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Abstract

Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking
methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the
protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined
by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very
sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the
protein domain ranking methods.

Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank.
Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of
protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned
with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm.
Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank
achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based
ranking methods.

Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can
be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in
applying multiple graphs to solving protein domain ranking applications.

Background
Proteins contain one or more domains each of which
could have evolved independently from the rest of the
protein structure and which could have unique functions
[1,2]. Because of molecular evolution, proteins with sim-
ilar sequences often share similar folds and structures.
Retrieving and ranking protein domains that are similar to
a query protein domain from a protein domain database
are critical tasks for the analysis of protein structure, func-
tion, and evolution [3-5]. The similar protein domains that
are classified by a ranking system may help researchers
infer the functional properties of a query domain from the
functions of the returned protein domains.
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The output of a ranking procedure is usually a list of
database protein domains that are ranked in descending
order according to a measure of their similarity to the
query domain. The choice of a similarity measure largely
defines the performance of a ranking system as argued
previously [6]. A large number of algorithms for comput-
ing similarity as a ranking score have been developed:

Pairwise protein domain comparison algorithms
compute the similarity between a pair of protein domains
either by protein domain structure alignment or by
comparing protein domain features. Protein structure
alignment based methods compare protein domain struc-
tures at the level of residues and sometime even atoms,
to detect structural similarities with high sensitivity
and accuracy. For example, Carpentier et al. proposed
YAKUSA [7] which compares protein structures using
one-dimensional characterizations based on protein
backbone internal angles, while Jung and Lee proposed
SHEBA [8] for structural database scanning based on
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environmental profiles. Protein domain feature based
methods extract structural features from protein domains
and compute their similarity using a similarity or dis-
tance function. For example, Zhang et al. used the 32-D
tableau feature vector in a comparison procedure called
IR tableau [3], while Lee and Lee introduced a measure
called WDAC (Weighted Domain Architecture Com-
parison) that is used in the protein domain comparison
context [9]. Both these methods use cosine similarity for
comparison purposes.

Graph-based similarity learning algorithms use the
traditional protein domain comparison methods men-
tioned above that focus on detecting pairwise sequence
alignments while neglecting all other protein domains
in the database and their distributions. To tackle this
problem, a graph-based transductive similarity learning
algorithm has been proposed [6,10]. Instead of comput-
ing pairwise similarities for protein domains, graph-based
methods take advantage of the graph formed by the exist-
ing protein domains. By propagating similarity measures
between the query protein domain and the database pro-
tein domains via graph transduction (GT), a better metric
for ranking database protein domains can be learned.
The main component of graph-based ranking is the

construction of a graph as the estimation of intrinsic man-
ifold of the database. As argued by Cai et al. [11], there
are many ways to define different graphs with different
models and parameters. However, up to now, there are,
in general, no explicit rules for choice of graph models
and parameters. In [6], the graph parameters were deter-
mined by a grid-search of different pairs of parameters.
In [11], several graph models were considered for graph
regularization, and exhaustive experiments were carried
out for the selection of a graph model and its parame-
ters. However, these kinds of grid-search strategies select
parameters from discrete values in the parameter space,
and thus lack the ability to approximate an optimal solu-
tion. At the same time, cross-validation [12,13] can be
used for parameter selection, but it does not always scale
up very well for many of the graph parameters, and some-
times it might over-fit the training and validation set while
not generalizing well on the query set.
In [14], Geng et al. proposed an ensemble mani-

fold regularization (EMR) framework that combines the
automatic intrinsic manifold approximation and semi-
supervised learning (SSL) [15,16] of a support vector
machine (SVM) [17,18]. Based on the EMR idea, we
attempted to solve the problem of graph model and
parameter selection by fusing multiple graphs to obtain
a ranking score learning framework for protein domain
ranking. We first outlined the graph regularized rank-
ing score learning framework by optimizing ranking score
learning with both relevant and graph constraints , and

then generalized it to the multiple graph case. First a pool
of initial guesses of the graph Laplacian with different
graph models and parameters is computed, and then
they are combined linearly to approximate the intrin-
sic manifold. The optimal graph model(s) with optimal
parameters is selected by assigning larger weights to them.
Meanwhile, ranking score learning is also restricted to
be smooth along the estimated graph. Because the graph
weights and ranking scores are learned jointly, a unified
objective function is obtained. The objective function is
optimized alternately and conditionally with respect to
multiple graph weights and ranking scores in an iterative
algorithm. We have named our Multiple Graph regular-
ized Ranking methodMultiG-Rank. It is composed of an
off-line graph weights learning algorithm and an on-line
ranking algorithm.

