smoothing). Baye-
sian methods that perform enrichment analysis using a
prior probability distribution include MGSA and the
BayGO framework [26]. Although these Bayesian meth-
ods enable the enrichment analysis of sparse data, their
lack of support for inter-instance relationships, non-
hierarchical class relationships and semantic distance
means that only a limited range of sparse datasets can
currently be analyzed.

Methods
Our approach represents the combination of the classes
in an ontology and the instances in an associated dataset
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as a single finite ergodic Markov chain whose adjusted
transition probability matrix is used to compute modi-
fied eigenvector centralities, or steady-state probabilities,
for each class. These modified eigenvector centralities, a
quantity we term the information rank, provide a mea-
sure of the importance of each class relative to both a
dataset and the other classes in the ontology. Similar to
annotation frequency, the information rank of a class
can be used to support applications that compare the
importance of a class in a target dataset with a baseline
dataset (e.g., enrichment analysis).

Ontology Model
For defining our approach and discussing other related
methods, we follow Bade et al [27] and Cimiano et al
[28] and adopt a simplified formal model of an ontology
and its extension as a rooted hierarchy with instance
assignments. Although both our analysis approach and
many related techniques can be generalized to more
complex structures, as formalized by the description
logic-based models [29] used for popular ontology mod-
elling languages such as OWL, this minimal structure
contains the essential modelling primitives for evaluating
GO enrichment analysis and allows the methodology to
be developed with minimal descriptive complexity. Defi-
nitions 1 and 2 below formally define the ontology
model. Potential extensions to this model include class
weights, weights for inter-class relationships, weights for
instance-to-class relationships and weights for inter-
instance relationships.
Definition 1 (Ontology): An ontology is a directed

acyclic graph of classes structured in a hierarchy and
represented by the tuple O = 〈C, parent(c)〉

• C is a non-empty set class identifiers
• A strict partial ordering relation parent(c) that
maps each class c in C to the set of direct parents of
c in the class hierarchy. ∀c Î C: parent(c) ⊆ C

Definition 2 (Ontology Extension): The extension of
an ontology is represented by the tuple E = 〈I, type(i), rel
(i), weight(i)〉

• A potentially empty set I of instance identifiers
• An instance type relation type(i) that maps each
instance in I to a set of one or more classes in C. ∀i
Î I: type(i) ⊆ C
• An inter-instance relation rel(i) that maps each
instance in I to a set of zero or more other related
instances in I. ∀i Î I: rel(i) ⊆ I
• An instance weight relation weight(i) that maps
each instance in I to a normalized weight between 0
and 1. ∀i Î I: weight(i) Î 0[1]

Markov Chain Model
Our proposed methodology for analyzing an ontology
relative to a collection of domain data represents the
combination of an ontology and its extension as a finite
ergodic Markov chain. A finite Markov chain is a finite
stochastic process in which the probability of transition-
ing from a state i to a state j is only dependent on the
state i and not on the path taken through the chain to
arrive at state i [30]. This property of a Markov chain is
called the Markov property and, for an ergodic Markov
chain, it enables the state transitions to be represented
as a stochastic matrix with the special property of pos-
sessing a principal left eigenvector for the maximum
eigenvalue of 1. The components of this principal left
eigenvector represent the steady-state probabilities for
each state in the chain. Definition 3 below provides the
formal specification of a Markov chain.
Definition 3 (Finite Ergodic Markov Chain): A finite

ergodic Markov chain is a finite stochastic process char-
acterized by:

• A non-empty set of states S of size N
• An N × N transition probability matrix P where
each entry pij represents the probability that the state
will be j if the current state is i.
• By the Markov property, the transition probability
values pij are only dependent on the current state i.
Therefore:

∀i, j,Pij ∈ [0, 1]

∀i,
N∑
j=1

Pij = 1

• The transition probability matrix for a Markov
chain is a stochastic matrix with a principal left
eigenvector, �e , of length N for its largest eigenvalue of
1.
• For a finite ergodic Markov chain, the components
of this principal left eigenvector are the steady-state
probabilities, or eigenvector centralities, of the states
of the Markov chain.

Core MCOA Process
At the core of our methodology is a process for com-
puting an eigenvector-based score for each class in an
ontology relative to an extension of that ontology (i.e., a
collection of data annotated using the ontology classes).
We call this the information rank based on its similarity
to the well-known PageRank algorithm for computing
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the ranks of web pages using a Markov model of a ran-
dom walk with jumps through web page links [19]. The
MCOA process involves three key steps:
• Step 1: Model the ontology and extension as a single

finite ergodic Markov chain.
• Step 2: Create an adjusted transition probability

matrix for the Markov chain.
• Step 3: Use the transition probability matrix to com-

pute the eigenvector-based steady-state probability and
information rank for each ontology class.
Algorithmic details for each of these steps are outlined

below and formalized in Definitions 4, 5, 6 and 7. Figure
1 illustrates these steps for a simple ontology.
Step 1: Model Ontology and Extension as Markov Chain
Our approach builds a Markov chain model of an ontol-
ogy and its extension by mapping classes in the ontology
and the instances of those classes to states in the

Markov chain and by mapping all instance-to-class rela-
tions and hierarchical relations between classes to state
transitions. Given the simplified model of an ontology
and its extension specified in Definitions 1 and 2 and
the model of a finite ergodic Markov chain specified in
Definition 3, the process for building a Markov chain
from an ontology and its extension is formalized in
Definition 4 below. Figure 1B shows an example Markov
chain for the ontology in Figure 1A generated according
to this mapping.
Definition 4 (Ontology-to-Markov Chain Mapping):

The mapping between an ontology O and its extension E
(as defined in Definitions 1 & 2) and a finite ergodic
Markov chain is characterized by:

• A partitioning of the set of Markov chain states into
two disjoint subsets SC, which contains the states

(A) 

(D) (C) 

(B) 

C1 C2 C3 C4 I1 I2 I3 I4 I5 

C1 .0025 .0025 .0025 .0025 .198 .198 .198 .198 .198 

C2 .8504 .0004 .0004 .0004 .0297 .0297 .0297 .0297 .0297 

C3 .8504 .0004 .0004 .0004 .0297 .0297 .0297 .0297 .0297 

C4 .8504 .0004 .0004 .0004 .0297 .0297 .0297 .0297 .0297 

I1 .0004 .4254 .0004 .0004 .0297 .0297 .4547 .0297 .0297 

I2 .0004 .4254 .4254 .0004 .0297 .0297 .0297 .0297 .0297 

I3 .0004 .0004 .8504 .0004 .0297 .0297 .0297 .0297 .0297 

I4 .0004 .0004 .0004 .8504 .0297 .0297 .0297 .0297 .0297 

I5 .0004 .0004 .0004 .8504 .0297 .0297 .0297 .0297 .0297 

parent() 

type() 

rel() 

