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Abstract

Background: It is desirable in genomic studies to select biomarkers that differentiate between normal and diseased
populations based on related data sets from different platforms, including microarray expression and proteomic data.
Most recently developed integration methods focus on correlation analyses between gene and protein expression
profiles. The correlation methods select biomarkers with concordant behavior across two platforms but do not
directly select differentially expressed biomarkers. Other integration methods have been proposed to combine
statistical evidence in terms of ranks and p-values, but they do not account for the dependency relationships among
the data across platforms.

Results: In this paper, we propose an integration method to perform hypothesis testing and biomarkers selection
based on multi-platform data sets observed from normal and diseased populations. The types of test statistics can
vary across the platforms and their marginal distributions can be different. The observed test statistics are aggregated
across different data platforms in a weighted scheme, where the weights take into account different variabilities
possessed by test statistics. The overall decision is based on the empirical distribution of the aggregated statistic
obtained through random permutations.

Conclusion: In both simulation studies and real biological data analyses, our proposed method of multi-platform
integration has better control over false discovery rates and higher positive selection rates than the uncombined
method. The proposed method is also shown to be more powerful than rank aggregation method.

Background
In gene expression experiments, the expression levels of
thousands of genes are simultaneously monitored to study
the underlying biological process. In proteomic data, the
protein levels or protein counts are measured for thou-
sands of genes simultaneously. In addition, there are other
types of genomic data with different sizes, formats and
structures. Each distinct data type, such as gene expres-
sion, protein counts, or single nucleotide polymorphisms,
provide potentially valuable and complementary informa-
tion regarding the involvement of a given gene in a biolog-
ical process. Many biomarkers that play important roles in
biological processes behave differently in treatment versus
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control groups; this phenomenon can be observed consis-
tently across various data platforms. Therefore, integrat-
ing related data sets from different sources is crucial to
correctly identify the significant underlying biomarkers.
Integrative analysis of multiple data types would improve
the identification of biomarkers of clinical end points [1].
However, the integration of data from different sources
poses a number of challenges. First, genomic data come
in a wide variety of data formats. For example, expression
data are recorded as continuous measurements, whereas
proteomic data often consist of discrete counting vari-
ables. One may wish to convert data into a common
format and common dimension, but this is not always
practical or feasible [2]. Second, different data sets are col-
lected under different experimental settings. Therefore,
the distribution of the measurements as well as the qual-
ity of the experiments may vary from data set to data
set. Third, measurements obtained across different data
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platforms could be collected from the same or related
biological samples. Therefore, measurements across dif-
ferent data types could have complicated dependency
relationships.
The practice of combining different data sources to per-

form classification analysis has been considered in the
literature. Efforts to integrate data and improve classifica-
tion accuracy are widely seen in recent studies [3-5]. In
contrast to performing classification on biological sam-
ples, our main objective is to select important biomarkers
for an underlying biological process. Correlation analy-
sis has been proposed to integrate diverse data types and
assimilate them into biological models for the prediction
of cellular behavior and clinical outcome. Tian et al. [6]
performed a correlation analysis of protein and mRNA
expression data using the cosine correlation metric for
comparison. Bussey et al. [7] integrated data on DNA copy
number with gene expression levels and drug sensitivities
in cancer cell lines based on Pearson’s correlation coeffi-
cients. Adourian et al. [8] presented a cross-compartment
correlation network approach to integrate proteomic,
metabolomic, and transcriptomic data for selecting circu-
lating biomarkers; partial pairwise Pearson’s correlations
controlling for treatment group means were calculated.
The markers with concordant RNA and protein expres-
sion were included in the prediction models, while dis-
cordant ones were excluded. However, this approach
might miss some important biological information, such
as protein-protein interactions and protein-gene interac-
tions [9]. Another limitation is that correlation analysis
mainly captures the strength of the correlation among
measurements across different platforms; however, strong
correlation only demonstrates consistent outcome across
different platforms and does not directly translate to sig-
nificant involvement in a biological process. Furthermore,
statistical evidence from complicated data sets, such as
factorial experiments, times series, or longitudinal data,
cannot be summarized.
The problem of how to reliably combine data from

different experiment platforms to identify significant
biomarkers has recently received considerable attention
in the bioinformatics literature. The rank aggregation
method [10] has been proposed for ranking genes by sim-
ilarity to the disease genes in Gene Ontology, pathways,
transcription factor binding sites, and sequence, then
aggregating this rankings to get the final result. Rhodes
et al. [11] combined four independent data sets to iden-
tify genes deregulated in prostate cancer. For each gene in
each data set, a p-value was obtained as an indication of
the probability that the gene was differentially expressed.
P-values for different data sets were subsequently aggre-
gated to provide an overall estimate of the genes’ signif-
icance of being differentially expressed during prostate
cancer. However, combining genes’ ranks in the rank

