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Abstract

observed in transcriptional networks.

increase the transcription factor subnetwork sparsity.

examined are present within an array of living systems.

Background: Because biological networks exhibit a high-degree of robustness, a systemic understanding of their
architecture and function requires an appraisal of the network design principles that confer robustness. In this project,
we conduct a computational study of the contribution of three degree-based topological properties (transcription
factor-target ratio, degree distribution, cross-talk suppression) and their combinations on the robustness of
transcriptional regulatory networks. We seek to quantify the relative degree of robustness conferred by each property
(and combination) and also to determine the extent to which these properties alone can explain the robustness

Results: To study individual properties and their combinations, we generated synthetic, random networks that
retained one or more of the three properties with values derived from either the yeast or E. coli gene regulatory
networks. Robustness of these networks were estimated through simulation. Our results indicate that the
combination of the three properties we considered explains the majority of the structural robustness observed in the
real transcriptional networks. Surprisingly, scale-free degree distribution is, overall, a minor contributor to robustness.
Instead, most robustness is gained through topological features that limit the complexity of the overall network and

Conclusions: Our work demonstrates that (i) different types of robustness are implemented by different topological
aspects of the network and (ii) size and sparsity of the transcription factor subnetwork play an important role for
robustness induction. Our results are conserved across yeast and E Coli, which suggests that the design principles
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Background

Robustness to evolutionary and environmental perturba-
tions is widely regarded as an important feature of living
systems [1]. Despite this fact, much is still unknown about
the mechanisms through which robustness is achieved
in an organism’s subsystems. In this paper we consider
this question within the context of transcriptional reg-
ulatory networks, the biochemical systems responsible
for controlling the transcription of genes into RNA in
response to activating or repressing inputs from transcrip-
tion factor (TF) molecules. In such systems, one form of
robustness is the network’s ability to retain functionally
equivalent RNA expression levels when the network is
subjected to significant perturbations [2]. Such robustness
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is important if only because stochastic evolutionary pro-
cesses and environmental variability frequently introduce
small perturbations which can impact the concentration
of transcription factors, nutrients, and other biochem-
ical molecules. Robust mechanisms can accommodate
these local and temporary changes without compromising
the functionality of the overall transcriptional program.
Numerous studies on different regulatory networks have
established their robustness to mutations and environ-
mental fluctuations (e.g., [3-8]).

While unveiling the exact origin of regulatory network
robustness is a topic of active research, there is a growing
consensus that the structure of the network itself confers a
significant degree of robustness, irrespective of the precise
biochemical properties of the individual interactions com-
prising it. This belief is bolstered by the conservation of
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(1) several large-scale topological properties and (2)
certain motifs (local network structures) within tran-
scriptional regulatory networks across an evolutionarily-
diverse array of species (e.g., [9-11]). Furthermore,
computational studies have confirmed that a variety of
topological properties can be associated with or confer
some degree of functional robustness: degree distribution,
degree assortativity, network motif abundance, and ratios
of positive and negative interactions [2,10,12-17]. These
studies typically have focused on characterizing how the
introduction of a topological property into an otherwise
random network (usually either an Erdés-Rényi (ER) or
scale-free network) increases or decreases that network’s
robustness to certain types of perturbations.

While this approach has yielded significant insights into
design principles of robustness, such individual analyses
do not permit evaluating the relative contributions of dif-
ferent topological features to the overall robustness of a
network. Without such knowledge, it is difficult to rank
the relatively major and minor sources of robustness —
an important part of understanding the design principles
employed by evolutionary processes. To achieve such a
comparative perspective, the robustness of each feature
of interest must be evaluated within a single framework
and, furthermore, the robustness of the overall network of
interest (in this case, a transcriptional network) must also
be estimated. These are the foci of the present study.

In this paper, we evaluate and compare the contribu-
tions made by several individual and combinations of
first-order degree-based topological features! to tran-
scriptional network robustness against random perturba-
tion and mutation. In doing so we obtain quantitative
insights into the relative robustness conferred by differ-
ent topological features and, in particular, we demonstrate
that the relatively high degree of robustness in scale-
free networks is mainly conferred by the relative scarcity
of regulatory nodes in such networks. We compare the
relative contributions of these features to the structurally-
derived topological robustness of two transcriptional net-
works, E. coli and yeast.

