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Abstract

Background: Gene expression technologies have opened up new ways to diagnose and treat cancer and other
diseases. Clustering algorithms are a useful approach with which to analyze genome expression data. They attempt
to partition the genes into groups exhibiting similar patterns of variation in expression level. An important problem
associated with gene classification is to discern whether the clustering process can find a relevant partition as well
as the identification of new genes classes. There are two key aspects to classification: the estimation of the number
of clusters, and the decision as to whether a new unit (gene, tumor sample..) belongs to one of these previously

identified clusters or to a new group.

Results: ICGE is a user-friendly R package which provides many functions related to this problem: identify the
number of clusters using mixed variables, usually found by applied biomedical researchers; detect whether the
data have a cluster structure; identify whether a new unit belongs to one of the pre-identified clusters or to a
novel group, and classify new units into the corresponding cluster. The functions in the ICGE package are
accompanied by help files and easy examples to facilitate its use.

Conclusions: We demonstrate the utility of ICGE by analyzing simulated and real data sets. The results show that
ICGE could be very useful to a broad research community.

Background

There is considerable interest among researches in using
cluster methods. For example, a common approach in
many biomedical applications is to seek a reliable and
precise classification of genes into a number of clusters,
which is essential for understanding the bases of complex
diseases. For instance, an accurate classification of
tumors is essential to successful diagnosis and treatment
of cancer. Clustering algorithms attempt to partition the
units into groups that have similar properties and it is
necessary to identify the value of k at which the final par-
tition appears to be the best. There is considerable inter-
est among researches in using cluster methods, which
can be generally found in R packages on the Comprehen-
sive R Archive Network (CRAN, http://CRAN.R-project.
org). An important problem associated with the classifi-
cation of units is to assess whether the clustering process
finds a relevant partition, and to identify new classes of
units. For example, if genes are classified into groups
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exhibiting similar patterns of gene expression variation, it
is necessary to pay attention to two things. First the cor-
rect classification in k clusters of the genes by an unsu-
pervised method. Usually, when a clustering algorithm is
applied to a set of units, although the data do not present
a cluster structure, the algorithm returns a partition. It is
thus necessary that the index used to establish the “real”
number of clusters should also be able to detect the
absence of cluster structure. A variety of measures for
determining the “real” number of cluster can be found in
the literature, see for example [1-8] or [9], which gives an
excellent overview. Most of these procedures are useful
only for continuous data. Only one, the silhouette
method [5], is appropriate for any kind of data (continu-
ous, binary or qualitative). Data of this kind are common
in biomedical applications, but the silhouette index can-
not detect the absence of a cluster structure. An index
that can be applied to any kind of attribute type, the
INCA index, can be found in [10]. This index can use
continuous data without any assumption about their dis-
tribution and it also permits detection of data that have
no cluster structure. Second, given a new gene, the
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procedure should establish whether it is sufficiently simi-
lar to any of the existing clusters. If not, a new type of
expression pattern must be considered. Note that some
techniques of classification, similar to discriminant analy-
sis, classify a new unit as necessarily belonging to one of
the specified clusters. However, this new unit may not
belong to any of the pre-identified clusters, but may
rather be a member of an entirely different and unknown
cluster. There are few approaches in the literature dealing
with the typicality problem [11-15]. All these methods
have some restrictions on the type of data (only continu-
ous data following normal distribution) or on the number
of groups (only two groups for any kind of data).
Recently, Irigoien et al. [10] developed an effective test
for determining atypical objects in different types of clus-
tering applications. This test provides an alternative to
the other models that impose constraints on the type of
data or the number of groups. This test can be used with
any kind of data, and has no limitation on the number of
groups.

The literature on statistical clustering is large, but it
does not appear to contain any computational tool cap-
able of solving all the key aspects of classification: iden-
tifying the number of clusters using mixed variables,
usually found in applied biomedical research; detecting
whether the data have a cluster structure; identifying
whether a new unit belongs to one of the pre-identified
clusters, and classifying this unit. The ICGE package
uses the methodology introduced in [10] and deals with
all the aspects commented above.