C1 

I1 

C2 

I2 

C3 

I3 I4 

C4 

I5 

 
 
 

 
 
 

C 

I 

SC2 

 
 
 

 
 
 

SC 

SI 

SC1 

SC3 SC4 

SI1 SI2 SI3 SI4 SI5 

C1 

I1 

C2 

I2 

C3 

I3 I4 

C4 

I5 

IR: information rank 

IR: 2.74 IR: 2.38 IR: 2.33 

IR: 1.12 

Figure 1 MCOA mapping between ontology, ontology extension and Markov chain. (A) Simple ontology and extension. (B) Markov chain
representing simple ontology and extension according to MCOA method (C) Adjusted transition probability matrix for Markov chain according
to MCOA method (D) Information rank values generated from adjusted transition probability matrix using a = 0.15 and ω = 0.01.
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corresponding to ontology classes, and SI, which con-
tains the states corresponding to ontology instances:

S = SC ∪ SI, SC �⊂ SI

• Equivalence mapping class(s) (and inverse mapping
state(c)) between the states in subset SC of the Mar-
kov chain and the classes in set C (i.e., there is a
one-to-one mapping between each class and each
Markov chain state in SC).
• Equivalence mapping inst(s) between the states in
subset SI of the Markov chain and the instances in
set I (i.e., there is a one-to-one mapping between
each instance and each Markov chain state in SI).

Step 2: Create Adjusted Transition Probability Matrix
Calculating the transition probability matrix for the
Markov chain defined above involves three key
adjustments:
• A random jump probability a. This is equivalent to

the damping factor, d, used in the PageRank algorithm,
specifically a = 1-d.
• A parameter, ω, that controls how much of the ran-

dom jump probability is distributed among class states,
SC, vs. instance states, SI
• The weights of each individual instance, as specified

by the function weight(i)
Using these parameters, the creation of the adjusted

transition probability matrix can be formalized accord-
ing to Definition 5 below. Figure 1C contains the
adjusted transition probability matrix created for the
ontology in Figure 1A according to this process.
Definition 5 (Adjusted Transition Probability

Matrix): The adjusted transition probability matrix P
for the finite ergodic Markov chain that represents an
ontology and its extension, as specified in Definition 4
above, is defined by:

• A random jump parameter, a, which determines
the probability that the Markov chain makes a ran-
dom jump to one of the other states rather than fol-
lowing the defined transitions from that state.
• A probability distribution weight, ω, that deter-
mines how probabilities are distributed between
states representing classes, SC, and states representing
instances, SI, following each random jump. If ω = 0,
random jump probability is distributed only among
instance states, likewise, if ω = 1, random jump prob-
ability is distributed only among class states.
• The instance weight function weight(i), which is
used to compute a potentially non-uniform

distribution of random jump probabilities among the
instances.
• Given the definitions above, the entries pij of the N
× N transition probability matrix P are defined as
follows (where i represents the source state and j
represents the destination state of the transition):

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

si ∈ SC :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sj ∈ SC :

⎧⎪⎨
⎪⎩
class(sj) ∈ parent(class(si)) :

1 − α

| parent(class(si)) | +
αω

| SC |
class(sj) /∈ parent(class(si)) :

αω

| SC |

⎫⎪⎬
⎪⎭

sj ∈ SI :
α (1 − ω)weight(inst(sj))∑

n∈I
weight(n)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

si ∈ SI :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj ∈ SC :

⎧⎪⎨
⎪⎩
class(sj) ∈ type(inst(si)) :

1 − α

| type(inst(si)) + rel(inst(si)) | +
αω

| SC |
class(sj) /∈ type(inst(si)) : +

αω

| SC |

⎫⎪⎬
⎪⎭

sj ∈ SI :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inst(sj) ∈ rel(inst(si)) :
1 − α

| type(inst(si)) + rel(inst(si)) | +
α (1 − ω)weight(inst(sj))∑

n∈I
weight(n)

inst(sj) /∈ rel(inst(si)) :
α (1 − ω)weight(inst(sj))∑

n∈I
weight(n)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The use of the random jump and non-uniform distri-
bution parameters defined above has several benefits in
the context of our method:

• It ensures that the Markov chain is ergodic (it
would otherwise be absorbing given the 0 out-degree
for any root node).
• It allows for prior probability smoothing. Classes
without instances can be assigned a configurable
portion of the random jump probability as a form of
prior probability smoothing. By varying the ω para-
meter between 0 and 1, the relative weight of a uni-
form prior probability distribution can be adjusted
relative to the analyzed dataset distribution.
• It enables the use of class and instance weighting.
Similar to the topic-sensitive PageRank approach
[31], a non-uniform distribution of random jump
probabilities can be used to mirror differential class
and instance weights.
• It allows semantic distance to be quantified. The
amount of transferred rank naturally decays as one
moves up the hierarchy.

Step 3: Compute Information Rank
Given an adjusted transition probability matrix as speci-
fied in Definition 5 above, the importance of each class
relative to the dataset can be quantified using the com-
ponents of the principal left eigenvector that correspond
to classes in the ontology. These eigenvector compo-
nents represent the steady-state probabilities of the class
states in the associated Markov chain. Normalizing
these steady-state probabilities relative to the probabil-
ities for all class states and then taking the negative log
of the normalized probabilities generates the informa-
tion rank. The definitions of steady-state class probabil-
ity and information rank are formalized in Definitions 6
and 7 below. Figure 1D shows the information rank
values for the example ontology in Figure 1A.
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Definition 6 (Adjusted Steady-State Class Probabil-
ity): Given the definitions above, the adjusted steady
state probability for a class c in C is defined as the ratio
of the principal left eigenvector component for the Mar-
kov chain state corresponding to that class divided by
the sum of all class eigenvector components:

∀c ∈ C : ssp(c) =
�estate(c)∑
s∈SC

�es

Definition 7 (Information Rank): The information
rank for a class c in C is defined as the negative base-2
log of the adjusted steady-state probability:

∀c ∈ C : ir(c) = −log2(ssp(c))