aggregation approach or p-values in the meta-profiling
method ignores the underlying multivariate distributions
of the ranks or p-values. Furthermore, data quality may
vary across different data sources. The two aggregation
methods detailed above essentially give equal weights to
different data sets. Thus, we propose to combine statisti-
cal evidence across different platforms through summary
statistics instead of raw data. For each experimental plat-
form, we formulate a null hypothesis and construct the
summary test statistic. By randomization, we obtain the
null distribution of the vector of statistics across different
platforms. The test statistics are summarized across dif-
ferent platforms in a weighted scheme, where the weights
take into account different variabilities possessed by the
statistics. The method allows the use of different types
of summary statistics from different platforms, which
gives great flexibility and generality with respect to its
application.
The proposed method is similar in spirit to a meta-

analysis. Both methods combine statistical evidence
across multiple data sets. However, in meta-analysis dif-
ferent data sets are based on the same type of experiments
or observational studies, and therefore the measurements
are the same variables. Across different data sets, the
quality of the data may vary. The goal of meta-analysis
is to fully utilize all the information from different data
sets and construct a weighted estimate of the effect size.
Different weighting schemes are available depending on
the statistical models [12]. On the other hand, data inte-
gration focuses on integrating statistical evidence across
different experimental types. There is no common effect
size to estimate across various data sets. In our proposed
method, we use a weighted average of the test statistics
across different data platforms, but the test statistics are
summaries of evidence towards different sub-hypotheses
rather than summaries of common effect size as in meta-
analysis. The proposed integrationmethod does not check
for differences across the platforms.

Methods
The aim of our multi-platform integration method is to
select a set of significant biomarkers that are involved
in a biological process and thus behave differently in
the treatment group and the control group. In order to
combine statistical evidence across different platforms,
our method requires that analogous hypotheses based
on the features being measured are formulated for each
platform. Each null analogous hypothesis specifies the
unrelatedness of the biomarker in that particular exper-
imental setting, but all of them infer the unrelatedness
of the biomarker to the biological process being investi-
gated. Based on the set of Q analogous hypotheses for Q
data sources, we construct a set of Q corresponding test
statistics for each type of data. The test statistics can be
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different and tailored to the specific experimental settings.
For example, if the microarray experiment has a multi-
factorial design, the appropriate test statistic can be an
F statistic based on an ANOVA test. If the proteomics
experiment generates counting data for diseased versus
normal groups, the appropriate test statistic can be a non-
parametric Wilcoxon rank sum test. A vector of observed
statistics across multi-platforms is obtained. We then ran-
domly permute data across diseased and control groups.
All measurements from different platforms are permuted.
In this way, we obtain an empirical null distribution of the
vector of test statistics. In order to pool the randomized
values of the statistics across the biomarkers to form the
empirical null distribution, we assume data from different
biomarkers are independent or have an exchangeable cor-
relation structure. For the validity of the randomization
procedure, we assume an exchangeable covariance struc-
ture for the measurements within each platform. Finally,
we construct a weighted sum of the test statistics across
different platforms with the weights being the inverse
of the empirical standard deviation of each statistic. We
determine a set of significant biomarkers based on the
aggregated test statistic.
In the following, we demonstrate our method by inte-

grating microarray expression data and proteomic data as
an example. We consider two experiments, the first hav-
ing microarray expression data measured on l1 diseased
samples and l2 control samples and the second having
proteomic data measured on m1 diseases samples and
m2 control samples. The objective is to find biomarkers
significantly involved in disease development.

Step 1): Define two analogous null hypotheses. For
microarray data, the null hypothesis would be H01 :
the gene’s mRNA level is the same in diseased and
normal populations; for proteomic data, the null
hypothesis would be H02 : the protein level is the
same in diseased and normal populations.
Step 2): Based on the hypotheses, construct two test
statistics, tm and tp, tailored to each type of data.
Consequently, we obtain a vector of two observed
statistics (tm, tp)′ across two data platforms. The test
statistics can be of any type as long as they
summarize information from the data and can be
used to assess the statistical significance of the data
toward the hypotheses. Let x1 = (x11, . . . , x1l1)′
denote the l1 gene expression measurements in the
disease group, x2 = (x21, . . . , x2l2)′ denote the l2 gene
expression measurements in the control group,
x1 = ∑l1

j=1 x1j/l1, and x2 = ∑l2
j=1 x2j/l2. Similarly,

y1 = (y11, . . . , y1m1)
′ denotes them1 protein

measurements in the disease group and
y2 = (y21, . . . , y2m2)