Methods
Graph model and parameter selection Given a data set of
protein domains represented by their tableau 32-D fea-
ture vectors [3] X = {x1, x2, · · · , xN }, where xi ∈ R

32

is the tableau feature vector of i-th protein domain, xq
is the query protein domain, and the others are database
protein domains. We define the ranking score vector as
f =[ f1, f2, ..., fN ]� ∈ R

N in which fi is the ranking score of
xi to the query domain. The problem is to rank the protein
domains inX in descending order according to their rank-
ing scores and return several of the top ranked domains as
the ranking results so that the returned protein domains
are as relevant to the query as possible. Here we define two
types of protein domains: relevant when they belong to
the same SCOP fold type [19], and irrelevant when they do
not. We denote the SCOP-fold labels of protein domains
in X as L = {l1, l2, ..., lN }, where li is the label of i-th pro-
tein domain and lq is the query label. The optimal ranking
scores of relevant protein domains {xi}, li = lq should be
larger than the irrelevant ones {xi}, li �= lq, so that the
relevant protein domains will be returned to the user.

Graph regularized protein domain ranking
We applied two constraints on the optimal ranking score
vector f to learn the optimal ranking scores:

Relevance constraint Because the query protein
domain reflects the search intention of the user, f should
be consistent with protein domains that are relevant to
the query. We also define a relevance vector of the protein
domain as y =[ y1, y2, · · · , yN ]� ∈ {1, 0}N where yi = 1, if
xi is relevant to the query and yi = 0 if it is not. Because
the type label lq of a query protein domain xq is usually
unknown, we know only that the query is relevant to itself
and have no prior knowledge of whether or not others are
relevant; therefore, we can only set yq = 1 while yi, i �= q
is unknown.
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To assign different weights to different protein domains
in X , we define a diagonal matrix U as Uii = 1 when
yi is known, otherwise Uii = 0. To impose the relevant
constraint to the learning of f, we aim to minimize the
following objective function:

min
f

Or(f) =
N∑
i=1

(fi − yi)2Uii

= (f − y)�U(f − y)

(1)

Graph constraint f should also be consistent with the
local distribution found in the protein domain database.
The local distribution was embedded into a K nearest
neighbor graph G = {V , E ,W }. For each protein domain
xi, its K nearest neighbors, excluding itself, are denoted
by Ni. The node set V corresponds to N protein domains
in X , while E is the edge set, and (i, j) ∈ E if xj ∈ Ni
or xi ∈ Nj. The weight of an edge (i, j) is denoted as
Wij which can be computed using different graph defi-
nitions and parameters as described in the next section.
The edge weights are further organized in a weight matrix
W =[Wij]∈ R

N×N , where Wij is the weight of edge (i, j).
We expect that if two protein domains xi and xj are close
(i.e.,Wij is big), then fi and fj should also be close. To
impose the graph constraint to the learning of f, we aim to
minimize the following objective function:

min
f

Og(f ) = 1
2

N∑
i,j=1

(fi − fj)2Wij

= f�Df − f�W f

= f�Lf

(2)

where D is a diagonal matrix whose entries are Dii =∑N
i=1Wij and L = D − W is the graph Laplacian matrix.

This is a basic identity in spectral graph theory and it pro-
vides some insight into the remarkable properties of the
graph Laplacian.
When the two constraints are combined, the learning of

f is based on the minimization of the following objective
function:

min
f

O(f) = Or(f) + αOg(f)

= (f − y)�U(f − y) + αf�Lf
(3)

where α is a trade-off parameter of the smoothness
penalty. The solution is obtained by setting the derivative
of O(f) with respect to f to zero as f = (U + αL)−1Uy. In
this way, information from both the query protein domain
provided by the user and the relationship of all the pro-
tein domains inX are used to rank the protein domains in

X . The query information is embedded in y and U, while
the protein domain relationship information is embedded
in L. The final ranking results are obtained by balancing
the two sources of information. In this paper, we call this
method Graph regularized Ranking (G-Rank).