MCOA Enrichment Analysis
Our initial application of the MCOA method to enrich-
ment analysis adopts the probabilistic generative model
of gene activation used by both GenGO and MGSA. It
specifically extends the GenGO maximum likelihood
approach by adding MCOA-based terms to the objective
function used in the original GenGO algorithm.
Although our initial enrichment analysis method
extends GenGO, MCOA can be integrated with other
enrichment methods or used directly to determine
enrichment significance by employing permutation tests
to compute a distribution of possible information rank
values. Our choice of GenGO as a base approach was
motivated by several factors:
• GenGO is one of the best state-of-the-art meth-

ods. GenGO and MGSA are two state-of-the-art MEA
approaches shown to provide overwhelmingly superior
enrichment performance on simulated data.
• GenGO is feasible to extend. Integration of MCOA

through modification of the objective function was both
feasible and straightforward.
• GenGO returns intuitive results with flexible sta-

tistics. The GenGO process outputs p-values, using the
statistical test of choice, for the set of categories that
maximize the log likelihood objective function. Use of
p-values, as opposed to the marginal posterior probabil-
ities used by MGSA, make the results of this method
more intuitive to researchers and more easily compar-
able to the results from other enrichment methods. Use
of multiple hypothesis correction is also optional.
Execution of the MCOA enrichment analysis algo-

rithm involves three steps:

• Step 1: Compute steady state probability scores for
the ontology relative to both the reference and target
datasets.

• Step 2: Find the set of ontology classes that maxi-
mizes the likelihood of the observed dataset given a
probabilistic generative model.
• Step 3: Compute p-values and apply multi-hypoth-
esis correction.

Algorithmic details for each of these steps are outlined
below.
Step 1: Compute steady state probability scores for the
ontology relative to both the reference and target datasets
This step follows the core MCOA process outlined
above.
Step 2: Find the set of ontology classes that maximize the
likelihood of the observed dataset given a probabilistic
generative model
The MCOA approach modifies the GenGO objective
function by replacing the a|C| term that penalizes the
sizes of active GO categories by a term computed from
the MCOA-based steady state probability scores for
each active category. This modification of the GenGO
objective function to incorporate MCOA steady state
probability scores as a regularization parameter is simi-
lar to approaches taken for SNP selection during GWAS
analysis in which the objective function for a stochastic
wrapper algorithm is modified to include preprocessed
attribute quality estimates [32]. This replacement term,
which is equivalent to a weighted log-odds value, still
penalizes large sets of active GO categories while also
giving a preference to those categories whose steady
state probability is larger in the target dataset than in
the reference dataset. Where the steady-state probability
ratios are equal for two categories, the weighting acts to
prefer the category with a greater steady state probabil-
ity in the target dataset. Similar to the original GenGO
method, MCOA optimizes the objective function via a
greedy search algorithm. Optimization of the p and q
values also follows the GenGO approach. Although ori-
ginally specified in terms of GO categories and genes,
this approach can be easily generalized to the generic
ontology model outlined earlier in the paper and this
generalized description is used in the formal definition
of the modified objective function in Definition 8 below.
Definition 8 (MCOA Objective Function): The

MCOA method modifies the GenGO log-likelihood func-
tion by replacing the a|C| regularization term with

β
∑
c∈C

log

(
ssp(c)tar

2

ssp(c)ref

)
. The complete modified objective

function is:

L(C | p, q,G) =| Ag | log p+ | An | log q+ | Sg | log(1−p)+ | Sn | log(1−q)+β
∑
c∈C

log

(
ssp(x)tar

2

ssp(c)ref

)

where:
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• C is the set of active ontology classes
• G is the set of active instances
• q is the false positive rate or the percentage of
instances not associated with an active ontology class
that are activated
• (1-p) is the false negative rate or the percentage of
instances associated with an active classes that are
deactivated
• Ag is the set of active instances annotated with at
least one active class
• An is the set of active instances not annotated with
any active classes
• Sg is the set of annotations (materialized according
to the ontology hierarchy) between inactive instances
and active classes
• Sn is the set of annotations (materialized according
to the ontology hierarchy) between inactive instances
and inactive classes
• ssp(c)ref is the steady state probability for ontology
class c computed using the reference dataset
• ssp(c)tar is the steady state probability for ontology
class c computed using the target dataset.
• b is a parameter that weights the steady state prob-
ability regularization term.

Step 3: Compute p-values and apply multi-hypothesis
correction
For the set of ontology classes that maximizes the objec-
tive function, p-values can be computed using any
desired statistical test. Similar to the original GenGO
method, the current implementation of MCOA com-
putes p-values using the hypergeometric distribution. If
desired, multiple hypothesis correction methods can
also be applied to the generated p-values. An important
benefit of this approach is that multiple hypothesis cor-
rection only needs to consider the subset of classes that
maximize the objective function rather than all classes
in the ontology.

GO Enrichment Analysis of Simulated Data
To demonstrate the utility of the MCOA methodology
for enrichment analysis of biomedical data, we com-
pared the performance of the MCOA method against
GenGO (the Ontologizer implementation), MGSA,
Alexa et al’s weight method [21], Grossmann et al’s par-
ent-child union and the standard hypergeometric test
for Gene Ontology enrichment of simulated Drosophila
melanogaster, Homo sapiens and Escherichia coli data
sets. For the GenGO, MGSA, weight, parent-child union
and hypergeometric methods, we used the implementa-
tions and configurations from the Ontologizer frame-
work that were employed to generate the benchmarking
results in Bauer et al [16].

To enable comparison with prior work, our bench-
marking process follows the general approach adopted
by Bauer et al [16], Lu et al [15], Grossmann et al [20]
and Alexa et al [21]. This process builds a test gene list
using a pre-selected set of active GO categories, with
specific false negative and false positive rates, and then
evaluates each enrichment analysis method, using preci-
sion/recall metrics, based on its ability to identify the
originally selected categories within the noisy dataset.
The following parameters control the creation and ana-
lysis of the simulated datasets following this approach:
• Source of GO annotations: Creation and analysis of

the simulated datasets was performed using the follow-
ing ontology and species annotation files downloaded
from the source control repository links on the Gene
Ontology website [33]: Gene Ontology (revision 1.2078,
34,171 total GO categories), Drosophila melanogaster
annotations from FlyBase [34] (file revision 1.209;
12,966 gene products with 78,094 annotations to GO
categories), the Homo sapiens annotations from Go
Annotations @ EBI [35] (file revision 1.197; 18,307 gene
products with 237,437 annotations to GO categories)
and the Escherichia coli annotations from EcoCyc [36]
& EcoliHub [37] (file revision 1.57; 3884 gene products
with 39,129 annotations to GO categories).
• Selection of active GO categories: Following prior

work [15,16,20,21] we varied the number of active GO
categories between 1 and 5 and avoided selecting hier-
archically related categories. Also following prior work
[15], we filtered the set of potential active categories to
remove categories with fewer than 5 annotations. Such a
minimum annotation threshold helps ensure that the
selected categories are more likely to be biologically
meaningful in the context of experimental data analysis
(similar filters are supported on enrichment analysis
tools for this same purpose). Whereas Lu et al [15] used
categories with 5 or more direct or indirect annotations,
we have chosen to filter based on just direct annota-
tions. Our motivation for using direct as opposed to
total annotations is several-fold:

1. Generate datasets using a more accurate distri-
bution of categories. Filtering on the total number
of annotations results in the disproportionate
removal of leaf categories. For the versions of GO
and the Drosophila melanogaster annotations used
for our benchmarking, 42.4% of the 7,855 directly
and indirectly annotated GO categories are leaf
terms. If all categories with fewer than 5 total anno-
tations are removed from this set, the total propor-
tion of leaf categories falls to 20.6% of the remaining
3,953 annotated categories. If filtering is instead
based on direct annotations, the proportion of leaf
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categories remains essentially constant at 43.9% with
1,855 categories left in the set. Both types of filtering
effectively maintain the overall distribution of cate-
gories by level (see Figure 2) with a correlation coef-
ficient of .986 between the unfiltered distribution
and the direct annotation filtering and .981 for total
annotation filtering. This pattern is similar for the
other evaluated species.
2. Create simulated datasets that are more consis-
tent with a generative model of gene activation.
Categories with very few or no direct annotations
are more likely to be high-level grouping constructs
with low analytical value than categories with at
least a few direct annotations. A direct annotation
for a high-level category provides evidence that the
category, rather than one of its subcategories, has
been found by curators to provide the best explana-
tion for a specific piece of experimental data. We
believe that requiring such evidence for active cate-
gories results in datasets that better reflect a

generative model of gene activation and represent
more biologically meaningful categories.
3. Create simulated datasets that highlight key
analytical challenges. Filtering based on either
direct or total annotations creates a dataset with a
high mean annotation level and increased level of
class overlaps. Filtering by direct annotations has the
added benefit of generating datasets with a larger
ratio of direct-to-indirect annotations, highlighting
the challenge of differentiating between these types
of annotations during enrichment analysis, a distinc-
tion ignored by most enrichment methods. With no
filtering, each GO category with Drosophila annota-
tions has an average of 7 direct and 61 total annota-
tions. Requiring a minimum of 5 direct annotations
results in a set of potentially active categories with
an average of 29 direct and 115 total annotations. If
a minimum of 5 total annotations is required, the
set of active categories has an average of 14 direct
annotations and 120 total annotations.

Figure 2 Distribution of annotated GO categories by hierarchical level. Distribution of Gene Ontology categories annotated with Drosophila
melanogaster genes by hierarchical level. Shown are distributions for all annotated categories, categories with at least 5 total annotations and
categories with at least 5 direct annotations.
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• False positive rate (q): Probability that a gene not
associated with an active category is activated. GenGO
tested with fairly low false positive rates of 0.01 and
0.15. MGSA reported results for false positive rates of
0.1 and 0.4. The results shown below use a value of 0.1,
which corresponds to one of the MGSA values and is
between the two GenGO values. Simulations were also
performed for false positive rates of .01 and .4 and
results can be found in Additional Files 2, 3, 4, 5, 6 and
7.
• False negative rate (1-p): Probability that a gene

associated with an active category is deactivated.
GenGO reported primary results for false negative rates
of 0.1 and 0.5. MGSA reported results for false negative
rates of 0.25 and 0.4. The results shown below use a
value of 0.25, which matches one of the GenGO settings
and is in the between the two MGSA values. Simula-
tions were also performed for false negative rates of .1
and .4 and results can be found in Additional Files 8, 9,
10, 11, 12 and 13.
• Enrichment threshold for precision/recall calcula-

tions (s): The prior benchmarking work by Bauer et al
[16], Lu et al [15] and others computed precision/recall
statistics on the rank ordering of analyzed categories
irrespective of the actual enrichment significance
assigned by the analysis method. Although this is a
straightforward evaluation approach that makes com-
parative evaluation easier, it fails to accurately reflect
the performance or actual usage patterns of the underly-
ing enrichment analysis methods. Even though a given
method may return all active categories (i.e., 100%
recall) with only a few false positives (i.e., high preci-
sion), if few of the active categories had enrichment p-
values that were significant, a user would have ignored
most of these valid results, making the reported preci-
sion/recall values misleading. Similar issues also occur
when generation of significant enrichment values for the
top set of valid categories also results in significant
enrichment values for a much larger set of invalid cate-
gories. Users analyzing such a result set would need to
consider a much larger set of significantly enriched cate-
gories despite the high reported precision/recall. Given
these factors, we also compared enrichment methods
using precision/recall numbers generated using only
categories with significant enrichment scores after mul-
tiple hypothesis correction. We used a threshold of 0.5
for the MGSA marginal posterior probability, which is
the level at which categories are more likely than unli-
kely according to MGSA (this is the default threshold
used for this method in the Ontologizer tool and was
the threshold used for MGSA by Bauer et al [16] for
their analysis of experimental data). For all other meth-
ods, we used a p-value threshold of 0.01 after multiple-
hypothesis correction using the Bonferroni method.

GO Enrichment Analysis of Parkinson’s Gene Expression
Data
To demonstrate the utility of the MCOA method on
real experimental data, we compared the enrichment
results generated by MCOA, GenGO, MGSA and the
standard hypergeometric test on differentially expressed
genes from a study of Parkinson’s post-mortem brain
samples available in the Gene Expression Omnibus
(GEO) [38] as dataset GDS3129 [39].
The R GEOquery package [40] was used to retrieve

both the raw microarray data and the genes associated
with the array platform, which were used as the refer-
ence gene list for subsequent enrichment analysis. The
set of genes significantly differentially expressed between
cases and controls was computed using the R limma
[41] package by fitting a linear model, applying empiri-
cal bayes shrinkage to compute moderated t-statistics
and finally using Benjimani-Hockberg multiple hypoth-
esis correction. Those genes with a false discovery rate
below .05 were kept for further analysis and, following
the recommendation of Falcon and Gentleman [42], this
set was divided based on t-statistic sign into a group
whose expression was positively correlated with Parkin-
son’s cases and a group whose expression is negatively
correlated with Parkinson’s cases. Only the positively
correlated group was considered for further analysis
with the modified t-statistic values used as a gene
weight for the MCOA method. Using the modified t-sta-
tistic as a weight enabled us to leverage MCOA’s ability
to support continuously valued data. Although the
MCOA, GenGO and MGSA methods are all able to
estimate the false positive rate (q) and false negative rate
(1-p) from the data, for this comparison, we ran all
methods with fixed false positive and false negative rates
of 0.05. For MCOA, the regularization constant b was
set to 0.6.