′ denotes them2 protein
measurements in the control group,

y1 = ∑m1
j=1 y1j/m1, and y2 = ∑m2

j=1 y2j/m2. For
illustration purpose, we adopt Student’s t-statistic for
each of the data:

tm = x2 − x1√
s2(x1)
l1 + s2(x2)

l2

,

and

tp = y2 − y1√
s2(y1)
m1

+ s2(y2)
m2

,

where s2 denotes the sample variance. The test
statistics should be formulated so that a larger test
statistic in the positive direction indicates more
evidence towards the alternative hypotheses. For
example, if Student’s t-statistic is used, then a
one-sided alternative hypothesis corresponds to a
one-sided t-statistic, whereas the two-sided
alternative leads to the absolute value of the
t-statistic. Consider n genes being measured in the
experiments and we obtain n vectors of test statistics
(tmi, tpi)′, i = 1, . . . , n, from the data sets.
Step 3): The samples are randomly permuted across
diseased and control groups. If the same sample is
being measured across different platforms, all the
measurements from the different platform are
permuted simultaneously. The simultaneous
permutation preserves the dependency relationship
among the measurements from different platforms.
Based on random permutation, we obtain an
empirical null distribution of the vector (tm, tp)′.
Step 4): The aggregated test statistic will be:

tA = tm
σ̂1

+ tp
σ̂2

,

where σ̂1 and σ̂2 are the estimated standard
deviations of tm and tp based on the empirical null
distribution, and tm and tp are the observed
t-statistics or the absolute values of the t-statistics
based on the direction of the alternative hypotheses.
At significance level α, we choose a threshold Cα ,
such that PH01∩H02(tA > Cα) = α. Specifically, Cα is
the 100(1 − α)% percentile of tA, which can be
obtained from the empirical null distribution.
Construct a decision line that separates selected
significant biomarkers and nonsignificant
biomarkers. The resulting separation line is:

tm
σ̂1

+ tp
σ̂2

= Cα .

All the biomarkers with (tm, tp) above the separation
line will be declared as significantly involved in the
disease development.
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In the more general case, suppose we have Q data plat-
forms with the observed test statistics (t1, . . . , tQ)′. From
random permutation, we obtain the joint empirical distri-
bution of this vector of test statistics under the global null
hypothesis. Let σ̂ 2

1 , . . . , σ̂
2
Q denote the estimated variance

of the individual test statistics.The aggregated test statistic
takes the form:

tA =
Q∑
i=1

ti
σ̂i
.

The resulting critical region will take the form:
t1
σ̂1

+ .... + tQ
σ̂Q

> Cα ,

where Cα is the 100(1 − α)% percentile of tA. Any
biomarker with tA > Cα will be selected as behaving
significantly differently between the diseased group and
control group.
Our method aggregates actual values of the test statis-

tics across different data platforms, which preserves more
information compared to the rank aggregation method.
Moreover, our method assigns different weights to each
data set according to the variability of the test statis-
tics: larger the variation in the test statistic, the smaller
the weight assigned to it, and vice versa. The threshold
Cα is determined based on the empirical null distribu-
tion of the aggregated test statistics, which implicitly takes
into account the dependency relationships among the
test statistics. Furthermore, our method can deal with
different data types and formats generated by various
experimental settings.
There are two major ways to perform the multiplicity

adjustment. The first is the Bonferroni correction. If we
wish to control the familywise type I error rate at α∗, then
the individual level α = α∗/n, where n is the total number
of biomarkers. When n is large, the Bonferroni correction
leads to very stringent tests with α being very small. Alter-
natively, we can control the number of false discoveries.
To set the number of false discoveries to be equal to or less
than f, then α = f /(nπ̂), where π̂ is the estimated propor-
tion of non-differentially expressed biomarkers. If there is
no π̂ available, we use π̂ = 1 and that gives a conservative
value for α.
Different platforms can be used to test different sub-

hypothesis. All of these sub-hypotheses should be con-
cordant in supporting the overall biological hypothesis.
For example, the involvement of a gene in disease devel-
opment can be supported by both mRNA expression
level changes and proteomic level changes. In most cases,
changes in measurements from different platforms are
expected to occur in the same direction. However, our
method is also applicable even if the changes are in differ-
ent directions, as long as the statistical evidence from both
sources can be combined. For example, consider H10 :

mRNA is increasing in normal group;H20: antibody count
is decreasing in normal group. Even though the actual
measurements from two platforms are negatively corre-
lated, we can construct the test statistics t1 and t2 so that
the positive value of the statistics supports the alternative
hypotheses and the weighted average can be used as com-
bined evidence of the involvement of the biomarker in the
process.

Results
Results on simulated data
In this section, we examine the performance of our pro-
posed method by examining its positive selection rates
and false discovery rates under various testing scenarios.
We simulate data sets from Q different platforms. The
number Q is set to be either 2 or 5. For the qth exper-
iment, the data set is denoted as Xq. For each data set,
we assume that n different biomarkers are measured,
Xq = (X′

q1, . . . ,X′
qn)

′. For the ith biomarker, Xqi =
(X′

qi1,X′
qi2)

′, where Xqi1 denotes data from the control
group with mean μqi1 and Xqi2 denotes data from the
diseased group with mean μqi2. The total number of
biomarkers is set to be n = 1000. Among the n biomark-
ers, let g denote the number of biomarkers that are related
to the biological process of interest, i.e. μqi1 �= μqi2.
The number g of differentially expressed (DE) biomark-
ers is set to be 200. The number of measurements for
each biomarker obtained from each platform is set to be
10, in which 5 are from the control group and the other
5 are from the disease group. We also consider different
effect sizes. For continuous data, we generate Xqi ∼MVN(
(μ′

qi1,μ′
qi2)

