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Grading amino acid properties increased
accuracies of single point mutation on protein
stability prediction
Jianguo Liu† and Xianjiang Kang*†

Abstract

Background: Protein stabilities can be affected sometimes by point mutations introduced to the protein. Current
sequence-information-based protein stability prediction encoding schemes of machine learning approaches include
sparse encoding and amino acid property encoding. Property encoding schemes employ physical-chemical
information of the mutated protein environments, however, they produce complexity in the mean time when
many properties joined in the scheme. The complexity introduces noises that affect machine learning algorithm
accuracies. In order to overcome the problem we described a new encoding scheme that graded twenty amino
acids into groups according to their specific property values.

Results: We employed three predefined values, 0.1, 0.5, and 0.9 to represent ‘weak’, ‘middle’, and ‘strong’ groups
for each amino acid property, and introduced two thresholds for each property to split twenty amino acids into
one of the three groups according to their property values. Each amino acid can take only one out of three
predefined values rather than twenty different values for each property. The complexity and noises in the
encoding schemes were reduced in this way. More than 7% average accuracy improvement was found in the
graded amino acid property encoding schemes by 20-fold cross validation. The overall accuracy of our method is
more than 72% when performed on the independent test sets starting from sequence information with three-state
prediction definitions.

Conclusions: Grading numeric values of amino acid property can reduce the noises and complexity of input
information. It is in accordance with biochemical concepts for amino acid properties and makes the input data
simplified in the mean time. The idea of graded property encoding schemes may be applied to protein related
predictions with machine learning approaches.

Background
Protein thermodynamic stability change upon single
point mutations is a crucial problem that affects most
protein engineering and molecular biology researches.
Significant numbers of different prediction methods
have been developed to predict the protein stability free
energy change (ΔΔG) in last decades. While energy
function-based approaches and statistical analysis were
employed to compute the stability free energy change
[1-14], machine learning approaches attracted more
attention for increasing number of available

experimental thermodynamic data in the ProTherm
database [15-21]. Given the tertiary structure available,
structure information based approaches generally per-
formed better than sequence information based
approaches in machine learning approaches [19]. The
number of known protein structures, however, is less
than one percent (0.45%) of the number of known pro-
tein sequences. Current UniProtKB/TrEMBL Release,
2011_08 of 27-Jul-2011, contained 16,504,022 entries of
protein sequences while there were only 75,105 struc-
tures in PDB till 5 p.m., Tuesday Aug 09, 2011. Most of
the available information about proteins is still restricted
in their sequence information. Sequence-based protein
stability prediction methods attracted more research
interests [1-7,15-19].
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Sequence-based protein stability prediction methods
usually captured the mutation site environments with slid-
ing window strategy with fixed length of the protein
sequence that centred on the target residue. The encoding
schemes of the sliding window strategy can be grouped
into two categories. The first is the sparse encoding
schemes that represent each amino acid with twenty dis-
tinct input units [16-19]. The second is the amino acid
property encoding schemes, which integrate the physical-
chemical properties of amino acids into machine learning
input information [15]. Rather than representing amino
acids with 20 characters, the property encoding schemes
employ amino acid physical-chemical properties and
usually perform better. There are 20 different numbers
that represent each property in the property encoding
schemes. If 15 properties were used, there would be 300
different values for each input node. Suppose 31 is the
sliding window length, there would be 9,300 possible com-
binations for each vector. Too much information would
be noises to machine learning algorithm.
A possible way to improve the classification task is to

try to insert more information in the input code and
simultaneously try to refine the quality of the discrimi-
nated features. Although each amino acid property can
take different numbers, from the physical-chemical
point of view, they can be partitioned into three groups:
strong, middle or weak group. For example, each amino
acid’s hydrophobicity can be strong, middle or weak
hydrophobicity. If we reduce the number of values for
each property to 3, the input information to the algo-
rithm would be much simplified.
Here we developed a property grading method to dif-

ferentiate the amino acids and reduce the noises of the
amino acid properties. We found that the property grad-
ing method performed better with the traditional cross-
validation test and the current independent test sets.

Results and discussions
Three-state prediction definitions
There were ‘two-state predictions’ and ‘three-state pre-
dictions’ in the protein stability prediction field. In two-
state predictions, prediction results were presented as
stability “increase” or “decrease"; while in the three-state
predictions, the results were presented as stability
“increase”, “neutral” or “decrease”. Although the accu-
racy scores with two-state predictions usually showed
higher, three-state predictions are more reasonable in
molecular biology point of view. We adopted Capriotti’s
‘three-state prediction’ definition [19] for all of our
experiments.