Implementation
To validate our approach, generate experimental results
for this paper and analyze real biomedical data, we have
created a prototype implementation of the MCOA core
methodology and MCOA enrichment analysis method
described above. The core MCOA method was imple-
mented in Java™(version 1.6) using JUNG [43] for the
creation of the graphical model and calculation of eigen-
vector components, Apache Commons Math [44] for
basic statistical computations and Jena [45] for proces-
sing and reasoning over OWL ontologies [46].
The MCOA-based enrichment analysis method was

implemented in Java™ as an extension to the Ontologi-
zer 2 framework [47] and the Ontologizer implementa-
tion of the GenGO algorithm. We used the Ontologizer
GenGO implementation both to enable comparison
with the MGSA benchmarking results and because the
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original GenGO implementation is not accessible for
extension. The benchmarking results reported below
were computed using a modification of the Ontologizer
benchmarking framework used by Bauer et al [16] for
evaluating MGSA with additional data processing and
statistical computation performed via R.
The MCOA enrichment analysis application can be

accessed at the project homepage [48].

Results
Analysis Challenge Examples
To illustrate the computational behaviour of the MCOA
method and the ability of this method to detect complex
structural features, we computed information rank and
information content values for a set of simple, domain-
independent models that represent the analytical chal-
lenges outlined in the introduction section above. Each
model was generated as a synthetic OWL ontology with
associated instance data and, for all examples, the

MCOA method was run with a = 0.15 and ω = 0.01.
The ontology, dataset and analysis results for each
example are shown in Figure 3.
• Class overlaps. Figures 3A and 3B illustrate the two

key types of overlaps between non-hierarchically related
classes. In Figure 3A, the overlap is due to a single
instance being associated with both C2 and C3 (i.e., a
multiple annotation overlap). As illustrated by the infor-
mation content values, analysis based on annotation fre-
quency ignores this overlap and assigns equal weight to
C2, C3 and C4. The MCOA method, on the other hand,
detects the overlap and divides the impact of the shared
instance between C2 and C3 giving these two classes a
higher information rank than C4. In Figure 3B, the over-
lap is due to classes C6 and C7 being associated with
multiple parent classes. Because classes C2, C3 and C4
still have equal numbers of instances, they look identical
from an information content perspective. The MCOA
method also detects this type of overlap and correctly

(A)

(D)

(C)(B)

(E) (F)

IR: information rank
IC: information content
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I1

C2

I2 I3
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I4 I5
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Figure 3 Analysis challenge examples. (A) Overlapping classes due to multiple annotations. (B) Overlapping classes due to multiple parents.
(C) Continuously valued instance weights. (D) Inter-instance relationships. (E) Semantic distance. (F) Sparse data. For all examples, MCOA run with
a = 0.15 and ω = 0.01.
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assigns C2 and C4 lower information rank values than
C3.
• Continuously valued data. Figure 3C contains a

variation of the simple ontology from Figure 1A in
which some of the instances have been assigned contin-
uous weights. As shown in the figure, a binary assess-
ment of annotation frequency results in uniform
information content values for classes C2, C3 and C4.
The MCOA approach, because it generates a score that
is sensitive to continuous weights, produces the correct
differential ranking of C3, C2 and, lastly, C4.
• Inter-instance relationships. In Figure 3D, the

members of the dataset are connected via inter-instance
links with the C2 instances having a balance of in and
out links, the C3 instances having net out-links and the
C4 instances having net in-links. The MCOA methodol-
ogy is able to directly integrate the impact of these links
and, as shown by the information rank scores, correctly
identifies a differential ranking of C4, C2 followed by
C3. From the perspective of information content, all
three classes appear identical.
• Semantic distance. Figure 3E provides a trivial

example of semantic distance. Because class C2 is the
only child of class C1, it is indistinguishable from an
information content perspective. The information rank
measure, through the random jump parameter a,
reflects the relative semantic distance between the
classes, with more specific classes given a higher weight.
In this case, the MCOA method correctly assigned C2 a
lower information rank than its parent C1.
• Sparse data. Figure 3F shows a simple example of a

sparse dataset in which one of the classes, C4, lacks
associated instances. The MCOA approach, when used
with a non-zero a and non-zero ω, supports smoothing
of sparse datasets through a form of prior probability
weighting resulting from the uniform distribution of
random jump probability. As shown in the example, this
form of smoothing gives C4 a low, but non-zero, steady
state probability and correspondingly high relative infor-
mation rank.

Results of GO Enrichment Analysis of Simulated Data
Using the benchmarking process outlined above, we
tested MCOA enrichment analysis and the other state-
of-the-art methods on simulated Escherichia coli, Droso-
phila melanogaster and Homo sapiens datasets. Figures
4, 5 and 6 display performance/recall curves for datasets
generated for each of these species using a false positive
rate (q) or 0.1, a false negative rate (1-p) of 0.25, a b of
0.5 and a variable enrichment threshold (s). Results for
four additional false positive and false negative config-
urations are contained in Additional Files
2,3,4,5,6,7,8,9,10,11,12 and 13 and relative execution
time statistics are contained in Additional File 14. For

each species and combination of false negative and false
positive rates, 500 simulated gene lists were created and
the performance of each analysis method was measured
using average precision or area under the precision/
recall curve.
As the precision/recall curves in Figures 4, 5 and 6

show, the performance of the MEA methods MCOA,
GenGO and MGSA dominate the comparable results of
the weight, parent-child union and hypergeometric
methods for all species and all parameter configurations.
When precision/recall metrics are calculated irrespec-

tive of enrichment values, as show in Figures 4A, 5A
and 6A, the MCOA method performs measurably better
than GenGO for all species, slightly better than MGSA
on E. coli and Homo sapiens and on par with MGSA
for Drosophila (average precision values for MCOA of
0.781, 0.834 and 0.859 on E. coli, Drosophila and Homo
sapiens compared to 0.694, 0.751 and 0.804 for GenGO
and 0.763, 0.838 and 0.846 for MGSA). Figures 4B, 5B
and 6B show these same results with only statistically
significantly enriched GO categories counted as positives
for precision/recall statistics. When enrichment signifi-
cance is considered during precision/recall calculations,
the performance edge of the MGSA method disappears
and MCOA becomes the clearly superior approach
(average precision values for MCOA of 0.753, 0.821 and
0.851 on E. coli, Drosophila and Homo sapiens com-
pared to 0.66, 0.729 and 0.778 for GenGO and 0.62,
0.706 and 0.738 for MGSA). Although p-value and mar-
ginal posterior probability thresholds are not directly
comparable and a lower threshold for MGSA could
plausibly be selected, which would narrow the average
performance delta, any reasonable marginal probability
threshold would still give MCOA a measurable perfor-
mance delta over MGSA.
Overall, the MCOA method provides superior enrich-

ment performance across a range of species and experi-
mental parameters. It is important to note that these
benchmarking tests, in order to support comparison
against other state-of-the-art methods, only reflect per-
formance on data sets that exercise the class overlap
and semantic distance challenges. On datasets that
incorporate continuous data values, inter-instance rela-
tionships, non-hierarchical class relationships or sparse
data, the relative advantage of the MCOA method
should be even more significant.