It is important to note that we are intentionally con-
ducting this analysis without considering the evolution-
ary processes that may have produced the features being
considered. We have done this in order to approach, as
precisely as possible, the question of how much robust-
ness is derived from the different degree-based properties,
irrespective of how they come to be in the network. Said
differently, it is certainly important to know how struc-
tures come to be present in a network, but here we are
simply interested in characterizing the extent to which
structures that are present contribute to the robustness
of the network. Adding an evolutionary context to the
present study is an exciting and important direction for
future work.
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In comparing the robustness of different topological
features, we make a number of novel findings. First, we
obtain strong evidence that robustness against three dif-
ferent types of perturbations often considered in literature
(i.e. knockout of genes, parametric perturbation, and ini-
tial condition perturbation) are implemented by different
combinations of topological features. Second, we show
that a transcriptional regulatory system with a small num-
ber of regulators acting semi-independently (i.e. cross
regulation among regulators is systematically suppressed)
is capable of robustly retaining its mRNA expression vec-
tor. Furthermore, a substantial portion of the robustness
observed in the E. coli and yeast transcriptional net-
works can be explained through limiting the complexity
of the overall network and maintaining sparsity of the
inter-regulator-links, rather than by imposing a scale-free
degree distribution on the network. Finally, we determine
that combining the individual topological features con-
sidered generally produces significant, but incremental
improvements in robustness.

Results

Assessing robustness of topological features

The comparison of the robustness conferred by certain
topological features required (1) identifying the topo-
logical network features to consider, (2) formalizing the
types of robustness to consider, (3) developing methods to
generate synthetic random networks preserving the topo-
logical features of real networks, and (4) establishing a way
to compute the robustness of arbitrary directed networks
under a model of transcriptional network dynamics. We
discuss each design consideration briefly before present-
ing results. Complete details are available in the Methods
section and the Additional file 1.

Topological features

We considered three salient first-order degree-based
topological properties of transcriptional regulatory net-
works: (1) transcription factor to target (TF-target) ratio,
(2) scale free-exponential (SFE) degree distribution (out-
degree follows a power-law, in-degree follows an expo-
nential distribution), (3) suppressed cross-talk among
the TFs (TFs have fewer inter-connections than would
be expected by chance) [13,18]. These three properties
emphasize different aspects of the network’s degree distri-
bution.

Out of these three properties, the SFE property is
widely regarded as a robustness inducer as scale free net-
works have greater resilience to random node removal
than unconstrained random networks [9,12,16]. However,
Bergman and Siegal [19,20] opposed this view, showing
through simulation that degree distribution (scale-free
vs. Poisson) is not sufficient to explain the functional
properties, including robustness, of regulatory networks.
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Scale-free topology implies that nodes with small out-
degree are more abundant in regulatory networks, which
entails that most of the nodes in a transcriptional network
have zero out-degree and hence act purely as target nodes
of the transcription factors. An inspection of currently
available transcriptional network data as well as previous
works on transcriptional regulatory network architecture
reveals that only a small fraction of genes (about 10%)
within the genome act as TFs [21-23]. However, the effect
of having such a small TF-target ratio (, :Oﬁfglf;enes) on
robustness has not been independently studied, which is
why we included this property in our analysis. Considera-
tion of TF-target ratio should enable us dissociate its effect
from the reported effect of the SFE property.

In addition to relative scarcity, we observe that tran-
scription factors exhibit less inter-connectivity than
would be expected by chance, a feature we call cross-
talk suppression. This can be considered a feature that
participates in decreasing the error propagation: having
too many inter-connections among transcription factors
hurts modular organization and can eventually increase
the error propagation between different parts of the net-
work [13]. Available data on transcriptional networks
indicate a significant degree of suppression of TF cross-
talk, although the observed degree of suppression varies
among different datasets [18,23-26]. Table S1 in the sup-
plementary material reports the amount of cross-talk
suppression present in different datasets.

As the reference networks for this study, we used pub-
lished interaction maps of E. coli and yeast transcriptional
regulatory networks (hereafter called the reference net-
works) [24,25]. Table 1 presents the observed values for
the different properties of these reference transcriptional
regulatory networks. Although a later version of the Yeast
transcriptional network exists [27], the published network
map contains only 54% of the identified transcription fac-
tors of Yeast, and therefore, it was not used in our analysis.
Previous studies have also preferred the use of the first
network for the same reason citing ‘much more power
to detect significant effects’ [28]. Neither of these two
yeast network maps contains the activation or repression

Table 1 The observed values of various topological
properties in the reference networks

Property Yeast E.Coli
Number of Nodes 3458 1680
Number of Edges 8371 4144
Number of Transcription Factors 286 189
Number of Targets 3172 1491
Activator-Repressor Ratio Not Given 1.113
TF-target Ratio 0.0902 0.1267
Cross-talk Ratio 0.87 0.8344
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profiles of the interactions, which was reported on a much
earlier dataset of Yeast [18]. But as that dataset only cov-
ered less than 10% of the yeast genes, we decided not to
use it for our analysis.