Multiple graph learning and ranking: MultiG-Rank
Here we describe the multiple graph learning method to
directly learn a self-adaptive graph for ranking regulariza-
tion The graph is assumed to be a linear combination of
multiple predefined graphs (referred to as base graphs).
The graph weights are learned in a supervised way by con-
sidering the SCOP fold types of the protein domains in the
database.

Multiple graph regularization
The main component of graph regularization is the con-
struction of a graph. As described previously, there are
many ways to find the neighborsNi of xi and to define the
weight matrixW on the graph [11]. Several of them are as
follows:

• Gaussian kernel weighted graph:Ni of xi is found
by comparing the squared Euclidean distance as,

||xi − xj||2 = x�
i xi − 2x�

i xj + x�
j xj (4)

and the weighting is computed using a Gaussian
kernel as,

Wij =
⎧⎨
⎩ e−

||xi−xj ||2
2σ2 , if (i, j) ∈ E
0, else

(5)

where σ is the bandwidth of the kernel.
• Dot-product weighted graph:Ni of xi is found by

comparing the squared Euclidean distance and the
weighting is computed as the dot-product as,

Wij =
{
x�
i xj, if (i, j) ∈ E
0, else

(6)

• Cosine similarity weighted graph:Ni of xi is found
by comparing cosine similarity as,

C(xi, xj) = x�
i xj

||xi||||xj|| (7)

and the weighting is also assigned as cosine similarity
as,

Wij =
{
C(xi, xj), if (i, j) ∈ E

0, else
(8)
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• Jaccard index weighted graph:Ni of xi is found by
comparing the Jaccard index [20] as,

J(xi, xj) = |xi ⋂ xj|
|xi ⋃ xj| (9)

and the weighting is assigned as,

Wij =
{
J(xi, xj), if (i, j) ∈ E

0, else
(10)

• Tanimoto coefficient weighted graph:Ni of xi is
found by comparing the Tanimoto coefficient as,

T(xi, xj) = x�
i xj

||xi||2 + ||xj||2 − x�
i xj

(11)

and the weighting is assigned as,

Wij =
{
T(xi, xj), if (i, j) ∈ E

0, else
(12)

With so many possible choices of graphs, the most suit-
able graph with its parameters for the protein domain
ranking task is often not known in advance; thus, an
exhaustive search on a predefined pool of graphs is nec-
essary. When the size of the pool becomes large, an
exhaustive searchwill be quite time-consuming and some-
times not possible. Hence, a method for efficiently learn-
ing an appropriate graph to make the performance of the
employed graph-based ranking method robust or even
improved is crucial for graph regularized ranking. To
tackle this problem we propose a multiple graph regular-
ized ranking framework, that provides a series of initial
guesses of the graph Laplacian and combines them to
approximate the intrinsic manifold in a conditionally opti-
mal way, inspired by a previously reported method [14].
Given a set of M graph candidates {G1, · · · ,GM}, we

denote their corresponding candidate graph Laplacians as
T = {L1, · · · , LM}. By assuming that the optimal graph
Laplacian lies in the convex hull of the pre-given graph
Laplacian candidates, we constrain the search space of
possible graph Laplacians o linear combination of Lm in T
as,

L =
M∑

m=1
μmLm (13)

where μm is the weight of m-th graph. To avoid any
negative contribution, we further constrain

∑M
m=1 μm =

1, μm ≥ 0.
To use the information from data distribution approx-

imated by the new composite graph Laplacian L in (13)
for protein domain ranking, we introduce a new multi-

graph regularization term. By substituting (13) into (2), we
get the augmented objective function term in an enlarged
parameter space as,

min
f,μ

Omultig(f,μ) =
M∑

m=1
μm(f�Lmf)

s.t.
M∑

m=1
μm = 1, μm ≥ 0.

(14)

where μ =[μ1, · · · ,μM]� is the graph weight vector.