′, �), where � has an exchangeable correlation
structure with correlation ρ. The correlation ρ is set to
be either 0 or 0.5. For differentially expressed markers,
μqi1 = 0 × 1m, μqi2 = e × 1m, where e is the effect size
andm = 5 is number of measurements. Discrete data Xqi
is generated from a Poisson(λ) distribution, where λqi1 =
μqi1 for the control group and μqi2 = μqi1 + e for the
diseased group. The g differentially expressed markers are
divided into two groups with g1 = 100 and g2 = 100. Each
group is assigned a different effect size e. For each plat-
form, the alternative hypothesis can be either left-sided,
right-sided or two-sided. The number of permutation is
100. All of the permuted values from the n biomarkers are
pooled together to form the empirical null distribution.
The results are summarized for 100 simulated data sets.
To compare our multi-platform integration method

with the individual platform analysis method, the posi-
tive selection rate (PSR) and false discovery rate (FDR) are
calculated to assess the performance of each method for
selecting the differentially expressed biomarkers:

PSR = # of correctly identified DE biomarkers
# of DE biomarkers



Wu et al. BMC Bioinformatics 2012, 13:320 Page 5 of 12
http://www.biomedcentral.com/1471-2105/13/320

and

FDR = # of falsely identified DE biomarkers
# of identified DE biomarkers

Tables 1, 2, and 3 provide detailed simulation settings
and results at the α = 0.05 significance level. From the
results, we can see that our multi-platform integration
method has the highest PSR and the lowest FDR with the
smallest variance compared to all other individual plat-
form analyses in all scenarios. In addition, such advantage
is consistently observed regardless of whether or not there
is correlation among the measurements obtained for each
biomarkers. Table 1 summarizes the results for the inte-
grative analysis based on two different platforms. Given
different effect sizes, different sided alternatives, and dif-
ferent correlations, the increase in PSR is consistently
about 40% and the decrease in FDR is about 30% com-
pared to the results from individual platforms. Table 2
summarizes the results for the integrative analysis based
on five different platforms. Given different simulation sce-
narios, the increase in PSR formost cases is about 60% and
the decrease in FDR is about 40% compared to the results
from individual platforms. This shows that by integrat-
ing more data from different sources, we are improving
the sensitivity and selectivity of the proposed method.
Table 3 summarizes the results for the integrative analysis
based on two different platforms, where the first consists
of continuous data and the second consists of discrete
data. Similar to the setting with two continuous data sets,
the increase in PSR is about 40% and the decrease in
FDR is about 30% compared to the results from individual
platforms.
Figure 1 demonstrates decision lines from differ-

ent methods. The plot is constructed based on the
results from one simulated data set and contains three
decision lines: the vertical line using data from the
first individual platform, the horizontal line using data
from the second individual platform, and the dashed
line based on our multi-platform integration method.
Our decision line provides a greatly improved separa-
tion of the differentially and non-differentially expressed
biomarkers. Moreover, the individual platform analysis
misidentifies some of the data points compared to our
method.
As we examine a large number of biomarkers, we need

to investigate the control of the false discovery rate of
the proposed method with regards to multiple hypoth-
esis testing [13]. Given a fixed cut-off value of α, we
obtain the realized false discovery rate FDR = (FP)/(T̂P)
and its estimates ˆFDR = (F̂P)/( ˆTP), where FP denotes the
number of false positive biomarkers, F̂P = nπα is the esti-
mated number of false positive biomarkers, T̂P is the total
number of biomarkers claimed as positive, π is the pro-
portion of non-differentially expressed genes, and π̂ is its

estimator. We can control the estimated number of false
positive discoveries by selecting the significance level of
the approaches. We expect that the estimated F̂P should
be close to the true FP; the ˆFDR should be close to the true
FDR as well. Under the simulation setting of scenario 2
left-sided case in Table 1, the control of the false discovery
rate of our proposed method under different significance
levels is examined and presented in Table 4. With π = 0.8
and α = 0.005, F̂P is aimed to be controlled at 4. On aver-
age, our method produces 3.84 false positives, whereas
the first and second individual platform analyses has 4.65
and 5.00 false positives, respectively. The corresponding
average ˆFDR of our method is 0.0225, which is close to
the true FDR of 0.0214. This demonstrates the integra-
tive analysis yields satisfactory control of false discovery
rate, which is improved compared to individual platform
analyses.