Implementation

In this section, the structure of the package and the
functions implemented are explained. Examples illustrat-
ing the usage of the functions are also included.

The ICGE package was developed for the free statisti-
cal R environment (http://www.r-project.org) and runs
under the major operating systems. We do not delve
here into details of the underlying statistical methodol-
ogy. However, a review of this methodology can be
found in the Methods subsection.

Main functions
Table 1 summarizes the main functions available in the
package. A detailed description of these functions is
provided below.

The main function INCAindex helps to estimate the
number of clusters in a dataset.

« Usage
INCAindex (d, pert clus)

+ Arguments
To call the main function INCAindex (d,
pert clus), two arguments must be specified.
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Table 1 Main functions on package ICGE

Function name Description

INCAindex Calculates the INCA index.
INCAnumclu Calculates the INCA index for different partitions.
INCAtest Performs a typicality test.

Name and small description of the main functions in ICGE.

As usual, d is a distance matrix or a dist object
containing the distances between the # units, and
pert clus is an n-vector that indicates which
group each unit belongs to. The default value
indicates the presence of only one group in the
data. Note that the expected values of pert -
clus are greater than or equal to 1 (for instance
1,2,3,4...).
+ Value
This function returns an object of class incaix,
which is a list containing the following
components:
well class, a vector indicating the number of
units that are well classified;
Ni cluster, a vector indicating each cluster
size and
Total, percentage of units well classified in the
partition defined by pert clus, ie., the INCA
index.
+ Remarks It admits the associated methods sum-
mary and plot. The first simply returns the per-
centage of well-classified units and the second offers
a barchart with the percentages of well classified
units for each group in the given partition.
+ Example 1

Consider the following simulated data. Using the data
simulation functions included in the WGCNA package
(see [16]), we generated 100 samples and three groups
containing 480, 360 and 360 genes, respectively. We
used the Euclidean distance and calculated the percen-
tage of well classified genes.

library ("WGCNA")

library ("ICGE”)

nSamples = 100

set.seed(3)

nModules = 3

nGenes = 1200

eigengenes = matrix (rnorm(nSam-

ples *nModules) , nSamples,
nModules)

d = simulateDatExpr (eigengenes,
nGenes, c¢(b0.3, 0.3, 0.4, 0),

signed = TRUE)
data = dSdatExpr;
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dst = dist (t (data))

x = INCAindex (dst, dsalllLabels)
The output was: a vector indicating the number
of units in each group (360, 360 and 480); the
number of units well classified (84, 94 and 91
per cent, respectively) and the INCA index,
which indicat the total of units well classified
(89.84%).
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are considered “noise” units. If L="custom”,
the “noise” units are selected by the user and
they must be indicated in the noise argument.

+ Value

This function returns a numeric vector with the
INCA index values calculate for each partition
(with and without the units considered “noise”
units). The associate method plot returns two
plots of INCAy versus the number of clusters k.

Furthermore, in order to obtain an estimation of the
“real” number of clusters from the data, we compute the
INCA index for several partitions, with different number
k of clusters in each partition, where k = 2,...,, K. This is
the aim of INCAnumclu function.

One plot shows the INCA, index values consid-
ering all the units, and the other shows the
INCA, index values calculated without “noise”
units. As explained in [10], when the value
INCAy,1 shows a large decrease respect to the
INCA,, value, we conclude that there are k clus-
+ Usage ters in the data. When values of INCA; are low

INCAnumclu (d, K, method="pam”, pert,
noise="NULL”, L)