Cross validation results with different encoding schemes
Cross validations with one dataset were believed to be
the strictest approach to evaluate different encoding

schemes. To avoid similarity sequences appearing in
both the training and test set at the same time, the
sequences were blasted themselves with the dataset
sequence database and grouped with their similarities.
The sequences with similarity > 25% in blast results
were clustered into groups. The groups were randomly
selected to a test set. The corresponding training set
sequences came from the dataset sequences that were
not in the test set. After implementing different encod-
ing schemes and training-test procedures, twenty round
cross-validation prediction accuracies were averaged for
each encoding scheme.
It is generally held that amino acid physical-chemical

property encoding is better than sparse encoding (arbi-
trary numeric representation of amino acids) because
amino acid properties take intrinsic meanings of nature.
However, there could be two problems in the property
encoding schemes. The first problem could come from
the property components to be used. When only one
property was adopted, such as hydrophobicity property
(K-D in Table 1), the total effects of the prediction
could not reach high accuracies. The protein secondary
structure propensity factors take information from the
protein structure and are expected to be helpful in the
input information. However, when they were used
alone, we could hardly get good performance either
(HEC in Table 1). We used physical-chemical 11-factors
encoding which showed almost the same results with
the sparse encoding. The sparse encoding scheme
(sparse in Table 1) was used as the control in our
experiment. When physical-chemical properties and
structural propensities combined together, better perfor-
mance was achieved. AAproperty15 showed a good
example of such combinations of the amino acid prop-
erties. The overall accuracy (Q3) of amino acid property
encoding scheme (AAproperty15 in Table 1) was 3%
higher than that of sparse encoding schemes. On the
other hand, however, it is not true that the more prop-
erty factors the better. We ever tried as many as 48 fac-
tors from aaindex [22] in the encoding scheme and the
results showed no improvement to the prediction
accuracies (data not shown).
The second problem that embarrassed the property

encodings could come from the noises and the data
complexities from the input factors. Grading the prop-
erty numeric values can reduce the noises from the
input factors and achieve better performances. When
the properties were graded into three classes and repre-
sented by three distinct numbers (AAproperty15Grade
in Table 1), the predictions presented better results. Q3

of AAproperty15Grade was 4% higher than that of non-
graded schemes (AAproperty15 in Table 1). In general,
the graded property encoding scheme achieved 7% bet-
ter than sparse encoding scheme in prediction
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Table 1 Cross-validation performance of the sequence-based SVM method of different encoding schemes

Encoding scheme Q3 MCC Q(N) Q(+) Q(-) Specificity (N) Specificity
(+)

Specificity
(-)

PPV
(P (N))

PPV
(P (+))

PPV
(P (-))

NPV
(N)

NPV
(+)

NPV
(-)

MCC
(C(N))

MCC
(C(+))

MCC
(C(-))

Capriotti¶ 56.00 0.27 48.00 54.00 54.00 62.00 44.00 44.00 - - - - - - 0.17 0.29 0.29

Sparse 56.81 0.28 58.85 54.12 53.51 61.34 79.31 81.10 65.35 65.11 62.31 62.40 75.16 72.37 0.21 0.31 0.33

11-factors 56.92 0.28 59.07 52.32 51.27 63.56 80.77 82.87 68.29 65.46 60.17 63.32 72.32 71.37 0.19 0.32 0.33

HEC 56.91 0.29 58.32 50.56 52.47 66.55 81.39 80.34 65.28 65.43 63.45 65.79 74.56 71.57 0.21 0.32 0.32

K-D 55.98 0.25 57.81 51.64 49.73 63.72 78.29 81.57 63.54 62.14 63.30 66.57 73.22 71.11 0.20 0.34 0.31

AAproperty15 59.57 0.31 61.72 56.13 57.40 60.96 79.57 81.48 68.16 65.89 67.87 65.02 76.83 76.71 0.30 0.35 0.34

AAproperty15Grade 63.63 0.36 64.15 58.23 57.62 61.95 80.35 82.07 69.81 62.52 69.12 67.18 78.31 78.96 0.34 0.39 0.36

All numbers except MCC represent per cent values. +, - and N: the indexes are evaluated for increasing, decreasing or neutral protein free energy stability change, respectively according to the classification
described in section 2 of Results and Discussions; for the definition of the different indexes see the Scoring the performance in Methods. ¶ data from Capriotti [19]
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accuracies. Matthew’s correlation coefficient (MCC)
showed improvements also. With the graded property
encoding scheme, the sequence based method can even
be competitive with the structure based approach (Q3

61% and Mcc 0.35 [19]) in the three-state mutation sta-
bility predictions.