Off-line supervisedmultiple graph learning
In the on-line querying procedure, the relevance of query
xq to database protein domains is unknown and thus the
optimal graphweightsμ cannot be learned in a supervised
way. However, all the SCOP-fold labels of protein domain
in the database are known, making the supervised learn-
ing ofμ in an off-line way possible.We treat each database
protein domain xq ∈ D, q = 1, · · · ,N as a query in the
off-line learning and all the items of its relevant vector
yq =[ y1q, · · · , yNq]� as known because all the SCOP-fold
labels are known for all the database protein domains as,

yiq =
{
1 , if li = lq
0 , else

(15)

Therefore, we setU = IN×N as aN ×N identity matrix.
The ranking score vector of the q-th database protein
domain is also defined as fq =[ y1q, · · · , yNq]�. Substitut-
ing fq, yq and U to (1) and (14) and combining them,
we have the optimization problem for the q-th database
protein domain as,

min
fq ,μ

O(fq,μ) = (fq − yq)�(fq − yq)

+ α

M∑
m=1

μm(f�q Lmfq) + β||μ||2

s.t.
M∑

m=1
μm = 1, μm ≥ 0.

(16)

To avoid the parameter μ over-fitting to one single
graph, we also introduce the l2 norm regularization term
||μ||2 to the object function. The difference between fq
and yq should be noted: fq ∈ {1, 0}N plays the role of
the given ground truth in the supervised learning proce-
dure, while yq ∈ R

N is the variable to be solved. While fq
is the ideal solution of yq, it is not always achieved after
the learning. Thus, we introduce the first term in (16) to
make yq as similar to fq as possible during the learning
procedure.

Object function: Using all protein domains in the
database q = 1, . . . ,N as queries to learn μ, we obtain
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the final objective function of supervised multiple graph
weighting and protein domain ranking as,

min
F ,μ

O(F ,μ) =
N∑
q=1

[
(fq − yq)�(fq − yq)

+α

M∑
m=1

μm(f�q Lmfq)
]

+ β||μ||2

= Tr
[
(F − Y )�(F − Y )

]

+ α

M∑
m=1

μmTr(F�LmF) + β||μ||2

s.t.
M∑

m=1
μm = 1, μm ≥ 0.

(17)

where F =[ f1, · · · , fN ] is the ranking scorematrix with the
q-th column as the ranking score vector of q-th protein
domain, and Y =[ y1, · · · , yN ] is the relevance matrix with
the q-th column as the relevance vector of the q-th protein
domain.

Optimization: Because direct optimization to (17) is dif-
ficult, instead we adopt an iterative, two-step strategy to
alternately optimize F and μ. At each iteration, either F or
μ is optimized while the other is fixed, and then the roles
are switched. Iterations are repeated until a maximum
number of iterations is reached.

• Optimizing F : By fixing μ, the analytic solution for
(17) can be easily obtained by setting the derivative of
O(F ,μ) with respect to F to zero. That is,

∂O(F ,μ)

∂F
= 2(F − Y ) + 2α

M∑
m=1

μm(LmF) = 0

F = (I + α

M∑
m=1

μmLm)−1Y

(18)

• Optimizing μ: By fixing F and removing items
irrelevant to μ from (17), the optimization problem
(17) is reduced to,

min
μ

α

M∑
m=1

μmTr(F�LmF) + β||μ||2

= α

M∑
m=1

μmem + β

M∑
m=1

μ2

= αe�μ + βμ�μ

s.t.
M∑

m=1
μm = 1, μm ≥ 0.

(19)

where em = Tr(F�LmF) and e =[ e1, · · · , eM]�. The
optimization of (19) with respect to the graph weight
μ can then be solved as a standard quadratic
programming (QP) problem [4].

Off-line algorithm: The off-line μ learning algorithm is
summarized as Algorithm 1.

Algorithm 1. MultiG-Rank: off-line graph weights
learning algorithm.

Require: Candidate graph Laplacians set T ;
Require: SCOP type label set of database protein
domains L;
Require:Maximum iteration number T;
Construct the relevance matrix Y =[ yiq]N×N where

yiq if li = lq, 0 otherwise;
Initialize the graph weights as μ0

m = 1
M ,

m = 1, · · · ,M;
for t = 1, · · · ,T do

Update the ranking score matrix Ft according to
previous μt−1

m by (18);
Update the graph weight μt according to
updated Ft by (19);

end for
Output graph weight μ = μt .