+ Arguments

The function INCAnumclu(d, K, method="-
pam”, pert, noise="NULL”, L) has 6 argu-
ments but they are not involved simultaneously.
A distance matrix d or a dist object with dis-
tance information between the » units is
required. Argument K indicates the maximum
number of clusters to be considered. For each
value k, k = 2, ..., K a partition in k clusters is
considered. The method argument is a character
string defining the clustering method to be
applied in order to obtain the corresponding par-
titions. The clustering method is performed via
the function pam and agnes in cluster pack-
age. The available clustering methods are pam
(default method, Partitioning Around Medoids
clustering method, PAM, [17]), average
(UPGMA), single (single linkage), complete
(complete linkage), ward (Ward’s method),
weighted (weighted average linkage). Neverthe-
less, the user can introduce particular partitions
indicating method="partition” and using
the pert argument. This argument is a matrix
with # rows, and each column contains a parti-
cular partition. This means that each column is
an n vector that indicates the group to which
each unit belongs. Note that the expected values
of each column of pert are consecutive integers
that are greater than or equal to 1 (for instance
1,2,3,4..., k). The argument noise is a logical vec-
tor indicating units considered as “noise” units
by the user, and argument L must be set as
L="custom”. When argument L = “NULL” no
“noise” units are considered. If parameter L is
greater than or equal to 1, the units classified in
all clusters C, containing a number of units < L,

and constant, it means that there is no cluster
structure, or that all the data form a single
cluster.

+ Example 1 (cont.)

The average clustering algorithm was applied to
the same data. Using INCAnumclu we deter-
mined the number of clusters. Consequently we
calculated the INCA index associated with parti-
tions having k = 2, ..., 10 clusters.

out <- INCAnumclu
(dst,10, "average”)
plot (out)

The procedure gives good results and identifies
the three clusters, see Figure 1.

+ Example 2

Now consider the following example. Using the
data simulation functions included in [16], we
generated 100 samples and three groups contain-
ing 360, 360 and 360 simulated genes, respec-
tively. A fourth group with 120 “noise” genes
was also generated. The INCAnumclu function
shows (taken K = 15) that the “noise” genes have
hidden the underlying cluster structure. Using
the parameter noise with L = 2, the procedure
identifies, in the initial partitions 13 “noise”
genes.

library ("WGCNA")

library ("ICGE"”)

nSamples = 100

set.seed (3)

nModules = 3

nGenes = 1200

eigengenes = matrix (rnorm(nSam-

ples *nModules) , nSamples,

nModules)

d = simulateDatExpr (eigengenes,

nGenes, ¢(0.3, 0.3, 0.3, 0.1),

signed = TRUE)
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Figure 1 Estimating the number of clusters using data in
example 1 (Implementation section). Plot of the index INCA,
versus the number of clusters k. The largest (negative) slope
indicates that there are three clusters.

data = dsdatExpr;
dst = dist (t (data))
out<-INCAnumclu (dst, 15,
age”, L =2)

The results are:
INCA index to estimate the number
of clusters considering all units
Clustering method: average

“aver-

k=2, 0.00042
k=3, 0.33
=4, 0.25
k=5, 0.2
k=6, 0.17
k=7,0.14
=8, 0.12
=9, 0.52
=10, 0.54
k=11, 0.5
k=12, 0.41
=13, 0.41
=14, 0.36
=15, 0.3

Noise units:
Gene.1081 Gene.1087 Gene.1102

Gene.1107 Gene.l1l128 Gene.l1l134
Gene.1141
Gene.l1l155 Gene.1l158 Gene.l1l1l65

Gene.1170 Gene.1176 Gene.1182
INCA index to estimate the number
of clusters without the noise units
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Clustering method: average
k=2,0.67

k=3, 0.44

k=4,0.2

k=5, 0.069

k=6, 0.0024

k=7, 0.0022

k=.8,0.043
k=9, 0.00087

k =10, 0.034
k=11, 0.031
k=12, 0.028
k =13, 0.026
k =14, 0.024
k =15, 0.023

Finally, INCAtest function performs the typicality
INCA test. Therein, the null hypothesis that a new unit
go is a typical unit with respect to a previously fixed par-
tition is tested versus the alternative hypothesis that the
unit is atypical.