Types of robustness

Closely following prior work, we considered three kinds of
robustness: (1) knockout robustness (against the deletion
of random nodes in the network), (2) parametric robust-
ness (against changes in the strength of interactions), and
(3) initial condition robustness (against changes in the ini-
tial transcription factor concentrations) [2,15,29]. Broadly,
these model (1) mutations that renders a gene/protein
non-functional, (2) mutations that effect the binding
strength of the transcription factors to their targets or
their effectiveness in recruiting RNA polymerase, and
(3) environmental shifts that affect the concentrations
of various proteins, nutrients, and gene transcripts,
respectively.

Synthetic network generation

In order to assess the robustness conferred by a spe-
cific single or combination of topological properties, we
developed methods for generating networks with those
individual or combinations of properties (hereafter, the
target property/properties of the generative method and
its networks). Each generative method was used to pro-
duce a set of 1000 networks (called an ensemble). The spe-
cific values for the target properties of an ensemble were
drawn from their respective reference network: e.g., the
TF cross-talk ensemble for the yeast reference contained
networks that had the same amount of TF cross-talk as
in the yeast reference, but had random topology in all
other respects. Random weights were assigned to inter-
action edges, respecting only the activation-repression
ratio (the ratio between activating and repressing inter-
actions) of the appropriate reference network. Note that
the activation-repression ratio is unknown for the Yeast
network. We determined, however, that the choice of
activation-repression ratio does not effect the relative
ordering of the ensembles based on their robustness and
therefore, does not affect the conclusion of our work (see
Additional file 1: Figure S2), which is consistent with the
finding of Van Dijk et al. in a similar analysis [30]. Thus,
we applied the activation-repression ratio of the E. coli
network to Yeast ensembles as well (our results hold for
other reasonable choices of activation-repression ratio as
well). Finally, in all cases the size of the network (number
of nodes and edges) was set to the size of the reference
network.

As our focus is on determining the robustness conferred
by first-order degree-based features only, we sought to
estimate the level of robustness conferred to the reference
networks by all first-order features, discounting any effect
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of local features (such as motif distribution and local clus-
tering), meso-features such as community structures and
higher-order degree-based features (such as degree assor-
tativity). In order to achieve this, we created a shuffled net-
work ensemble where the edges of the reference network
were switched to remove any local clustering, keeping all
the degree based features invariant. Then we randomly
assigned edge weights and initial expression level of the
genes keeping to construct a shuffled network ensemble.
Networks in the ensemble retain all the first-order degree
based features: the three features described as well as the
indegree-outdegree-combination (the 2-tuple defining the
in and out-degree of a gene) of each gene in the network.
The shuffled network ensemble is the directed equivalent
to the configuration model random graphs [31] and has
been widely used in network randomization literature and
network motif-detection tools [10,32,33].

The dynamics of each network in these ensembles were
simulated using a standard discrete-time, boolean net-
work dynamics model based on [6]. The state of the
network at a given time is the expression state (on/off)
of each gene in the network. We observed that almost all
networks considered reach a steady state (no change of
network state) or a stable oscillatory cycle after a small
number of time steps.

Quantifying and computing robustness

Robustness of a single transcriptional regulatory network
against a specific type of perturbation can be defined
as the the probability that a perturbation of that type
does not alter the final output state reached by the net-
work (assuming a fixed starting state) [2,15]. Thus, for a
given synthetic network and starting state, we compute
its robustness by assessing the fraction of perturbations
that produce a network which reaches the same final state
vector as the unperturbed version. The robustness of an
ensemble (and, thus, the target properties it implements)
against a perturbation type is the average robustness of
all the networks in the ensemble against that perturbation
type.

As the networks in an ensemble can originally reach
either steady state or oscillatory state, we introduced sep-
arate measures of robustness to distinguish these two
cases: steady state retention ratio (SRR) and oscillatory-
state retention ratio (ORR), respectively. SRR (ORR) of
a network originally reaching a steady (oscillatory) state
refers to the fraction of perturbations for which the steady
(oscillatory) state vector remains invariant even after the
perturbation. For a network ensemble and each pertur-
bation type (knockout/parametric/initial condition), we
compute the SRR or ORR values for each network con-
tained in it using 100 different random perturbations
of the same perturbation type applied to each network
within the ensemble. If the network originally reaches a
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steady state, the SRR of the network is the fraction of these
100 perturbations that produce the same unperturbed
steady state vector after perturbation. ORR for a network
against a perturbation type can be computed in a similar
manner for the networks reaching oscillatory states. It is
noteworthy that both SRR and ORR measures of robust-
ness yielded the same results and conclusions presented
in this paper.