Results on real data
In this section, we apply our method to data from a
study of growth and stationary phase adaption in Strepto-
myces coelicolor provided by Jayapal et al. [16]. The data
set contains both isobaric stable isotope labeled peptide
(iTRAQTM)-derived shotgun proteomic data and DNA
microarray transcriptome data. To study different growth
stages of S. coelicolorM145 cells, eight time point cell sam-
ples (7, 11, 14, 16, 22, 26, 34, and 38 h) were collected.
Because the iTRQATM system can only analyze four dis-
tinct samples in a single experiment, the eight protein
samples were distributed across three runs of mass spec-
trometric (MS) analysis, The protein sample from 11 h
was run in three MS experiments, so it serves as a ref-
erence. Therefore, protein abundance ratios rij/11hr,k were
obtained from experimental run k for protein i in sample
jhr with respect to the 11 h reference. Protein identifi-
cation and quantification were carried out by comparing
the raw spectral data against a theoretical proteome of S.
coelicolor using proteinPilotTM software and the inbuilt
ParagonTM search engine. Only proteins identified with
≥ 99% confidence were considered for further analysis.
Finally, all identified proteins were further processed to
yield a protein abundance ratio with respect to the first
time point (7 h) sample using rij/7hr = rij/11hr/r

i
7hr/11hr .

Ultimately, only 886 proteins identified in the 7 h sample
could be used for our analysis.
For microarray data, total mRNA from the same

eight time point samples were isolated and a spotted
DNA microarray experiment was conducted. Hybridiza-
tion was performed using genomic DNA (gDNA) as a
reference. The mRNA abundance was obtained using
log2[cDNA/gDNA]. To be consistent with the protein
data, mRNA abundance data from different samples were
processed to calculate log2[cDNAi/cDNA7hr] for each
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sample with respect to the first time point sample. Only
gene expression values with protein values (894 genes)
were analyzed. To deal with missing values, we deleted
genes that had no values for mRNA at all or had at least
five missing values in the protein data set. The rest of the

missing values for genes were imputed by using R package
MICE. In total, the number of genes suitable for the sub-
sequent integrative analysis was 886. Based on the growth
curve, time points were divided into two groups; those
from 7, 11, 14 and 16 h represented the growth phase and

Table 1 The simulation settings and results for two platforms with continuous data

Methods

Multi-platform 1st individual 2nd individual

Scenario 1: ρ = 0; g = g1 + g2 = 200

Right-side Experiment1: e = 0.5 for g1 = 100; e = 2 for g2 = 100

Experiment2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

PSRMean 0.7895 0.5372 0.5588

PSR Var 0.0007 0.0007 0.0010

FDRMean 0.1907 0.2680 0.2600

FDR Var 0.0007 0.0013 0.0009

Left-side Experiment1: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Experiment2: e = -1.5 for g1 = 100; e = -1 for g2 = 100

PSRMean 0.7908 0.5330 0.5556

PSR Var 0.0006 0.0006 0.0012

FDRMean 0.1891 0.2673 0.2649

FDR Var 0.0006 0.0009 0.0011

Two-sided Experiment1: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Experiment2: e = 2 for g1 = 100; e = -1 for g2 = 100

PSRMean 0.6988 0.4113 0.5403

PSR Var 0.0011 0.0011 0.0010

FDRMean 0.2145 0.3202 0.2694

FDR Var 0.0007 0.0016 0.0012

Scenario 2: ρ = 0.5; g = g1 + g2 = 200

Right-side Experiment1: e = 0.5 for g1 = 100; e = 2 for g2 = 100

Experiment2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

PSRMean 0.9405 0.6319 0.7819

PSR Var 0.0003 0.0005 0.0007

FDRMean 0.1560 0.2410 0.2051

FDR Var 0.0005 0.0009 0.0007

Left-side Experiment1: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Experiment2: e = -1.5 for g1 = 100; e = -1 for g2 = 100

PSRMean 0.9400 0.6316 0.7871

PSR Var 0.0002 0.0004 0.0006

FDRMean 0.1605 0.2419 0.2024

FDR Var 0.0005 0.0007 0.0006

Two-sided Experiment1: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Experiment2: e = 2 for g1 = 100; e = -1 for g2 = 100

PSRMean 0.9377 0.6670 0.7327

PSR Var 0.0003 0.0010 0.0007

FDRMean 0.1622 0.2270 0.2122

FDR Var 0.0005 0.0009 0.0007
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Table 2 The simulation settings and results for five platforms with continuous data

Method Multi-plat 1st ind. 2nd ind. 3rd ind. 4th ind. 5th ind.