Test results on independent test datasets
Dataset DBSEQ_Sep05 was used to make our prediction
model. When evaluating its performance, the chosen
independent test sets were blasted against the DBSEQ_-
Sep05 sequence database. Mutation samples were
deleted from the chosen independent test set that the
sequences share similarities bigger than 25% with the
ones in the Additional file 1: DBSEQ_Sep05 dataset.
1132 sequence similarity mutations, for example, were
deleted from the Potapov data set (2153 mutation sam-
ples in 79 proteins), and the resulted independent test
set Additional file 2: clean.Potapov retained only 1021
mutations in 50 protein chains. The statistics and expla-
nation of the clean independent test sets were shown in
Additional file 3: Table S1 and S2.
Table 2 showed the prediction accuracies when pre-

dicted the clean independent test sets with the graded
property encoding DBSEQ_Sep05 model. Average accu-
racy of Q3 72.55% explained the advantage of graded-
property encoding scheme, which is highest accuracy
that can be found in the literature with three-state
predictions.

ROC comparisons
When the sparse encoding and amino acid property
encoding schemes are considered, a slight improvement
of amino acid property encoding scheme is detected.
This can be seen from both the stabilizing/destabilizing
and neutral mutation ROC curves (Figure 1). In the case
of comparing graded amino acid property encoding vs.
amino acid property encoding, the AUC of graded
amino acid property is evident bigger than that of

amino acid property encoding scheme in the stabilizing/
destabilizing mutations (Figure 1A).
ROC curves for the three encoding schemes. The

cross-validation True Positive Rate (TPR) versus the
False Positive Rate (FPR) are plotted for the sparse, the
property and the graded property encoding schemes. In
part (A), the ROC curves of the three encoding schemes
are relative to the stabilizing and destabilizing muta-
tions, while in part (B), the curves represent neutral
mutations. The solid lines are the average values for
independent tests of the scheme; and the dashed lines
are the test instances to show the distributions of the
test values. The vertical bars represent standard errors

Conclusions
Physical-chemical properties of amino acids take intrin-
sic meanings of nature, which make proteins present
common characteristics of life. Numerical representa-
tions of the properties come from the real world experi-
ments and are the results of balanced multiple physical
forces. The amino acid physical-chemical property
encodings, if well used in protein related predictions,
should be better approaches than factitious encodings
like sparse encoding, arbitrary numeric representations
of amino acids.
The graded physical-chemical property approach dis-

criminates amino acids into strong, middle, or weak
groups according to their specific property values. It is
in accordance with biochemical concepts for amino acid
properties, and makes data simplified in the mean time.
The idea of grading properties may be applied to protein
related predictions with machine learning approaches.

Methods
Data descriptions
Experimental data in the ProTherm database [21] are
affected by errors. When the value of the free energy
change is close to 0 and the associated error is consid-
ered, for one single measure the sign of ΔΔG can

Table 2 Performance on independent datasets

Test set Q3 MCC Q(N) Q(+) Q(-) Specificity
(N)

Specificity
(+)

Specificity
(-)

PPV
(P
(N))

PPV(P
(+))

PPV
(P
(-))

NPV
(N)

NPV
(+)

NPV
(-)

MCC
(C
(N))

MCC
(C
(+))

MCC
(C
(-))

clean.TEST_
May11

71.82 0.51 80.65 63.21 62.35 66.90 92.10 92.17 71.19 72.75 72.72 77.13 88.34 88.09 0.48 0.58 0.51

clean.S1615 72.71 0.54 79.68 66.79 65.62 70.26 91.45 92.14 72.73 71.95 73.15 76.98 89.21 88.94 0.50 0.60 0.55

clean.S388 74.49 0.56 81.84 67.70 66.59 70.29 92.67 93.19 73.16 75.37 76.28 79.31 89.57 89.29 0.52 0.63 0.57

clean.
PoPMuSiC

72.17 0.53 76.57 68.40 66.94 72.04 90.48 91.18 72.94 70.57 71.34 75.39 89.60 89.22 0.48 0.59 0.56

clean.
Potapov

71.58 0.52 79.30 64.47 63.80 68.34 91.77 91.77 71.08 72.41 72.11 76.97 88.42 88.21 0.48 0.58 0.52

Average 72.55 0.53 79.61 66.11 65.06 69.57 91.69 92.09 72.22 72.61 73.12 77.16 89.03 88.75 0.49 0.60 0.54