The robustness (in terms of SRR and ORR) of differ-
ent ensembles for different perturbations are reported in
Figure 1. Conceptually, we consider each panel to be the
robustness profile for a given perturbation-reference pair.
Each individual bar represents the average SRR (or ORR)
value for all networks in the ensemble reaching a steady
(or oscillatory) state. The error bars report the standard
deviation of the SRR (or ORR) measure for the cor-
responding ensemble. For knockout perturbations, one
node knockout has been considered; for parametric per-
turbation, the weights have been perturbed by 0.05 (1%
of the average edge weight); for initial condition pertur-
bation, 1% of the values in the initial state have been
flipped. Note that we have confirmed that the trends we
report hold for different perturbation amplitudes, differ-
ent ways of implementing the underlying perturbations
and different definition of robustness.

Robustness profiles are conserved across species
Comparing the profiles for each perturbation type across
species, we observe that the overall shape of the profiles
are strongly conserved (e.g., in the knockout profiles in
yeast and E. coli, Figures 1a and d, the height ordering
of the individual properties is the same). To be precise,
96.42% of all binary relative robustness score relationships
are conserved between yeast and E. coli in their SRR pro-
files for knockout robustness (92.85% for ORR profiles).
Conservation of relationships are similarly high for para-
metric robustness (96.42% for SRR and 89.28% for ORR)
and initial condition robustness (92.85% for both SRR and
ORR).

Different types of robustness are induced by different
combinations of properties

Figure 1 reveals that the three types of robustness consid-
ered have quite different robustness profiles, implying that
the effects of different kinds of perturbations are blunted
by different structural features. Overall, all the three fea-
tures considered have a positive impact on knockout and
parametric robustness (Figure 1a, b, d and e); this is not
true of initial condition robustness (Figure 1c and f). This
latter profile is particularly striking since robustness only
significantly improved under the addition of the TF-target
ratio property and the rest of the considered proper-
ties had either minor or detrimental effect on robust-
ness. Also of note is the fact that knockout robustness
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Figure 1 Robustness of different ensembles. The Steady State Retention Ratio (SRR) and Oscillation Retention Ratio (ORR) robustness measures
for various ensembles. Plots a-c represent random ensembles drawn from the yeast reference and d-f represent ensembles drawn from the E. Coli
reference. Each bar represents one ensemble and the height of the bar and associated error bar represent the mean and standard deviation,
respectively, of the observed SRR/ ORR (robustness) values for the ensemble. Despite numerical differences in the robustness values, both yeast and
E.coli results consistently show that the transcription factor-target ratio (TTR) and the Cross-talk ratio (CTR) are the most important determinants of
robustness, whereas the Scale-free exponential distribution (SFE) is a minor robustness inducer.

improved most under the TF-target ratio, whereas para-
metric robustness improved the most when cross-talk was
suppressed. All these results strongly suggest that these
different kinds of robustness are functions of related, but
distinct structural properties.

Transcription factor-target ratio can explain the
robustness effect of scale-free-exponential distribution in
regulatory networks

The scale-free topology has been widely acknowledged
as a major robustness inducing factor in regulatory net-
works [9,16,17]. In particular, the presence of hub nodes
has been characterized as the key feature inducing robust-
ness in such networks. This view was challenged by
Bergman and Siegal [19,20] who demonstrated through
simulation that degree distribution does not have a major
influence on functional properties of networks, includ-
ing robustness upon knockout. Our results indicate that
a major share of the robustness conferred by scale-free-
exponential degree distribution can, in fact, be explained

by the relative scarcity of transcription factors (nodes hav-
ing a non-zero out-degree). Networks not retaining this
small TF-target ratio (TTR) property, but retaining the
scale-free-exponential (SFE) distribution for other nodes
have significantly lower robustness compared to the net-
works retaining both the TTR and SFE property. The
SFE degree distribution does increase knockout and para-
metric robustness significantly (p < 0.001; corrected
for multiple testing) compared to the ER networks, but
it is significantly lower than the corresponding values
observed in the networks retaining the TTR property,
which indicates the SFE property is not sufficient to
explain the robustness observed in the networks. For ini-
tial condition robustness, however, SFE does not increase
or decrease robustness significantly. When the SFE degree
distribution characteristics is added to a network that pre-
serves other properties, we see a insignificant increase
in the knockout robustness. For parametric robustness,
the increase is also insignificant for the E. coli ensemble
that already preserves both the TTR and CTR properties.
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Overall, the SFE degree distribution property does posi-
tively influence robustness to some extent, but its impact
is minor compared to that of cross-talk ratio and the TF-
target ratio. This finding is consistent with previous work
[19,20].

It is worth pointing out that the robustness induction
effect of transcription factor to target ratio (TTR) is hardly
surprising. A system with a relatively small number of
transcription factors will be more robust against ran-
dom knockout of genes simply because such a random
knockout will rarely hit a transcription factor. Similarly,
a random change of initial condition affecting only the
target genes does not have any impact on the final state
reached by the system. However, the novelty of our finding
lies in our demonstration that this property can account
for a substantial portion of knockout and initial condi-
tion robustness that was previously attributed solely to
scale-free-exponential distribution.