Scenario 1: ρ = 0; g = g1 + g2 = 200

Exp1: e = 1.5 for g = 200

Exp2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

Exp3: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Exp4: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Exp5: e = 2 for g1 = 100; e = -1 for g2 = 100

PSR Mean 0.9517 0.5601 0.4130 0.4464 0.4213 0.4471

PSR Var 0.0002 0.0012 0.0011 0.0004 0.0010 0.0005

FDR Mean 0.1572 0.2605 0.3299 0.3108 0.3205 0.2727

FDR Var 0.0004 0.0011 0.0018 0.0009 0.0010 0.0010

Scenario 2: ρ = 0.5; g = g1 + g2 = 200

Exp1: e = 1.5 for g = 200

Exp2: e = 1.5 for g1 = 100; e = 1 for g2 = 100

Exp3: e = -0.5 for g1 = 100; e = -2 for g2 = 100

Exp4: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Exp5: e = 2 for g1 = 100; e = -1 for g2 = 100

PSR Mean 0.9998 0.8360 0.6655 0.5682 0.6712 0.5699

PSR Var 2.7e-06 0.0006 0.0010 0.0004 0.0010 0.0008

FDR Mean 0.1281 0.1898 0.2217 0.2593 0.2314 0.2093

FDR Var 0.0004 0.0006 0.0009 0.0007 0.0007 0.0008

those from 22, 26, 34 and 38 h represented the stationary
phase.
The objective of our analysis is now to select the

biomarkers that are differentially expressed between the
two phases. We apply our multi-platform integration
method to identify differentially expressed biomarkers.
For the mRNA data, we formulate the null hypothesis as
H0: the mRNA expression level is the same between the
two phases. Similarly, for protein data, the null hypothesis
is formulated asH0 : the protein ratio is the same between
the two phases. For both mRNA data and protein data,
two-sided alternatives are considered in the analysis. For
each platform, we use Student’s t-statistics to summarize

the statistical evidence, which are denoted as tm and tp.
To obtain the multivariate null distribution, 100 permu-
tations are conducted. The overall correlation between tm
and tp is 0.2787. The variances of tm and tp are 3.0489
and 3.6411, respectively. Based on the decision line con-
structed at the significance level α = 0.05, our method
detects 172 differential expressed genes with an estimated
F̂P equal to 44. Individual analysis on the mRNA data and
the protein data detects 137 and 143 genes, respectively.
Figure 2 depicts the decision lines for all three compara-
tive analyses: the vertical lines using the mRNA data, the
horizontal lines using the protein data, and the dashed
lines using our multi-platform integration method.

Table 3 The simulation settings and results for two platforms with continuous data and discrete data

Methods

Multi-platform 1st individual 2nd individual

Experiment1: Continues; ρ = 0; e = 0.5 for g1 = 100; e = 2 for g2 = 100

Experiment2: Discrete; μqn1 = 5, e = 3 for g = 200

PSRMean 0.7356 0.5327 0.5228

PSR Var 0.0008 0.0004 0.0012

FDRMean 0.1967 0.2702 0.2763

FDR Var 0.0008 0.0012 0.0012
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Figure 1 Decision lines for comparing methods. Vertical lines use data from the first individual platform, horizontal lines use data from the
second individual platform, and dashed lines use our multi-platform integration method. Circles represent non-differentially expressed biomarkers
and triangles represent differentially expressed biomarkers. Plots are based on one simulated data set and 100 permutations.
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Table 4 True positives and false discovery rates with
π = 0.8

Methods α 0.05 0.01 0.005

F̂P 40 8 4

multi-platform T̂P 224 165 143

(std) 6.5547 6.0820 5.5202

FP 44.8125 8.0250 3.8375

(std) 7.3348 3.4778 2.263

FDR 0.1563 0.0386 0.0214

(std) 0.0219 0.0161 0.0125

ˆFDR 0.1428 0.0388 0.0225

(std) 0.0041 0.0014 0.0009

1st individual T̂P 165 107 91

(std) 8.8797 5.3066 4.9031

FP 50.5125 9.9000 4.6500

(std) 8.9101 3.4982 2.1766

FDR 0.2431 0.0736 0.0406

(std) 0.0326 0.0246 0.0183

ˆFDR 0.1940 0.0600 0.0353

(std) 0.0103 0.0030 0.0019

2nd individual T̂P 197 106 79

(std) 7.2442 8.2303 6.3222

FP 48.9250 9.6000 5.000

(std) 7.1862 3.5750 2.5376

FDR 0.1986 0.0721 0.0506

(std) 0.0245 0.0258 0.0251

ˆFDR 0.1630 0.0607 0.0408

(std) 0.0060 0.0048 0.0033

Nine differentially expressed genes are identified by our
method but not by the other two methods. Among these,
we identify biosynthetic enzymes (SCO5080 actVA5,
SCO5072 actVIORFI) involved in actinorhodin produc-
tion. These genes are up-regulated only at late stages of
the culture and produce antibiotics during the stationary
phase. Expression of two genes encoding malate oxidore-
ductase (SCO2951) and translation elongation factor G
(SCO4661) have been found to be depressed during the
stationary phase compared with the growth phase [17].
Table 5 summarizes the nine genes and the associated
literature confirmations [16-21].