On-line ranking regularized bymultiple graphs
Given a newly discovered protein domain submitted
by a user as query x0, its SCOP type label l0 will be
unknown and the domain will not be in the databaseD =
{x1, · · · , xN }. To compute the ranking scores of xi ∈ D to
query x0, we extend the size of database toN+1 by adding
x0 into the database and then solve the ranking score vec-
tor for x0 which is defined as f =[ f0, · · · , fN ]∈ R

N+1 using
(3). The parameters in (3) are constructed as follows:

• Laplacian matrix L: We first compute the m graph
weight matrices {Wm}Mm=1 ∈ R

(N+1)×(N+1) with their
corresponding Laplacian matrices
{Lm}Mm=1 ∈ R

(N+1)×(N+1) for the extended database
{x0, x1, · · · , xN }. Then with the graph weight μ

learned by Algorithm 1, the new Laplacian matrix L
can be computed as in (13).
On-line graph weight computation: When a new
query x0 is added to the database, we calculate its K
nearest neighbors in the databaseD and the
corresponding weightsW0j andWj0, j = 1, · · · ,N . If
adding this new query to the database does not affect
the graph i n the database space, the neighbors and
weightsWij, i, j = 1, · · · ,N for the protein domains
in the database are fixed and can be pre-computed
off-line. Thus, we only need to compute N edge
weights for each graph instead of (N + 1) × (N + 1).
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• Relevance vector y: The relevance vector for x0 is
defined as y =[ y0, · · · , yN ]� ∈ {1, 0}N+1 with only
y0 = 1 known and yi, i = 1, · · · ,N unknown.

• MatrixU : In this situation, U is a (N + 1) × (N + 1)
diagonal matrix with U00 = 1 and Uii = 0,
i = 1, · · · ,N .

Then the ranking score vector f can be solved as,

f = (U + αL)−1Uy (20)

The on-line ranking algorithm is summarized as Algo-
rithm 2.

Algorithm 2. MultiG-Rank: on-line ranking algo-
rithm.

Require: protein domain databaseD = {x1, · · · , xN };
Require: Query protein domain x0;
Require: Graph weight μ;
Extend the database to (N + 1) size by adding x0
and compute M graph Laplacians of the extended
database;
Obtain multiple graph Laplacian L by linear
combination of M graph Laplacians with weight μ as
in (13);
Construct the relevance vector y ∈ R

(N+1) where
y0 = 1 and diagonal matrix U ∈ R

(N+1)×(N+1) with
Uii = 1 if i = 0 and 0 otherwise;
Solve the ranking vector f for x0 as in (20);
Ranking protein domains in D according to ranking
scores f in descending order.

Protein domain database and query set
We used the SCOP 1.75A database [21] to construct the
database and query set. In the SCOP 1.75A database,
there are 49,219 protein domain PDB entries and 135,643
domains, belonging to 7 classes and 1,194 SCOP fold
types.

Protein domain database
Our protein domain database was selected from ASTRAL
SCOP 1.75A set [21], a subset of the SCOP (Struc-
tural Classification of Proteins)1.75A database which was
released in March 15, 2012 [21]. ASTRAL SCOP 1.75A

40%) [21], a genetic domain sequence subset, was used
as our protein domain database D. This database was
selected from SCOP 1.75A database so that the selected
domains have less than 40% identity to each other. There
are a total of 11,212 protein domains in the ASTRAL
SCOP 1.75A 40% database belonging to 1,196 SCOP fold
types. The ASTRAL database is available on-line at http://
scop.berkeley.edu. The number of protein domains in
each SCOP fold varies from 1 to 402. The distribution of
protein domains with the different fold types is shown in
Figure 1. Many previous studies evaluated ranking per-
formances using the older version of the ASTRAL SCOP
dataset (ASTRAL SCOP 1.73 95%) that was released in
2008 [3].

Query set
We also randomly selected 540 protein domains from the
SCOP 1.75A database to construct a query set. For each
query protein domain that we selected we ensured that
there was at least one protein domain belonging to the
same SCOP fold type in the ASTRAL SCOP 1.75A 40%
database, so that for each query, there was at least one
”positive” sample in the protein domain database. How-
ever, it should be noted that the 540 protein domains in
the query data set were randomly selected and do not
necessarily represent 540 different folds. Here we call our
query set the 540 query dataset because it contains 540
protein domains from the SCOP 1.75A database.