Transcription factor-target ratio and suppressed cross-talk
are major contributors to robustness

As described above, the TTR and CTR properties are
major drivers of robustness in the regulatory networks
we studied. For knockout perturbation, both TTR and
CTR significantly (p < 0.001) improve robustness com-
pared to the ER networks. Furthermore, the networks that
retain both these properties induce even greater knock-
out robustness. For parametric perturbations, CTR is a
stronger individual contributor to robustness than TTR
or SFE. The introduction of suppressed CTR to a network
that preserves the TTR or TTR+SFE properties signifi-
cantly (p < 0.001) boosts the robustness (SRR/ ORR)
values for both yeast and E. coli networks. Note that the
magnitude of impact of cross-talk ratio property differs
between the yeast and E.coli references. However, the
residual effect of the CTR on networks preserving TTR
and TTR+SFE properties remain similar. For initial con-
dition robustness, TTR boosts the robustness for both E.
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coli and yeast networks. CTR, on the other hand, signif-
icantly decreases robustness when applied to a network
that preserves other properties.

In order to better understand how robustness changed
in response to TTR and CTR properties, we evaluated
the robustness of networks exhibiting a range of values of
TTR and CTR (Figures 2 and 3, respectively). In Figure 2,
we see that increasing the number of TFs decreases
knockout and initial condition robustness. This trend for
knockout and initial condition robustness is due in large
part to two interrelated factors. First, a system with a rel-
atively small number of transcription factors reduce the
likelihood of a random perturbation hitting a transcrip-
tion factor node, reducing the impact of such perturba-
tion. More generally, further analysis (Figure 4, Additional
file 1: Figures S6, S7) indicates that an increase in the num-
ber of transcription factors increases the overall expres-
sive complexity of the network, quantified by measuring
the number of attractors in the system [6]. In systems
with more attractors, perturbations have a higher prob-
ability of reaching different steady-states, decreasing the
overall robustness of the system. Nonetheless, while the
TTR-complexity-robustness relationship is strong, there
is still high variability in the complexity of networks with
a fixed TTR, suggesting that the connectivity of networks
and the parameter assignments with the same TTR can
significantly influence their individual degree of knockout
robustness. We identify the relationship among complex-
ity, TTR, and robustness as, itself, a rich area for future
work.

In Figure 3, we see that increasing the CTR while
leaving other properties unchanged produces an over-
all decrease of the knockout robustness,a sharp fall for
parametric robustness and interestingly, a dual effect for
initial condition robustness. For low values of CTR, ini-
tial condition robustness is high, which drops off quickly
with moderate CTR values. But for higher values, the
initial condition robustness increases again. In the case
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Figure 2 Effect of the transcription factor abundance on the robustness of E. coli ensembles. The robustness (SRR) values of different networks
are plotted against a wide range of the number of transcription factors (TF). All the plots are for an ensemble of 1000 networks where the number of
transcription factors has been varied retaining the number of nodes and edges of the E.coli reference as constant. SRR values for one node knockout,
o = 0.05and B = 1% for knockout, parametric and initial condition perturbation have been shown. Increasing the number of transcription factors
adversely affects both knockout and initial condition robustness, but does not have a significant effect on parametric robustness.
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Figure 4 Increasing the number of transcription factors increases the complexity and decreases robustness. We trace the steady state
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the trend is stronger for the initial condition robustness.
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of knockout robustness, if the transcription factors are
sparsely connected (i.e. the cross-talk is suppressed) the
effect of the deletion of a TF only directly impacts the
small neighborhood of the TE. These justify the posi-
tive influence of cross-talk suppression over knockout
robustness.

In the case of parametric perturbations, densely inter-
connected transcription factors may amplify a perturba-
tion to an edge weight (there are more neighbor TFs
one step away), while abundance of transcription fac-
tors (TTR) does not directly render the network more or
less susceptible; this explains why CTR is a sole major
influencer over this type of robustness.

Under initial condition perturbation, the values of a sub-
set of nodes are being changed in the initial state. A small
value of CTR means transcription factors tend to drive
genes independently: thus genes are affected by one or a
few TFs, which makes these networks more robust against
small random perturbations to the initial state. On the
other hand, if the transcription factors are highly con-
nected, the effect of changing a gene’s initial state can
be neutralized by the impact of other transcription fac-
tors, which may explain the dual impact of CTR on initial
condition robustness.