Results of GO Enrichment Analysis of Parkinson’s Gene
Expression Data
The top ten enriched GO terms returned by MCOA,
hypergeometric, MGSA and GenGO are listed in Figure
7 (enrichment ranking is by uncorrected p-value for
MCOA, hypergeometric and GenGO and marginal pos-
terior probability for MGSA; see Additional Files 15, 16,
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17 and 18 for complete analysis results). As shown in
this figure, all of the top results returned by MCOA are
specific, non-overlapping and associated with recently
published findings linking the associated biological

process, molecular function or cellular component to
Parkinson’s disease. The top result, regulation of osteo-
clast differentiation, is supported by research linking
Parkinson’s disease with low bone density/osteoporosis
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Figure 4 Benchmarking on simulated Escherichia coli data sets. Performance of MCOA, MGSA, GenGO, weight, parent-child union and
hypergeometric methods on simulated Escherichia coli data sets created with false positive rate (q) of 0.1, false negative rate (1-p) of 0.25. (A)
Precision/recall statistics are computed using all categories. (B) Precision/recall statistics are computed using only significantly enriched
categories.
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Figure 5 Benchmarking on simulated Drosophila melanogaster data sets. Performance of MCOA, MGSA, GenGO, weight, parent-child union
and hypergeometric methods on simulated Drosophila melanogaster data sets created with false positive rate (q) of 0.1, false negative rate (1-p)
of 0.25. (A) Precision/recall statistics are computed using all categories. (B) Precision/recall statistics are computed using only significantly
enriched categories.
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[49,50] as well as the finding of rheumatoid arthritis as a
comorbidity [51]. The second result, glucose homeostasis,
is supported by the link between Parkinson’s disease and
cortical hypometabolism [52,53] as well as the associa-
tion between insulin gylcation, glucose homeostasis and
Parkinson’s [54]. The third result, lymphocyte mediated
immunity, is supported by research that links neurode-
generation in a mouse model of Parkinson’s with the
presence of CD4+ lymphocytes in the brain [55]. Similar
supporting research is present for the other top ten
results (see Additional File 19 for a complete
discussion).
The top GO terms returned by the standard hypergeo-

metric method are all at a very high level in the GO tree
(the forth ranked result is the root biological process)
and a number of terms are redundant due to hierarchi-
cal overlap. Although both GenGO and MGSA generate
results that are generally similar in content and specifi-
city to those returned by MCOA, a close inspection
reveals important differences impacting result quality
and utility to experimental scientists. The second term
in the GenGO results, carbohydrate homeostasis,
receives all relevant experimental annotations from the
single child glucose homeostasis. Glucose homeostasis
should therefore be flagged for enrichment instead of
carbohydrate homeostasis. Because the MCOA regulari-
zation term penalizes semantic distance, it correctly
ranks glucose homeostasis above carbohydrate homeosta-
sis. GenGO also fails to return GO term lymphocyte

mediated immunity in the top ten results and instead
identifies the nearby, but less significantly enriched and
more general, term leukocyte mediated cytotoxicity (leu-
kocyte mediated cytotoxicity is a sibling of leukocyte
mediated immunity which is parent of lymphocyte
mediated immunity). In this case, all nine differentially
expressed genes annotated to leukocyte medidated cyto-
toxicity are also annotated to lymphocyte mediated
immunity. Because MCOA divides the contribution of a
gene between all annotated terms, the more granular
lymphocyte mediated immunity with some direct gene
annotations is preferred over leukocyte mediated cyto-
toxicity. GenGO also includes the overly specific positive
regulation of angiogensis rather than parent regulation of
angiogensis. The parent is more appropriate since the
other two children (negative regulation of angiogenesis
and regulation of cell migration involved in sprouting
angiogenesis are also enriched leading to a much more
significant enrichment p-value for regulation of angio-
genesis (.000199) vs. positive regulation of angiogenesis
(.0042)). MCOA correctly identifies regulation of angio-
genesis in the top ten results.
The results returned by the MGSA method have simi-

lar issues, when compared to MCOA, as the GenGO
results (e.g., MGSA also fails to identify lymphocyte
mediated immunity and ranks positive regulation of
angiogenesis in the top ten rather than regulation of
angiogenesis). In terms of utility for users, however, a
more significant difference between MCOA and MGSA
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Figure 6 Benchmarking on simulated Homo sapiens data sets. Performance of MCOA, MGSA, GenGO, weight, parent-child union and
hypergeometric methods on simulated Homo sapiens data sets created with false positive rate (q) of 0.1, false negative rate (1-p) of 0.25. (A)
Precision/recall statistics are computed using all categories. (B) Precision/recall statistics are computed using only significantly enriched
categories.

Frost and McCray BMC Bioinformatics 2012, 13:23
http://www.biomedcentral.com/1471-2105/13/23

Page 15 of 20



relates to MGSA’s use of marginal posterior probabil-
ities and the impact these probabilities have on ranking
and interpretation of enrichment results. Although both
MCOA and MGSA identify many similar GO terms in
the top rankings, the marginal posterior probability
rankings of MGSA can differ substantially from what is
achieved when hypergeometric p-values are used on the
terms that optimize the objective function. We believe
that the use of hypergeometric p-values by MCOA and
GenGO leads to a top set of rankings whose relative
order and statistical significance is more easily interpre-
table by scientists.