» Usage
INCAtest (d, pert, d test, np = 1000,
alpha =0.05, P=1)
+ Arguments

By calling the function, INCAtest (d, pert,
d test, np=1000, alpha =10.05, P =
1), 6 arguments are specified. As before, d is a
distance matrix or a dist object with distance
information between the # units, and pert is an
n-vector that indicates the group to which each
unit belongs. The default value indicates the pre-
sence of only one group in the data. Note that the
expected values of pert are greater than or equal
to 1 (for instance 1,2,3,4...). The argument
d_test is a vector of length # that contains the
distances from the new unit gy to the rest of the n
units. Note that sampling distributions of the
INCA statistics W(go) and the related statistics LJ;
(g0) (G =1, ..., k) (see subsection Methods for the
definition) can be difficult to find for mixed data,
but they may nevertheless be obtained by re-sam-
pling methods, in particular by drawing bootstrap
samples as follows. Draw N units g with replace-
ment from the union of Cy, ..., Cx and calculate
the corresponding W{(g) and U;(g) (j = 1, ..., k)
values. This process is repeated 10P times. In this
way, the bootstrap distributions under H, are
obtained. Then, the np and alpha arguments
indicate the sample size for the bootstrap proce-
dure, and the level for the test, respectively.
Finally, the argument P indicates that the boot-
strap procedure is repeated 10P times.
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+ Value
The function returns a list with incat class
containing the following components:
StatisticWO0 value of the INCA statistic;
ProjectionsU values of statistics measuring
the projection from the specific object to each
group;
Percentage under alpha percentage of
times that the INCA test has been rejected for a
fixed significance level;
alpha specified value of the significance level of
the test.
+ Example 2 (cont.)

Consider the above simulated gene-expression
data that include 120 “noise” genes, 100 samples
and three groups containing 360, 360 and 360
simulated genes, respectively.
Now, consider only the three groups without
“noise” genes. Select one “noise” gene at random
and insert the distances from it to the “non-
noise” genes in vector dd. Then, compute the
INCAtest function:

dr<-as.matrix (dst) [dSallLabels! =

0,dsalllabels! = 0]

cl<-dsalllLabels[dsalllabels! = 0]

INCAtest (dr,cl,dd,np = 1000, alpha

=0.05, P=1)
As we expected, the output indicates that this
“noise” gene is atypical.

StatisticWO0

238758.6

ProjectionsU

1147.4769

2 257.0330

3 433.4185

Percentage under alpha

100

alpha

0.05
Also take at random (from group 3) one gene of
the cluster (i.e., “non-noise”) genes and insert the
distances from it to the “non-noise” genes in vec-
tor dd. Then, the INCAtest correctly predicts
their cluster membership:

INCA test

INCA statistic value = 5.839681

U projections values:

U, =137.9698

U, =137.3148

U, =7.615953

significative tests for alpha=

0.05: 0
We also considered 100 genes selected at ran-
dom: 87 “non-noise” genes (27 from group 1, 30
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from group 2 and 30 from group 3) and 13
“noise” genes. We computed the INCAtest-
function. The results show that the function cor-
rectly predicts the cluster membership of the 87
“non-noise” genes. For the “noise” genes, 8 are
considered as atypical and the other 5 are con-
founded as genes of the initial groups.

Auxiliary functions
These main functions are, of course, based on the auxili-
ary functions that calculate the geometric variability, the
distance between two groups, the proximity function
and the INCA statistic itself, which are described at the
beginning of the Method Section. Table 2 shows the
corresponding functions available from the package, and
more detailed comments are presented below.

The vgeo function calculates the geometrical variabil-

ity V5(C;) (see subsection Methods for the definition)
for each group in the data.

» Usage
vgeo(d, pert = “onegroup®)

+ Arguments
To call vgeo (d, pert = “onegroup”) two
arguments must be specified. The d argument is
a distance matrix or a dist object with distance
information between the 7 units and pert is an
n-vector that indicates the group to which each
unit belongs. The default value indicates that
there is only one group in the data. Note that
the expected values of pert are numbers greater
than or equal to 1 (for instance 1,2,3,4...).

+ Value
The function returns a matrix containing the
geometric variability for each group.

The deltas function calculates the distance Ai

between each pair of groups C; and C; in the data (see
subsection Methods for the definition).