Discussion
An ongoing problem in proteomics is that extremely small
sample sizes often occur, largely due to biological reasons.
To investigate the performance of our method in such
situations, we consider a case for each platform wherein
the control and the diseased groups each have only two

measurements. Our method is applied and the simula-
tion results shown in Table 6, scenario 1. Due to the
small sample size, the positive selection rate is rather low
and the false discovery rate rather high. Nevertheless, the
combined method still outperforms the single platform
method.
We also consider the situation in which data on the

same biomarker from n platforms have a multivariate
distribution and the data from the diseased group are
independent of those from the control group. The new
simulation results are summarized in Table 6, scenario 2.
The correlation between the platforms is set to 0.5, and
the other parameters are the same as in Table 1, scenario
1, right-sided test. Due to the high correlation among the
platforms, the gain in power of the aggregated method
is less pronounced than that of the independence case.
This is because different platforms contribute overlapping
information when they are highly correlated.
The proposed method allows different ways of con-

structing tm and tp as long as they provide summarized
statistical evidence for that platform. The Student’s t-
statistic is adopted in the paper simply for illustration
purpose. Alternatively, we can simply use the unstandard-
ized differences: tm = x1 − x2, and tp = y1 − y2. Then
we proceed with the randomization, obtain the estimated
variances for tm and tp and form a weighted linear sum
statistic. To compare the empirical performance of the
standardized versus unstandardized versions, we conduct

50−5
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−
5

mRNA

P
ro
te
in

Figure 2 Decision lines for real data. Vertical lines use the mRNA
data, horizontal lines use the protein data, and dashed lines use our
multi-platform integration method.
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simulations under the setting 1 of Table 1 with right-sided
test. The results are summarized in Table 6, scenario 3.
The two versions have comparable performance in terms
of PSR and FDR. The unstandardized version of tm and tp
has a slightly higher PSR and a slightly lower FDR.
An alternative way of combining test statistics across

different platforms is to form a multivariate quadratic
statistic. Given two platforms, for example, we consider an
alternative test statistic

tQ = (tm, tp)′�̂−1(tm, tp),

where �̂ is the estimated covariance matrix of the vec-
tor (tm, tp) obtained from the empirical null distribution.
Such multivariate statistic can be used to test the over-
all null hypothesis against two-sided alternatives, while
the weighted linear statistic that we propose can be used
to test one-sided alternatives or two-sided alternatives.
Thus, our method is more broadly applicable. We fur-
ther conduct simulations to compare the multivariate
quadratic formwith our proposed weighted linear statistic
for two-sided tests under the setting of scenario 2, Table 1,

with results included in Table 7. For two-sided alterna-
tives, the quadratic statistic has very similar performance
to our proposed weighted linear statistic, with a slightly
lower PSR and a slightly higher FDR.
Finally, we compare our method with the existing robust

rank aggregation method [14] with results included in
Table 8. The inference from rank aggregation method is
based on the ranks of the test statistics. The ranking can
in some degree reflect the significance of the test statistics.
But the position of the rank does not always translate into
the relatedness of the biomarker to the underlying bio-
logical mechanism. The rank aggregation method assigns
p-values of the observed ranks under the null hypothesis
that the normalized ranks of all biomarkers are uniformly
distributed. But this is a null hypothesis which can corre-
spond to two totally different situations: all the biomarkers
are not related to the biological process or all of them are
related with equal effect size. This evaluation of p-values
under such global null hypothesis has two implications.
First of all, if all the biomarkers are related to the biological
process with equal or similar effect sizes, the observed

Table 5 SCO Summaries for the 9 genes which are identified bymulti-platform integrationmethod but not by individual
platform analysis

SCO Sanger Sanger Sanger Sanger TIGR Related

abbreviation annotation category subcategory category paper*

SCO1958 uvrA ABC excision Macromolecule DNA-replication, excinuclease ABC, [17]

nuclease subunit A metabolism repair, restr./modific’n A subunit [17]

SCO2940 other putative Not classified Not classified xanthine

oxidoreductase (included putative (included putative dehydrogenase,

assignments) assignments) putative

SCO2951 other putative malate Central intermediary Other central malate [16,17,19]

oxidoreductase metabolisms intermediary metabolism oxidoreductase

SCO3094 other conserved hypothetical Conserved in conserved

hypothetical protein organism other than hypothetical

protein protein Escherichia coli protein

SCO4661 fusA elongation Macromolecule Proteins - translation [16,17,19]

factor G metabolism translation and elongation

modification factor G

SCO5072 actVIORF1 hydroxylacyl-CoA Secondary PKS hydroxylacyl-CoA [16,17,20]

dehydrogenase metabolism PKS dehydrogenase

SCO5080 actVA5 putative Secondary PKS putative [17,18]

hydrolase metabolism PKS hydrolase

SCO6219 Other putative ATP/GTP Protein Serine/ [17]

binding protein, kinases threonine

putative serine

SCO6222 other putative Not classified Not classified aminotransferase, [15,17]

aminotransferase (included putative (included putative class I

assignments) assignments)
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Table 6 Additional simulations

Method Multi-plat 1st ind. 2nd ind.