Evaluation metrics
A ranking procedure is run against the protein domains
database using a query domain. A list of all matching pro-
tein domains along with their ranking scores is returned.
We adopted the same evaluation metric framework as was
described previously [3], and used the receiver operat-
ing characteristic (ROC) curve, the area under the ROC
curve (AUC), and the recall-precision curve to evaluate
the ranking accuracy. Given a query protein domain xq
belonging to the SCOP fold lq, a list of protein domains
is returned from the database by the on-line MultiG-Rank
algorithm or other ranking methods. For a database pro-
tein domain xr in the returned list, if its fold label lr is the
same as that of xq, i.e. lr = lq it is identified as a true pos-
itive (TP), else it is identified as a false positive (FP). For a

Figure 1 Distribution of protein domains with different fold types in the ASTRAL SCOP 1.75A 40% database.

http://scop.berkeley.edu
http://scop.berkeley.edu
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database protein domain xr′ not in the returned list, if its
fold label lr′ = lq, it will be identified as a true negative
(TN), else it is a false negative (FN). The true positive rate
(TPR), false positive rate (FPR), recall, and precision can
then be computed based on the above statistics as follows:

TPR = TP
TP + FN

, FPR = FP
FP + TN

recall = TP
TP + FN

, precision = TP
TP + FP

(21)

By varying the length of the returned list, different TPR,
FRP, recall and precision values are obtained.

ROC curve Using FPR as the abscissa and TPR as the
ordinate, the ROC curve can be plotted. For a high-
performance ranking system, the ROC curve should be as
close to the top-left corner as possible.

Recall-precision curve Using recall as the abscissa and
precision as the ordinate, the recall-precision curve can
be plotted. For a high-performance ranking system, this
curve should be close to the top-right corner of the plot.

AUC The AUC is computed as a single-figure measure-
ment of the quality of an ROC curve. AUC is averaged over
all the queries to evaluate the performances of different
ranking methods.

Results and discussion
We first compared our MultiG-Rank against several pop-
ular graph-based ranking score learning methods for
ranking protein domains. We then evaluated the rank-
ing performance of MultiG-Ranking against other protein
domain ranking methods using different protein domain
comparison strategies. Finally, a case study of a TIM barrel
fold is described.

Comparison of MultiG-Rank against other graph-based
rankingmethods
We compared our MultiG-Rank to two graph-based rank-
ing methods, G-Rank and GT [6], and against the pairwise
protein domain comparison based ranking method pro-
posed in [3] as a baseline method (Figure 2). The evalu-
ations were conducted with the 540 query domains form
the 540 query set. The average ranking performance was
computed over these 540 query runs.
The figure shows the ROC and the recall-precision

curves obtained using the different graph ranking meth-
ods. As can be seen, the MultiG-Rank algorithm sig-
nificantly outperformed the other graph-based ranking
algorithms; the precision difference got larger as the recall
value increased and then tend to converge as the pre-
cision tended towards zero (Figure 2 (b)). The G-Rank
algorithm outperformed GT in most cases; however, both
G-Rank and GT were much better than the pairwise rank-
ing which neglects the global distribution of the protein
domain database.

Figure 2 Comparison of MultiG-Rank against other protein domain ranking methods. Each curve represents a graph-based ranking score
learning algorithm. MultiG-Rank, the Multiple Graph regularized Ranking algorithm; G-Rank, Graph regularized Ranking; GT, graph transduction;
Pairwise Rank, pairwise protein domain ranking method [3] (a) ROC curves of the different ranking methods; (b) Recall-precision curves of the
different ranking methods.
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The AUC results for the different ranking methods on
the 540 query set are tabulated in Table 1. As shown,
the proposedMultiG-Rank consistently outperformed the
other three methods on the 540 query set against our pro-
tein domain database, achieving a gain in AUC of 0.0155,
0.0210 and 0.0252 compared with G-Rank, GT and Pair-
wise Rank, respectively. Thus, we have shown that the
ranking precision can be improved significantly using our
algorithm.
We have made three observations from the results listed

in Table 1:

1. G-Rank and GT produced similar performances on
our protein domain database, indicating that there is
no significant difference in the performance of the
graph transduction based or graph regularization
based single graph ranking methods for
unsupervised learning of the ranking
scores.