» Usage

deltas (d, pert = “onegroup”)
+ Arguments

Table 2 Auxiliary functions on package ICGE

Function name Description

vgeo Calculates the geometrical variability.
deltas Calculates the distance between each pair of groups.
proxi Calculates the proximity function.

estW Calculates the INCA statistic.

Name and small description of the auxiliary functions in ICGE.
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To call deltas (d, pert = “onegroup”) the
same d and pert arguments must be specified.

+ Value
The function returns a matrix containing the dis-
tances between each pair of groups. proxi func-

tion calculates the proximity function q@z(go, C)

(see subsection Methods for the definition) from
a specific unit g, to the other groups C; in the
data.
« Usage
proxi (d, dx0, pert = “onegroup”)
+ Arguments
To call proxi(d, dx0, pert = “onegroup”)
three arguments must be specified. The d argument is
a distance matrix or an object dist for the # units;
dx0 is an n-vector containing the distances from g0 to
the rest of the units and pert is an n-vector that indi-
cates the unit to which group belongs. The default
value indicates that there is only one group in the data.
Note that the expected values of pert are numbers
greater than or equal to 1 (for instance 1,2,3,4...).
+ Value
The function returns a vector containing the
proximity function from g, to each group.

The function estW calculates the INCA statistic W(g,)
and the related statistics U;(go), j = 1, ..., k.

» Usage
estW(d, dx0, pert = “onegroup”)
« Arguments
This needs the same arguments as proxi.
+ Value
The function returns an object of incaest
class, which is a list containing the following
components:
Wvalue, is the INCA statistic W(go);
Uvalue, is a vector containing the statistics U;
(go), j = L., k.
The associated summary method returns only the
INCA statistic value.

Distance functions
Note that all these functions require the previous calcula-
tion of a distance between units. Biomedical and genetic
studies incorporate any type of data, not only continuous
variables, and correlation or other types of dissimilarities
are frequently used for clustering. For this reason, ICGE
can calculate different distance matrices (Table 3).

The correlation distance and the Mahalanobis distance
[18] are well known, but perhaps the Bhattacharyya and
the Gower distances are less. A function named
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Table 3 Distances provided by the ICGE package

Function name Description
dbhatta Bhattacharyya distance
dcor Correlation distance
dgower Gower distance with and without missing values
dmahal Mahalanobis distance
dproc2 Procrustes distance

Name and small description of the distances available in ICGE.

mahalanobis () that calculates the Mahalanobis dis-
tance already exists in the stats package, but it is not
suitable in our context. While this function calculates
the Mahalanobis distance with respect to a given center,
our function is designed to calculate the Mahalanobis
distance between each pair of units given a data matrix.

The Bhattacharyya distance [19] between two units
with frequencies i = (p;1, ..., pim) and j = (pj1, o)) is
defined by:

d(i, j) = arccos Z Vpibjt.

=1

The Gower distance [20], used for mixed variables, is
defined by dizj =2(1 —sj). As each unit is characterized

by m; continuous, m, binary and m3 qualitative vari-
ables, the similarity coefficient s; between unit i and j is
calculated as follows:

xit — x|
moll— | ' M va+a
= ( Ri )

Sii =
9 m1+(m7_—d)+m3

where R; is the range of the /th continuous variable (/
= 1,.., m,); for the m, binary variables, a and d repre-
sent the number of matches presence-presence and
absence-absence, respectively and « is the number of
matches between states for the m3 qualitative variables.
Note that there is also the daisy () function in cluster
package, which can calculate the Gower distance for
mixed variables. The difference between this function
and dgower () in ICGE is that in daisy () the dis-
tance is calculated as dj; = 1 - s;; and in dgower () as

dizj = 2% (1 —s;). Moreover, dgower () allows us to

include missing values (such as NA) and therefore cal-
culates distances based on Gower’s weighted similarity
coefficients.