It is important to realize, however, that absolute robust-
ness against initial condition perturbation is not desirable
because it produces a system that is unable to implement
complex input/output relationships (in the extreme case,
every input results in the same output). This limits both
expressiveness of the transcriptional system as well as
adaptability and evolvability [34]. Therefore, it is plausible
that suppression of cross-talk is used as a mechanism for
trading off between the initial condition robustness and
the evolvability of the networks. Furthermore, suppres-
sion of cross-talk also gives rise to a modular organization
of the transcription factors which promotes autonomy of
subsystems - another feature of adaptable and evolvable
systems [1,35].

Exact in-out degree combination observed in real
networks reduces parametric robustness

The shuffled network ensemble (rightmost blue bars) pre-
serves all the independently considered first-order degree-
based properties as well as the exact combination of
in-degree and out-degree of the nodes, a property of the
real network which is not preserved in other ensembles
(the in-degree vs. out-degree distribution of the reference
networks are provided in Additional file 1: Figure S5).
As shown in Figure 1(a) and (d), combining the TTR, SFE
and CTR properties accounts for the knockout robustness
of the shuffled ensemble. This indicates that these three
features are sufficient to explain the knockout robust-
ness induced by the global topological features. Further-
more, the in-out degree combination (IOC) does not
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significantly affect knockout robustness. However, IOC
strongly and negatively impacts parametric and initial
condition robustness.

Discussions

This study provides insights into the impact of different
first-order degree-based structural features on transcrip-
tional network robustness. To our knowledge, we are the
first to consider this question. Our work demonstrates
that (i) different types of robustness are implemented by
different topological aspects of the network, (ii) size and
sparsity of the transcription factor subnetwork play an
important role for robustness induction, and (iii) some
degree-based features present in real transcriptional net-
works actually decrease their overall robustness. These
conclusions are validated for a discrete time network
dynamics model that was previously used to model the
dynamics of the budding yeast cell cycle network [6] and
close variants of which have been extensively used in
similar analysis, e.g. [2,15,16,20,35,36].

The different topological bases of robustness

All three different types of robustness considered are bio-
logically important. A transcriptional regulatory network
should be resilient, at least moderately, against removal
of random genes, change in interaction strength due to
environmental or mutational effect and initial concen-
tration variation due to environmental shifts. We show
that these three types of robustness are engendered by
different combination of topological properties and the
impacts of a given topological property on three different
types of robustness are different. This observation sug-
gests that obtaining one kind of robustness may require
a trade-off in terms of another form of robustness. For
example, absolute robustness against initial condition per-
turbation is generally undesirable, for if a network’s output
becomes invariant with the change of input, the system
loses its functional flexibility. On the other hand, every
system should be capable of adapting to small changes
due to knockout perturbation. Therefore, the topologi-
cal features can be evolutionarily tuned to have higher
robustness against knockout maintaining an optimal level
of initial condition robustness. Future investigations may
explore how this trade-off is achieved by evolutionary
constraints that shape the system.

Robustness and sparsity

Prior work has shown that selection favors sparser bio-
logical networks to achieve robustness [36]. Our work
expands on this finding, suggesting that the robustness
in regulatory networks is achieved mainly through a rel-
atively small number of sparsely connected transcrip-
tion factors regulating a much larger set of target genes.
The scale-free-exponential degree distribution property,
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widely marked in literature as a robustness inducer, has
not been identified as the strongest contributor to robust-
ness. Instead, our work shows that a small transcription
factor to target ratio, a feature of these scale free networks,
can explain a major share of the effect that was supposedly
attributed to the scale-free-exponential degree distribu-
tion. A system with a small number of regulators acting
semi-independently (i.e. cross-talk among regulators is
systematically suppressed) is capable of robustly retaining
its mRNA expression. While the finding that increasing
the number of transcription factor induces a decrease in
robustness is rather obvious, the striking aspect of our
finding is the amount of robustness that the real systems
derive from it, as majority of robustness observed in the E.
coli and yeast transcriptional networks can be explained
through maintaining sparsity of the transcription factor
subnetwork and limiting the complexity of the overall
network.

The in-out degree combination diminishes parametric
robustness

Quite surprisingly, our results show that for the para-
metric perturbation, the exact in-out degree correla-
tions present in real transcriptional networks decrease
the robustness of those networks to parametric pertur-
bation. Notably, this is not the case for knockout and
initial condition robustness: in both cases preserving IOC
increases the initial condition robustness compared to all
other ensembles. As our goal in this study was to iden-
tify and quantify the relative contributions of different
degree-based features to transcriptional network robust-
ness, we leave a thorough investigation into the cause
of this correlation for future work. That said, we offer
the following hypothesis that explains a mechanism by
which IOC could plausibly decrease the robustness of a
network.