2. Pairwise ranking produced the worst performance
even though the method uses a carefully selected
similarity function as reported in [3]. One reason for
the poorer performance is that similarity computed
by pairwise ranking is focused on detecting
statistically significant pairwise differences only,
while more subtle sequence similarities are missed.
Hence, the variance among different fold types
cannot be accurately estimated when the global
distribution is neglected and only the protein domain
pairs are considered. Another possible reason is that
pairwise ranking usually produces a better
performance when there is only a small number of
protein domains in the database; therefore, because
our database contains a large number of protein
domains, the ranking performance of the pairwise
ranking method was poor.

3. MultiG-Rank produced the best ranking
performance, implying that both the discriminant
and geometrical information in the protein domain
database are important for accurate ranking. In
MultiG-Rank, the geometrical information is
estimated by multiple graphs and the discriminant
information is included by using the SCOP-fold type
labels to learn the graph weights.

Table 1 AUC results off different graph-based ranking
methods

Method AUC

MultiG-Rank 0.9730

G-Rank 0.9575

GT 0.9520

Pairwise-Rank 0.9478

Comparison of MultiG-Rankwith other protein domain
rankingmethods
We compare the MultiG-Rank against several other pop-
ular protein domain ranking methods: IR Tableau [3], QP
tableau [4], YAKUSA [7], and SHEBA[8]. For the query
domains and the protein domain database we used the 540
query set and the ASTRAL SCOP 1.75A 40% database,
respectively. The YAKUSA software source code was
downloaded from http://wwwabi.snv.jussieu.fr/YAKUSA,
compiled and used for ranking. We used the “make
Bank” shell script (http://wwwabi.snv.jussieu.fr/YAKUSA)
which calls the phipsi program (Version 0.99 ABI, June
1993) to format the database. YAKUSA compares a query
domain to a database and returns a list of the pro-
tein domains along with ranks and ranking scores. We
used the default parameters of YAKUSA to perform the
ranking of the protein domains in our database. The
SHEBA software (version 3.11) source code was down-
loaded from https://ccrod.cancer.gov/confluence/display/
CCRLEE/SHEBA, complied and used it for ranking. The
protein domain database was converted to “.env” format
and the pairwise alignment was performed between each
query domain and each database domain to obtain the
alignment scores. First, we compared the different pro-
tein domain-protein domain ranking methods and com-
puted their similarity or dissimilarity. An ordering tech-
nique was devised to detect hits by taking the similarities
between data pairs as input. For our MultiG-Rank, the
ranking score was used as a measure of protein domain-
protein domain similarly. The ranking results were eval-
uated based on the ROC and recall-precision curves as
shown in Figure 3. The AUC values are given in Table 2.
The results in Table 2 show that with the advantage

of exploring data characteristics from various graphs,
MultiG-Rank can achieve significant improvements in the
ranking outcomes; in particular, AUC is increased from
0.9478 to 0.9730 in MultiG-Rank which uses the same
Tableau feature as IR Tableau. MultiG-Rank also out-
performs QP Tableau, SHEBA, and YAKUSA; and AUC
improves from 0.9364, 0.9421 and 0.9537, respectively,
to 0.9730 with MultiG-Rank. Furthermore, because of
its better use of effective protein domain descriptors, IR
Tableau outperforms QP Tableau.
To evaluate the effect of using protein domain descrip-

tors for ranking instead of direct protein domain structure
comparisons, we compared IR Tableau with YAKUSA
and SHEBA. The main differences between them are
that IR Tableau considers both protein domain feature
extraction and comparison procedures, while YAKUSA
and SHEBA compare only pairs of protein domains
directly. The quantitative results in Table 2 show that,
even by using the additional information from the pro-
tein domain descriptor, IR Tableau does not outperform
YAKUSA.

http://wwwabi.snv.jussieu.fr/YAKUSA
http://wwwabi.snv.jussieu.fr/YAKUSA
https://ccrod.cancer.gov/confluence/display/CCRLEE/SHEBA
https://ccrod.cancer.gov/confluence/display/CCRLEE/SHEBA
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Figure 3 Comparison of the performances of protein domain ranking algorithms. (a) ROC curves for different field-specific protein domain
ranking algorithms. TPR, true positive rate; FPR, false positive rate. (b) Recall-precision curves for different field-specific protein domain ranking
algorithms.