The procrustes distance was defined in [21], and it
was introduced to find an appropiate distance between
genes using their expression profile. It was defined as
the procrustes statistics between the procrustes weighted
mean associated with two genes, see definition 2, Step C
in [21] for more details.
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Methods
Briefly, we describe some of the concepts used in the
ICGE package. A more detailed description of the pro-
cedure and applications can be found in [10].

Consider a dataset with # units and a partition into k
groups Cj, ..., Ci. Let d(g,g") be a distance between units g

,g,lll,...,g’f,...
.., 1 be taken from the Cj, ..., Cx groups respectively.
The geometric variability for each group is defined by:

and g'. Let samples g, ... , gﬁk, of sizes ny,

A T AN
7 Im

Given two groups C;, C; the distance between them is
given by:

. 1 o R
Aj= D88 8h) — Va(C) — Ti(G).

YT m

Given the distances from one specific unit gq to the
rest of the units organized in the k groups, the proxi-
mity function of unit g, to C; is defined by:

(8, C)) = 2} 3 62(80,8) — 15(G).
1

For more details on these concepts see [22].

From these previous concepts we define the INCA sta-
tistic. Consider a fixed unit gy, which may be an element
of some C;, j = 1,..., k or may belong to some unknown
cluster, i.e., it may be an atypical unit. This statistic
trades off between minimizing the weighted sum of
proximities of g, to clusters (which takes into considera-
tion the within-cluster variabilities) and maximizing the
weighted sum of the squared distances between clusters
(between-cluster variability) - a common feature of a
clustering criterion. Moreover, this statistic can be inter-
preted (see Figure 2) as the (squared) orthogonal dis-
tance or height /1 of gy on the hyperplane generated by
the centers of C; (i = 1,..,, k), denoted in Figure 2 by a;, i
= 1,..., k. Then, points which lie significantly far from
this hyperplane are held to be atypical. This intuitive
idea is used both to determine the number of clusters,
and to detect atypical units among existing clusters. The
definition of the INCA statistic is:

k
W(go) = min{L(go)}, ) e =1

i=1

where,

k
L(g0) = Y i (8o) — Y. crijAf.

i=1 1<i<j<k
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(C2)

Figure 2 Geometrical interpretation of the INCA statistics. For k
= 3, new observation {go}, centers of clusters f{a;, a,, as} and
(squared) projection r; of the edges {go, a} on the plane {a;, a,, as}.
The (squared) height h is the INCA statistic.

Estimating the number of clusters

We define the INCA index, INCAy, associated with the
partition Cj,..., Cy, as the probability of finding well clas-
sified units. Consider that # units are divided into k
clusters Cj,...,Cy of sizes ny,..., ny, respectively. Fix cluster
C; and for each unit g belonging to the data set, con-

sider the value of INCA statistic, Wc;(8), with respect
to clusters C; with i = j. Consider the maximum, Wg;,
of these (squared) orthogonal distances for all the units
that do not belong to C;. Then consider the following
criterion: Unit g of C; is well classified in C; if
Wc,(8) > Wc,. Unit g of C; is poorly classified in C; if
Wc,(g8) < W¢,, in fact, it is closer to another cluster.

Let N; be the total number of units in C; which are
well classified. Thus we define the INCA index, INCAy,
associated with the partition Cj,..., C as the frequency
of well classified, i.e.,

k

1 N;
INCA;, = .
Tk Z n;

j=1

Procedure for detecting an atypical observation

Suppose now that a cluster analysis is performed and
the optimal number of clusters is found. Let g, be a

new unit and consider the INCA test to decide whether
go belongs to one of the fixed clusters C;, j = 1,..., k or,
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on the contrary, whether it is an atypical observation,
belonging to some different and unknown cluster. Com-
pute W(go): if this value is significant it means that gq
comes from a different and unknown cluster. Otherwise,
we allocate g, to C; using the rule:

allocate g, to C; if Uj(g,) = .nllink{Uj(gO)}, )
j=1,...,

where Uj(gy) = #7(80) —~ W(8o).j = 1, - k.