As the Additional file 1: Figure S5 shows, most of the
hub genes (genes with high out-degree compared to the
most other genes) in the reference transcriptional net-
works have moderate in-degree (ranging from 2 to 5) and
most master-TFs (genes not regulated by any other gene)
have moderate out-degree. To grossly simplify this pic-
ture, we can say that real transcriptional networks contain
a disproportionate number of low-in/high-out and high-
in/low-out nodes. Note that in networks that preserve the
in-degree and out-degree distributions, but not the in-out
degree correlations of real transcriptional networks, the
average out-degree of high in-degree nodes will increase.
In such a situation, more edges will terminate in high
out-degree nodes, raising the probability that an edge per-
turbation directly affects a hub and its large downstream
neighborhood. We consider this hypothesis a promising
starting point for a comprehensive investigation into the
unexpected effect of IOC on network robustness.
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Conclusions

Robustness of biological systems against random muta-
tions and environmental perturbations is a widely
observed phenomenon. In this study, we assess the relative
contribution of first-order degree-based network proper-
ties to the robustness of transcriptional regulatory net-
works. Through extensive simulations, we show that the
scale-free-exponential degree distribution, in itself, is a
minor contributor to transcriptional network robustness.
Much of the effect it exerts can be explained by the relative
abundance of target genes compared to transcription fac-
tor genes in such systems. Moreover, suppression of cross
regulatory edges connecting two transcription factors has
a profound impact on the robustness of the networks
against certain perturbations. These three properties are
sufficient to explain the amount of knockout robustness
a transcriptional network derives from first-order degree-
based properties; interestingly, the in-degree/out-degree
correlations present in real networks account for a non-
trivial portion of the parametric and initial condition
robustness present.

More broadly, our comparative approach to assess-
ing the robustness conferred by individual topological
features and present in reference, real-world networks
enables us to ascertain, for the first time, the extent to
which different topological properties (and their combina-
tions) induce the robustness observed in these real-world
systems. We consider this to be an important and essen-
tial step in better understanding the means by which
robustness is implemented in transcriptional networks.
Our approach may also be applied to the study of robust-
ness in other networks, however they may arise. Thus,
while we have applied our approach to transcriptional net-
works, other domains both within and beyond cellular
biology may benefit from the use of such methods on their
own complex systems.

Methods

Yeast and E.coli reference networks

As reference, real-world transcriptional networks, we
used yeast and E. coli regulatory networks. The E.coli reg-
ulatory network, consisting of 1680 genes and 4144 inter-
actions, was downloaded from the RegulonDB database
(Release: 7.4 Date: March 2012) [24]. The yeast regulatory
network subset was taken from the work of Yu et al. 2006
and consists of 3458 genes and 8371 interactions [25].

In these networks, all nodes correspond to genes. Those
that regulate (have edges to) other genes are transcrip-
tion factors (TF); all others we call targets. In addition,
each interaction in the network is designated as being
either activating (positive) or repressing (negative). It is
important to note that the precise biochemical parameters
for interactions are not known for large biochemical net-
works. As a result, the dynamics of the real and synthetic
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networks were estimated by generating an ensemble of
networks with identical topologies, but parameter values
drawn from a distribution.

Topological features considered
We constructed network ensembles that retained different
properties of the reference networks.

(1) Transcription factor-target ratio

In a TRN, a gene can code for a transcription factor which
regulates other genes. In the network, such genes are sim-
ply considered to be the transcription factors themselves
(since their expression directly results in an increase in
the abundance of the transcription factor). The TF-target
ratio is the ratio of the number of TF-coding genes and the
number of non-TF genes.

(2) Degree distribution

The degree distribution is the allocation of interactions
to nodes over the entire network. We consider the in-
degree and out-degree distributions separately. For the
reference networks, the in-degree distribution follows an
exponential distribution but the out-degree is a power-
law distribution. We refer to this degree distribution as
Scale-Free-Exponential (SFE) degree distribution in the
text.

(3) Cross-talk ratio

This property refers to the ratio between the observed
count of TF-TF interactions to their expected count in
an equal sized random network having an equal number
of TF-coding genes where edges can be formed inde-
pendently between a TF as starting point and any gene
(either TF or non-TF) as ending point. If N and E denote
the number of nodes and edges in a network and N7r
and E7r denote the number of TFs and the number of
edges connecting two TFs respectively, then the Cross-
talk ratio (CTR) will be equal to f[?; / f, which can alter-

, . ki) TF ,
natively be written as ey where (k;,") and (k;,) repre-
sents the average in-degree for TFs and for all the nodes

respectively.

(4) Activation-repression ratio

In a TRN, every interaction (edge) is either activating or
repressing. The activation-repression ratio is the ratio of
the number of activating edges and number of repress-
ing edges. As the activation-repression information was
not reported in the yeast dataset we used, or any other
recent datasets [27,37,38], the E. coli activation-repression
ratio value is used for the yeast ensembles as well. This
property, along with the number of nodes and edges of
the reference network, was retained in all the network
ensembles.
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(5) In-out degree combination

This property refers to the exact combination of in-degree
and out-degree for each of the nodes in a network. For-
mally, for a node #, the in-out degree combination (IOC)
of the node is the two-tuple (k77 , k) where k! and k7,
corresponds to the in and out-degree of the node # respec-
tively. The shuffled network ensemble contained networks
which retained the IOC for each node in the reference
networks.