Discussion
The Challenge of Biological Complexity
Ontology-based data analysis methods such as enrich-
ment analysis and semantic similarity clustering have
become critical tools for processing the experimental
results of modern biomedical science. Without the
abstract lens of classifications such as GO and KEGG,
the large gene and protein lists generated by molecular
biological research would be difficult to analyze manu-
ally and almost impossible to compare meaningfully
across experimental populations or species. Despite the
important role that these methods play in interpreting

Method Rank GO ID Pop. Study P-value/PostProb Name
MCOA 1 GO:0045670 11 10 1.36E-04 regulation of osteoclast differentiation

2 GO:0042593 18 14 1.52E-04 glucose homeostasis
3 GO:0002449 36 23 1.81E-04 lymphocyte mediated immunity
4 GO:0045765 32 21 1.99E-04 regulation of angiogenesis
5 GO:0035085 25 17 4.38E-04 cilium axoneme
6 GO:0034763 12 10 5.67E-04 negative regulation of transmembrane transport
7 GO:0030518 26 17 8.71E-04 steroid hormone receptor signaling pathway
8 GO:0005088 45 25 1.89E-03 Ras guanyl-nucleotide exchange factor activity
9 GO:0005581 30 18 2.59E-03 collagen

10 GO:0004896 14 10 4.20E-03 cytokine receptor activity
Hyper 1 GO:0005488 4748 1696 7.80E-09 binding

2 GO:0051171 1392 550 9.64E-08 regulation of nitrogen compound metabolic process
3 GO:0019219 1374 542 1.63E-07 regulation of nucleobase, nucleoside, nucleotide a
4 GO:0008150 5510 1929 1.96E-07 biological process
5 GO:0005634 2260 852 2.12E-07 nucleus
6 GO:2000112 1283 508 2.65E-07 regulation of cellular macromolecule biosynthetic
7 GO:0010556 1301 513 4.27E-07 regulation of macromolecule biosynthetic process
8 GO:0006355 1190 473 4.60E-07 regulation of transcription, DNA-dependent
9 GO:0080090 1652 636 6.65E-07 regulation of primary metabolic process

10 GO:0051252 1211 479 7.67E-07 regulation of RNA metabolic process
GenGO 1 GO:0045670 11 10 1.36E-04 regulation of osteoclast differentiation

2 GO:0033500 18 14 1.52E-04 carbohydrate homeostasis
3 GO:0035085 25 17 4.38E-04 cilium axoneme
4 GO:0034763 12 10 5.67E-04 negative regulation of transmembrane transport
5 GO:0030518 26 17 8.71E-04 steroid hormone receptor signaling pathway
6 GO:0001909 11 9 1.43E-03 leukocyte mediated cytotoxicity
7 GO:0005088 45 25 1.89E-03 Ras guanyl-nucleotide exchange factor activity
8 GO:0005581 30 18 2.59E-03 collagen
9 GO:0004896 14 10 4.20E-03 cytokine receptor activity

10 GO:0045766 14 10 4.20E-03 positive regulation of angiogenesis
MSGA 1 GO:0045766 14 10 1.00E+00 positive regulation of angiogenesis

2 GO:0090317 12 10 1.00E+00 negative regulation of intracellular protein trans
3 GO:0005088 45 25 1.00E+00 Ras guanyl-nucleotide exchange factor activity
4 GO:0004114 15 10 1.00E+00 3’,5’-cyclic-nucleotide phosphodiesterase activity
5 GO:0035085 25 17 1.00E+00 cilium axoneme
6 GO:0005581 30 18 9.99E-01 collagen
7 GO:0042593 18 14 9.92E-01 glucose homeostasis
8 GO:0030518 26 17 9.71E-01 steroid hormone receptor signaling pathway
9 GO:0004896 14 10 9.65E-01 cytokine receptor activity

10 GO:0070206 12 8 9.51E-01 protein trimerization

Figure 7 Analysis of Parkinson’s gene expression data from GEO GDS3129. GO enrichment results on significantly differentially enriched
genes in Parkinson’s postmortem brain tissue (GEO dataset GDS3129). The top 10 GO terms generated by MCOA, the standard hypergeometric
method, GenGO and MGSA are shown for comparison. GO terms are ranked by uncorrected p-value for MCOA, GenGO and hypergeometric and
by marginal posterior probability for MGSA. See Additional Files 15, 16, 17 and 18 for complete results.
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and guiding biomedical research, their utility has been
hampered by the limitations of traditional analytical
methods to handle the complex interdependencies pre-
sent in real biomedical data and associated data models.
The members of real biological datasets do not cleanly
sort into independent classes but instead group into
complex collections of nested and overlapping cate-
gories, with direct relationships between dataset mem-
bers and a mixture of continuous and categorical data
values.
Tackling this complexity requires methods that per-

form a global, rather than local, analysis of the ontology
and dataset to capture the full range of structural inter-
dependencies and data values. Although recent methods
in the GSEA and MEA categories have made notable
advances in this area, specifically in addressing class
overlaps and continuously valued data, the interesting
features of many biological datasets remain inaccessible
to analytical tools. To help address the challenge of bio-
logical complexity, we developed the MCOA method as
a network analytic framework capable of addressing the
class overlap and continuously valued data challenges
targeted by MEA and GSEA methods as well as sup-
porting continuous relationship values, inter-instance
relations, non-hierarchical class relations, semantic dis-
tance and sparse data.

Advantages of the MCOA Markov Chain Model
Underlying the MCOA method’s analytical behaviour
and its ability to successfully detect structural complex-
ity is the method employed for building a Markov chain
model and computing steady state probabilities. Several
features of the MCOA Markov chain model are critical
to its functionality:
• Assignment of probabilistic weight per instance

rather than per annotation. Under the MCOA Markov
chain model, the weight for each dataset instance is
divided among all of the classes to which the instance is
annotated. This weight is initially divided among all
direct annotations of the instance and, as it propagates
through the Markov chain, consolidates in an increas-
ingly smaller number of classes until the entire instance
weight is concentrated at the root. The MCOA
approach contrasts with the annotation frequency
approach in which the full instance weight is assigned
to each annotated class with the effect that instances
shared by many classes contribute the same weight as
instances annotated to only a single class. MCOA uses
the differential contribution of instances with a large
number of class annotations and those with small num-
ber of annotations to help detect class overlaps resulting
from multiple annotations and multiple parents.
• Flexible relationships. Traditional analysis methods

only model hierarchical class relationships and class-to-

instance annotations. Some methods, such as GenGO
and MGSA, ignore most hierarchical information by
analyzing a collapsed representation of the ontology
graph. The MCOA method, in contrast, analyzes the full
ontology and dataset network and can additionally han-
dle relationships, such as inter-instance relationships
and non-hierarchical relationships between classes, that
are important for modelling real biomedical data but are
not directly supported by existing MEA approaches.
• Semantic distance computation. The use of a ran-

dom jump parameter allows semantic distance to be
quantified and hierarchical overlaps to be detected,
since the amount of transferred rank naturally decays
with each transition up the ontology hierarchy.
Although semantic distance is captured at some level by
enrichment methods such as elim and weight, it is
ignored by the more recent MEA approaches GenGO
and MGSA as well as by techniques in the GSEA
category.
• Continuous values for instances, classes and rela-

tionships. A non-uniform distribution of random jump
probabilities can be used in the MCOA method to mir-
ror differential class and instance weights. The Markov
chain model also enables continuous values to be
applied to inter-class, class-to-instance or inter-instance
relationships. With existing state-of-the-art analysis
methods, support for continuous data values is usually
limited to dataset instances.
• Prior weighting. The non-uniform distribution of

random jump probability also allows the MCOA method
to apply any desired prior probability distribution to
achieve smoothing of sparse data or to align with a
Bayesian analysis approach.