For a geometric interpretation, see Figure 2, where for
simplicity the (squared) projection Uj(go) is denoted by
1y, j = 1,..., k. So, the above criterion follows the next
geometric and intuitive allocation rule:

allocate g, to C; if the projection Uj(g,) is the smaller. (3)

A more detailed explanation of these procedures,
properties and examples can be found in [10].

Results

Remarks and limitations of the package

For ICGE package the computing times are reasonable.
Table 4 shows runtime for functions INCAindex and
INCAtest based on synthetic data sets of different
sample sizes (n = 50,100, 500 or 1000), and different
number of groups k = 2, 3, 5, 10, 15, 20, 30 or 40.
Observe that for a large number of clusters, the time
increases exponentially.

Furthermore, note that in the main functions
INCAindex, INCAnumclu and INCAtest the argu-
ment d is a distance matrix or a dist object. Therefore,
any kind of dissimilarity can be used, not only those
included in ICGE, and in this sense the package is
flexible.

Another aspect is also relevant. Let p be the dimension-
ality of the Euclidean space in which the original metric
space (S, J) can be embedded (see [10], section 2). If the
number of clusters k is equal to or greater than the
dimensionality p, the hyperplane generated by the cluster
centers will simply be the whole space, and the INCA sta-
tistic will always be zero. This special situation should be
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taken into account when using these functions, and it
may be a limitation of the method (and of the package).

Application to real and simulated data

Functions and methods are illustrated and tested on
both real and simulated data.

Chowdary’s data set

Chowdary et al., compared in [23] pairs of snap-frozen
and RNAlater preservative-suspended tissue from lymph
node-negative breast tumors (B) and Dukes’ B colon
tumors (C). ICGE package proved to be effective at
automatically discovering the both groups (see Figure 3).
The procedure chooses k as the value of k prior to the
first biggest slope decrease. Using the correlation dis-
tance, the clustering procedure PAM was used to parti-
tion the 94 samples successively into 2, 3, ..., 10 clusters.
The plot indicates that there are two clusters as it was
already reported. This data set is included in the
package.

Golub’s data set

Golub et al,, studied in [24] gene expression in two types
of acute leukemia: acute lymphoblastic leukemia (ALL)
and acute myeloid leukemia (AML). They worked with
27 ALL and 11 AML samples. There were no missing
values and we standardized the data as described in [25].
We evaluated the performance of the typicality test using
the correlation distance. We considered 5 and 3 units at
random from ALL and AML group, respectively. Using
ICGE we decided whether these unknown units are typi-
cal units with respect to ALL and AML groups or
whether on the contrary, they are units from another
group. We repeated this procedure ten times for each
group. Good results at the 5% level were obtained. In
each case, the units were identified as units from one of
the two groups and were well classified. Data can be
found in the multtest library.

Synthetic time course data

We generated time course data with 8 groups, 15 genes
in each group and six time points, following 8 different
profiles (see Figure 4): G;, constant profile; G,

Table 4 Runtime for functions INCAindex and INCAtest based on synthetic data sets of different sizes

Function n k=2 k=3 k=5 k=10 k=15 k=20 k =30 k = 40
INCAindex 50 0.046" 0.09" 0.114" 0.527" 1.567" 346" 11.018" 25.131"
100 0.012" 0.0.089" 0.22" 1.059" 3.066" 6.784" 21.291" 49.394"
500 0.155" 0.535" 1.318" 5.962" 16.555" 35.726" 110.015" 252.279"
1000 037" 1319 3.122" 13.317" 35.965" 76437" 230.809" 522.797"
INCAtest 50 5446" 6.817" 10.685" 26.341" 51.138" 84.722" 176.928" 304.172"
np = 1000 100 7.718" 9.158" 13.208" 29.651" 54.897" 90.035" 185.46" 318486"
500 168429" 167.676" 169.206" 190.446" 207.657" 284.543" 428.009" 641.595"
1000 600" 581.966" 571.32" 615.7" 626.671" 697.621" 848.343" 1091.247"