Random network ensembles

In order to determine how a specific topological property
or a combination of properties influences robustness, we
constructed different network ensembles (1000 networks
per ensemble) that preserve a different set of properties
of the original networks. For each combination of proper-
ties, we developed an algorithm that explicitly constrained
only the value of those properties in the networks pro-
duced. Details for each property and combination consid-
ered are given in the Additional file 1. For each network,
the strength of the interactions (weights) was randomly
assigned from [+£1, +9] keeping the average activation-
repression ratio equal to the activation-repression ratio of
the reference networks.

Model of network dynamics

We employed a network dynamics model that was used
to model the dynamics of the budding yeast cell cycle
network [6]. Providing additional support for this model,
we independently verified that it is capable of generat-
ing oscillatory behavior for the Drosophila circadian clock
network [39]. This model assumes a binary expression
level for the genes, i.e. genes are either expressed (1) or
repressed (0) at any given time. The current state of a gene
depends on the total weighted input from its TFs, i.e. the
expression level of a gene at time ¢ + 1 is dependent on
the output of its TFs at time ¢ and the weight of the TF
interactions on the node. This leads to the use of non-
linear difference equations for modeling the dynamics of
regulatory systems [35].

In a regulatory network, the expression level of gene a
at time £ + 1, y5*1, is a function of the state of the network
at time ¢. We express this as 5™ = f(3,crr(a) Wha - 7})
where TF(a) is the set of TFs for a, i.e. the set of nodes
that have an edge to a. We chose the function f such that
f(x)=1ifx>0,f(x) =0ifx <0,and f(x) =y’ ifx = 0.

Thus, a gene is expressed (y;'! = 1) if the sum of
the weighted inputs from its TFs is positive, and is not
expressed (y;'! = 0) when the sum of the weighted
inputs from its TFs is negative. If the total input is zero,
the gene retains its expression level at the previous time
step.

We added a mechanism for self-degradation in nodes
with no inhibitors. If such a node is active at time ¢, but
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does not have any activating input at that time, then the
node output will be set to zero at time ¢ + 1.

Simulating network dynamics and perturbations

For a given network in an ensemble, we simulate the
dynamics described above starting from a random assign-
ment of on/off nodes, apply the update rules for up to 100
time steps and record the output values at the final step.
If the output of all the nodes remains unchanged for two
consecutive time steps during the simulation, we stop our
simulation, record the output of the nodes, and mark the
parameterized network as having reached a steady state.
If, instead, we find that the network does not reach a sin-
gle steady state, but cycles through a set of consecutive
states, the network is marked as reaching an oscillatory
state.

Perturbations

For knockout perturbations, we randomly delete one or
two nodes from the network; for parametric perturbation,
we randomly add +« from the edge weights; for initial
condition perturbation, we randomly flip the initial states
of a fraction B of the total nodes. For each type of per-
turbation, the dynamics of the networks are simulated on
these perturbed networks and the final output is recorded
and marked as reaching a steady or oscillatory state. The
robustness of a network is its average robustness (in terms
of SRR or ORR) to 100 random perturbations (of the same

type).

Basin of attraction analysis

The purpose of the basin of attraction analysis is to ascer-
tain how the number of transcription factors impacts the
dynamical complexity of the network. We constructed
an ensemble of networks consisting of 1000 networks
preserving the average degree of the E.coli transcrip-
tional network. Then we applied 1000 random initial state
configurations on each of these networks and recorded
the output states the networks converge to. The set of
states where a network can reach through dynamical
simulation defines the attractors of the system and the
number of different initial conditions associated with a
particular attractor state is an estimation of the size of
its basin of attraction of the system. To determine the
impact of network complexity on robustness, we also
computed the knockout and initial condition robust-
ness (in terms of SRR) for each network in the network
ensemble.

Implementation details

The computational work was implemented in Python.
NetworkX was used to load, manipulate, and manage
individual networks and Numpy was integral to the imple-
mentation of the simulator [40,41].
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Endnote

1 By first-order degree-based, we refer to features that
depend primarily on the degree and linking patterns of the
node itself rather than on features that involve analysis of
the linking patterns of two or more nodes, such as degree
assortativity.

Additional file

Additional file 1: Supplementary Information. In the supplementary
information document, we discuss algorithms for generating the synthetic
networks conforming to different random network models that have been
used in our study and include some additional results to support the
claims of our study.
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