Scenario 1: Extremely small sample size

two measurements from each group

PSRMean 0.3022 0.2363 0.2179

PSR Var 0.0009 0.0006 0.0007

FDRMean 0.3782 0.4436 0.4694

FDR Var 0.0023 0.0025 0.0027

Scenario 2: Correlation among platforms set to 0.5

Disease and normal groups are independent

PSRMean 0.6689 0.5365 0.5578

PSR Var 0.0009 0.0008 0.0011

FDRMean 0.2255 0.2690 0.2641

FDR Var 0.0008 0.0010 0.0010

Scenario 3: Non-standardized version of tm and tp

i.e. tm = x2 − x1, tp = y2 − y1

PSRMean 0.8142 0.5479 0.5992

PSR Var 0.0009 0.0005 0.0010

FDRMean 0.1586 0.2358 0.2235

FDR Var 0.0006 0.0011 0.0010

ranks will appear non-informative and thus the method
will have little power to detect them. Secondly, the p-value
of each observed rank is calculated under the global null
hypothesis. Thus, the rank aggregation has a correct error
control under the global null hypothesis but has no correct

Table 7 Comparison with the quadratic test statistic tQ

Method Multi-plat Quadratic

PSRMean 0.9377 0.9155

PSR Var 0.0003 0.0004

FDRMean 0.1622 0.1804

FDR Var 0.0005 0.0005

Quadratic: Exp1: e = -1 for g1 = 100; e = 1.5 for g2 = 100

Exp2: e = 2 for g1 = 100; e = -1 for g2 = 100

error control under other configurations of the individual
hypotheses. In other words, it lack the strong control of
the error rate under different configurations of the indi-
vidual hypothesis [15]. On the other hand, our method
assigns p-values under the individual null hypotheses and
thus have a strong control of the error rate. This means
our method’s actual false discovery rate and estimated
false discovery rate will be in good agreement no mat-
ter how many of the genes belong to the null situation
and how many belong to the alternative situation. While
in contrast, the rank aggregation will tend to be very
conservative if there are many biomarkers belonging to
the alternative situation. To demonstrate this, we choose
the number of significant markers ranging from 100, 200
to 400. It is shown in Table 8 that the rank aggrega-
tion behaves very conservatively in the presence of large
number of significant markers. For instance, with five
platforms and 200 significant biomarkers, our proposed

Table 8 Comparison with Robust Rank AggregationMethod

Setting: Method Multi-plat RRA

1. ρ = 0.5; g = g1 + g2 = 100

Exp1: e = 1.5 for g = 200 PSRMean 1.000 0.7497

Exp2: e = 1.5 for g1 = 100; e = 1 for g2 = 100 PSR Var 1.98e-6 0.0012

Exp3: e = -0.5 for g1 = 100; e = -2 for g2 = 100 FDRMean 0.2803 0.0912

Exp4: e = -1 for g1 = 100; e = 1.5 for g2 = 100 FDR Var 0.0011 0.0003

Exp5: e = 2 for g1 = 100; e = -1 for g2 = 100

2. ρ = 0.5; g = g1 + g2 = 200

Exp1: e = 1.5 for g = 100 PSRMean 0.9995 0.4995

Exp2: e = 1.5 for g1 = 50; e = 1 for g2 = 50 PSR Var 0.23e-06 0.0008

Exp3: e = -0.5 for g1 = 50; e = -2 for g2 = 50 FDRMean 0.1399 0.0823

Exp4: e = -1 for g1 = 50; e = 1.5 for g2 = 50 FDR Var 0.0004 0.0004

Exp5: e = 2 for g1 = 50; e = -1 for g2 = 50

3. ρ = 0.5; g = g1 + g2 = 400

Exp1: e = 1.5 for g = 100 PSRMean 0.9992 0.1133

Exp2: e = 1.5 for g1 = 50; e = 1 for g2 = 50 PSR Var 2.23e-6 0.0002

Exp3: e = -0.5 for g1 = 50; e = -2 for g2 = 50 FDRMean 0.0402 0.0796

Exp4: e = -1 for g1 = 50; e = 1.5 for g2 = 50 FDR Var 0.0001 0.0015

Exp5: e = 2 for g1 = 50; e = -1 for g2 = 50
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method has a PSR of 0.9995 and a FDR of 0.1399, while
the competing rank aggregationmethod has a much lower
PSR of 0.4995 and FDR of 0.0823. This comparison further
demonstrates the advantage of the proposed method.

Conclusion
With the advent of various types of genomic technolo-
gies, it is imperative to develop a method that can inte-
grate different types of genomic data to solve biological
questions. We develop a general framework for data inte-
gration across multiple data platforms. For each data
set, a test statistic is formed to summarize the statistic
evidence toward the specific null hypothesis tailored to
the data platform. The types of test statistics can vary
and their marginal distributions can be different. The
observed test statistics can then be aggregated across dif-
ferent data platforms. The overall decision is based on the
empirical distribution of the aggregated statistic obtained
through random permutations. Our method can accom-
modate different experimental designs and various data
types across platforms.
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