Runtime for functions INCAindex and INCAtest using synthetic data sets with different sample sizes, n = 50,100,500 or 500, and different number of groups
k = 2,3,5,10,15,20,30 or 40. Function INCAtest is performed for np = 1000 resampling units.
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Figure 3 Estimating the number of clusters using Chowdary's
data set. Plot of the index INCA, versus the number of clusters k.
The largest (negative) slope indicates that there are two clusters.

monotone increasing but with small difference between
the expression value at the first and the last time
points; G3, constant profile at 1, 2 and 3, and later
monotone increasing; G, up-down profile with maxima
at 2; G5, up-down with maxima at 5; Gg, down-up pro-
file with minima at 3; G, cyclic with maxima at 2 and
minima at 5; Gg, down-up constant profile with
minima at 2 and constant at 3,4,5 and 6. The pro-
crustes distance was used [21]. When genes in G, are
considered as new genes to be classified in G,, G3, Gy,
Gs, Gg, G, or Gg the procedure identifies the 15 as
belonging to a new group. When genes in G, are con-
sidered as new genes to be classified in Gy, Gz, Gy, Gs,
Gs, G, or Gg the procedure identifies 3 as belonging to
a new group (as we know) and 12 as belonging to G;.
When genes in G;, i = 3,4,5,6,7,8 are considered as new
genes to be classified in G;, j # i, the procedure identi-
fies the 15 genes as belonging to a new group (as we
know). ICGE package proved to be effective at automa-
tically discovering atypical genes. This data set is
included in the package.

Lymphatic cancer data

The data from [26] demonstrates that ICGE can cor-
rectly identify situations in which the data do not pre-
sent a clear cluster structure (see Figure 5). The
Lymphatic data set consists of 148 instances of the diag-
nosis of four lymphatic cancer classes (normal found,
metastases, malign lymph and fibrosis), with 2, 81, 61
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and 4 samples, respectively. Note that it is very difficult
for any method to find four clusters given the small
sizes of two of the groups. 18 mixed variables were mea-
sured: 1 quantitative; 9 binaries and 8 multi-state. ICGE
can correctly identify situations in which the data do
not present cluster structure. Notice that this is an
advantage over other procedures. The PAM clustering
procedure was used to partition the 148 samples succes-
sively into 2, 3, ..., 10 clusters. Gower’s distance was
used. As expected, the low values of the index indicate
no cluster structure. This data set is included in the
package. For additional details read [10].

Conclusions

ICGE offers a friendly implementation for R users that
is capable of solving important questions in genetic ana-
lysis and in general studies, where an unsupervised clas-
sification is necessary. One aspect of the package is the
estimation of the number of clusters. The ICGE proce-
dures provide functionalities that are not offered by
other tools; in particular, they can deal with mixtures of
categorical and continuous data, a situation usually
found by applied researchers. Furthermore, it can detect
the absence of cluster structure. Only the silhouette
method is appropriate for any kind of data, but this
index cannot detect the absence of cluster structure.
Thus, our method is able to deal with data of a more
general kind. In contrast to other classification techni-
ques, given a new unit to be classified, it does not auto-
matically classify it in previously specified clusters. The
procedure decides whether a new unit belongs to a new
group. For this reason, the ICGE package is able to
solve the typicality problem. Other methods present
restrictions in the kind of data or number of groups, but
the ICGE package can work with any kind of data and
has no limitation on the number of groups. For all these
reasons ICGE could be very useful to a large number of
researchers.

Availability and requirements
The ICGE package has been developed for the free sta-
tistical R environment (http://www.r-project.org) and
will run under the major operating systems. The func-
tions in the ICGE package are accompanied by help files
and simple examples to facilitate its use. A manual is
also included. ICGE and its documentation are freely
available at http://www.sc.ehu.es/ccwrobot.

Software name: ICGE

Software home page: http://www.sc.ehu.es/ccwrobot

Operating system(s): e.g. Platform independent

Programming language: R platform

Other requirements: No

Any restrictions to use: it is available for free
download.


http://www.r-project.org
http://www.sc.ehu.es/ccwrobot
http://www.sc.ehu.es/ccwrobot
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