MCOA for Enrichment Analysis
We chose enrichment analysis as the context in which
to explore and validate the functionality of the MCOA
method. In developing and benchmarking a MCOA-
based enrichment analysis approach, we aimed to create
an enrichment tool with the best performance among
existing state-of-the-art methods on simulated datasets
created to highlight the complexities encountered in real
biomedical data. We also aimed to create a practical
methodology capable of generating enrichment results
on real data sets that are specific, non-overlapping and
of high utility to experimental biologists. The superior
performance achieved by the MCOA enrichment analy-
sis approach can be understood in terms of the kinds of
type I and type II errors encountered by the other gen-
erative methods (GenGO and MGSA) but avoided by
MCOA.
In this context, type I, or false positive, errors repre-

sent cases where an enrichment method incorrectly
identifies a non-active category as enriched. There were
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two varieties of type I errors commonly made by the
other generative methods that were avoided by MCOA:
• Incorrectly flagging non-active categories that are

more general than an active category. In these cases,
the more general category appears enriched because it is
inheriting all of the annotations from the active category
along with a significant number of additional annota-
tions enabled due to noise. MCOA is able to correctly
ignore these categories because the contributions from
the active category are discounted due to both semantic
distance and overlaps with other classes. GenGO and
MGSA, because they collapse the ontology graph and
give each annotation equal weight regardless of the
number of annotations, do not discount the contribu-
tions from the active category and incorrectly flag the
more general category as enriched.
• Incorrectly flagging non-active categories that are

not hierarchically related to an active category, have
a small number of associated genes and few or no
direct annotations. In these cases, the non-active cate-
gory appears enriched due to noise. Because these cate-
gories have few annotated genes and almost no directly
annotated genes, MCOA assigns the category a low
steady-state probability and does not include it in the
set of significantly enriched categories. Because the
other generative methods assign weight per annotation
and ignore semantic distance, they give the category an
incorrectly high weight and mark it as enriched.
Type II, or false negative, errors represent cases where

an enrichment method fails to identify an active cate-
gory as enriched. In our experiments, the other genera-
tive methods commonly failed to identify as enriched
active categories that had a small number of directly
annotated genes. When analyzed by MCOA, these cate-
gories have a higher relative steady-state probability due
to both the lack of a semantic distance discount for the
direct annotations and the fact that direct annotations
will not have overlaps due to multiple parents. Because
of this higher relative steady-state probability, MCOA is
able to successfully mark these categories as enriched.
GenGO and MGSA, on the other hand, do not give any
special weight to the direct annotations and therefore
fail to detect the relatively higher enrichment of these
categories.

MCOA Limitations
Limitations of the MCOA method and MCOA-based
enrichment analysis include a comparatively high com-
putational complexity relative to other methods (see
Additional File 14 for execution time statistics), reliance
on the GenGO approach for objective function optimi-
zation through greedy search and sensitivity to the spe-
cified values of the false positive and false negative rates
(variation in the p and q values can dramatically impact

the number of GO terms that optimize the objective
function for a given data set).

Other MCOA Applications
Although the discussion and examples in this paper
have primarily focused on the use of the MCOA method
for enrichment analysis, the same general approach can
be used to support other ontology-based analysis appli-
cations, such as:
• Semantic similarity clustering: Semantic similarity

algorithms that use the information content of classes
(e.g., Resnik [56]) can be modified to use information
rank instead.
• Ontology evaluation: Similar to the modification of

semantic similarity algorithms, existing statistical ontol-
ogy evaluation approaches that leverage information
content (e.g., Alterovitz et al [4]) can be modified to use
the MCOA-based information rank. The underlying
steady state probabilities can also be employed to weight
class-specific evaluation metrics when computing overall
ontology evaluation scores.
• Ontology-driven information retrieval. If the Mar-

kov chain is created such that state transitions flow
from classes in the ontology to instances, instance-level
steady-state probability values can be computed that
quantify the importance of each instance relative to the
classes in the ontology.
• Ontology comparative analysis. If state transitions

flow from the classes, through a set of associated
instances and into the classes in another ontology, it
becomes possible to use the MCOA method to quantify
the importance of one set of classes relative to another
set of classes based on the annotations of a common
dataset. Comparative analysis of multiple ontologies can
also be enabled through non-hierarchical relationships
between the classes in one ontology and the classes in
another ontology.

Conclusion
Biomedical ontologies have become increasingly critical
for the analysis, retrieval and integration of large and
complex datasets. Of particular importance are applica-
tions, such as enrichment analysis, that measure the
importance of ontology classes relative to a collection of
domain data. Current analysis methods, however,
remain limited in their ability to detect and accurately
quantify a range of complex structural features at the
ontological and dataset levels. To help address these
challenges, we developed the Markov Chain Ontology
Analysis (MCOA) methodology and used this method to
create the MCOA extension of the GenGO enrichment
analysis approach.
The core MCOA method can detect structural fea-

tures including class overlaps, continuous data values,
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relationships between data instances, semantic distance
and sparse data that are difficult to detect using stan-
dard annotation frequency analysis. In benchmarking
studies on simulated Escherichia coli, Drosophila mela-
nogaster and Homo sapiens datasets highlighting the
complexities of biomedical data, the MCOA enrichment
analysis method provides the best performance of com-
parable state-of the-art Gene Ontology enrichment
methods. On real experimental data, MCOA has been
shown to provide specific, non-redundant and scientifi-
cally valid results.
As next steps, we plan to conduct benchmarking on

datasets that capture a wider range of analytical chal-
lenges (e.g., continuous weights and inter-instance rela-
tionships), use the MCOA enrichment analysis method
to analyze and interpret additional experimental data
sets, and perform enrichment against ontologies other
than the Gene Ontology. We also plan to explore the
use of the MCOA information rank value for applica-
tions that have traditionally employed information con-
tent, such as ontology evaluation and semantic similarity
clustering.
An implementation of the MCOA-based enrichment

analysis tool can be accessed at the project homepage
[48].
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