This result strongly suggests that ranking performance
improvements are achieved mainly by graph regulariza-
tion and not by using the power of a protein domain
descriptor.
Plots of TPR versus FPR obtained using MultiG-Rank

and various field-specific protein domain ranking meth-
ods as the ranking algorithms are shown in Figure 3
(a) and the recall-precision curves obtained using them
are shown in Figure 3 (b). As can be seen from the
figure, in most cases, our MultiG-Rank algorithm sig-
nificantly outperforms the other protein domain ranking
algorithms. The performance differences get larger as
the length of the returned protein domain list increases.
The YAKUSA algorithm outperforms SHEBA, IR Tableau
and QP Tableau in most cases. When only a few pro-
tein domains are returned to the query, the sizes of both
the true positive samples and the false positive samples
are small, showing that, in this case, all the algorithms
yield low FPR and TPR. As the number of returned pro-
tein domains increases, the TPR of all of the algorithms
increases. However, MultiG-Rank tends to converge when
the FPR is more than 0.3, whereas the other ranking algo-
rithms seems to converge only when the FPR is more
than 0.5.

Case Study of the TIM barrel fold
Besides considering the results obtained for the whole
database, we also studied an important protein fold, the
TIM beta/alpha-barrel fold (c.1). The TIM barrel is a con-
served protein fold that consists of eight α-helices and
eight parallel β-strands that alternate along the peptide

backbone [22]. TIM barrels are one of the most common
protein folds. In the ASTRAL SCOP 1.75A %40 database,
there are a total of 373 proteins belonging to 33 different
superfamilies and 114 families that have TIM beta/alpha-
barrel SCOP fold type domains,. In this case study, the
TIM beta/alpha-barrel domains from the query set were
used to rank all the protein domains in the database. The
ranking was evaluated both at the fold level of the SCOP
classification and at lower levels of the SCOP classifica-
tion (ie. superfamily level and family level). To evaluate the
ranking performance, we defined ”true positives” at three
levels:

Fold level When the returned database protein domain
is from the same fold type as the query protein domain.

Superfamily level When the returned database protein
domain is from the same superfamily as the query protein
domain.

Table 2 AUC results for different protein domain ranking
methods

Method AUC

MultiG-Rank 0.9730

IR Tableau 0.9478

YAKUSA 0.9537

SHEBA 0.9421

QP tableau 0.9364
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Figure 4 Ranking results for the case study using the TIM beta/alpha-barrel domain as the query. (a) ROC curves of the ranking results for
the TIM beta/alpha-barrel domain at the fold, superfamily, and family levels. TPR, true positive rate; FPR, false positive rate. (b) Recall-precision curves
of the ranking results for the TIM beta/alpha-barrel domain at the fold, superfamily, and family levels.

Family level When the returned database protein
domain is from the same family as the query protein
domain.
The ROC and the recall-precision plots of the protein

domain ranking results ofMultiG-Rank for the query TIM
beta/alpha-barrel domain at the three levels are given in
Figure 4. The graphs were learned using the labels at the
family, superfamily and the fold level. The results show
that the ranking performance at the fold level is better
than at the other two levels; however, although the per-
formances at the lower levels, superfamily and family, are
not superior to that at the fold level, they are still good.
One important factor is that when the relevance at the
lower levels was measured, a much fewer number of pro-
tein domains in the database were relevant to the queries,
making it more difficult to retrieve the relevant protein
domains precisely. For example, a query belonging to the
family of phosphoenolpyruvate mutase/Isocitrate lyase-
like (c.1.12.7) matched 373 database protein domains at
the fold level because this family has 373 protein domains
in the ASTRAL SCOP 1.75A %40 database. On the other
hand, only 14 and four protein domains were relevant to
the query at the superfamily and family levels respectively.

Conclusion
The proposed MultiG-Rank method introduces a new
paradigm to fortify the broad scope of existing graph-
based ranking techniques. Themain advantage ofMultiG-
Rank lies in its ability to represent the learning of a unified
space of ranking scores for protein domain database in
multiple graphs. Such flexibility is important in tackling

complicated protein domain ranking problems because it
allows more prior knowledge to be explored for effectively
analyzing a given protein domain database, including the
possibility of choosing a proper set of graphs to better
characterize diverse databases, and the ability to adopt
a multiple graph-based ranking method to appropriately
model relationships among the protein domains. Here,
MultiG-Rank has been evaluated comprehensively on a
carefully selected subset of the ASTRAL SCOP 1.75 A
protein domain database. The promising experimental
results that were obtained further confirm the usefulness
of our ranking score learning approach.
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