For notation see Table 1. Independent test set details and statistics see Table S1 and S2
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change from decreasing to increasing and vice versa.
The ΔΔG threshold value for mutation classification is
limited to the value of standard errors reported in
experimental works. In accordance with Capriotti’s cri-
teria [18], we used |1.0| kcal/mole as the threshold for
classifications. According to its experimental ΔΔG value
each mutation sequence is grouped into one of the fol-
lowing three classes:
i) destabilizing mutation, when ΔΔG < -1.0 kcal/mole;
ii) stabilizing mutation when ΔΔG > 1.0 kcal/mole;
iii) neutral mutations when -1.0 ≤ ΔΔG ≤ 1.0 kcal/

mole.
The data set compiled by Capriotti [19], named

DBSEQ_Sep05 data set, was used to develop our mod-
els. S1615, S388 data sets [16], PoPMuSiC [9], Potapov-
DB dataset [8] and TEST_May09 were chosen for inde-
pendent performance comparisons.
DBSEQ_Sep05 data set contained 1623 different sin-

gle point mutations and related experimental data for
58 different proteins. Among these mutations, there
were 138 stabilizing mutations, 663 destabilizing muta-
tions, and 822 neutral mutations. The samples for
three classes were quite unbalanced and they would
lead bias in the model training in machine learning
procedures. From the point of view of basic thermody-
namics, a protein and its mutated form should be
endowed with the same free energy change, irrespec-
tively of the reference protein (native or mutated).
Hence, we can assume that the module of free energy
change is the same in going from one molecule to the
other and that what changes is only the ΔΔG sign.
The problem of the asymmetric abundance of the
three classes was overcome by reversing the mutation
ΔΔG sign, we doubled the stabilizing/destabilizing

samples and got 801 stabilizing, 801 destabilizing, 822
neutral mutation samples.
S1615 data set was compiled from an earlier version of

the ProTherm release and thus included less data when
compared with data set DBSEQ_Sep05. The S388 data
set is a subset of S1615, containing only physiological
condition data derived under temperatures from 20.8°C
to 40.8°C and pH values from 6 to 8.
PoPMuSiC dataset was compiled by PoPMuSiC-2.0 [9]

with 2648 different point mutations in 131 proteins.
Only mutations in globular proteins were considered,
PoPMuSiC dataset was believed to be non-redundant
data set itself for defining as a weighted average of all
available ΔΔG values in favor of normal experiment
conditions including temperature and pH when mutants
taking variant ΔΔG values.
Potapov-DB dataset [8] contained 2155 mutations in

79 proteins. Single- and multi-site mutations were con-
sidered. Potapov-DB removed redundant data by aver-
aging free energy change (ΔΔG) of the mutants when
multiple data available.
All the above datasets were compiled with different

constraints and conditions by different people. The data-
sets could be non-redundant themselves; however, they
were searched from the same ProTherm database and
could share some homologues to each other. In order to
give a fair and controllable independent assessment of
our model, we built a new dataset TEST_May11 from
the updated ProTherm database (from September 2005
to May 2011) with Capriotti’s[19] searching constraints:
only single point mutations; reversible experiments; and
the ΔΔG value with known experimental conditions
(temperature and pH). The training set DBSEQ_Sep05
was built early by Capriotti in September 2005.

Figure 1 ROC curves for different encoding schemes of the sequence-based predictor.
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TEST_May11 contains 1004 mutations in 51 proteins
with 375 destabilizing mutations (ΔΔG < -1.00 Kcal/
mol), 61 stabilizing mutations (ΔΔG > +1.00 Kcal/mol)
and 568 neural mutations (-1.00 < = ΔΔG < = +1.00
Kcal/mol).

Data sets clean up
To avoid the introduction of mutations that share simi-
larity with those of the DBSEQ_Sep05 training set, the
independent data sets TEST_May11, S388, Potapov,
PoPMuSic, and S1615 were blasted against the DBSEQ_-
Sep05 seq58-protein database. Mutation samples were
deleted from the test set that share sequence similarities
(identity > 25%) with mutation site in
q.start ~ q.end sequence region in the blast results

(Additional file 4: blast.independent175.against.seq58).
For example, 934 redundant mutations were deleted
from PoPMuSic data set (2648 mutation samples in 134
proteins), and the resulted data set clean.PoPMuSic
retained only 1712 mutations in 109 protein chains.
After removing all these sequence similarity mutation
samples, we got the “clean” test sets: Additional file 2:
clean.TEST_May11, clean.S388, clean.Potapov, clean.
PoPMuSic, and clean.S1615. The test files can be found
in the supplementary materials of the paper. The statis-
tics and explanation of the clean test sets were shown in
Additional file 3: Table S1 and S2. The clean datasets
were used to evaluate our prediction model.

Balancing mutation samples
Experimental data in the ProTherm database are intrin-
sically non symmetric and unbalanced, with destabilizing
mutations outnumbering stabilizing ones. Unbalanced
training samples would result in poor accuracy on the
minority/positive samples in machine learning such as
SVM. This is because the class-boundary learned by the
SVM is skewed towards the majority/negative class,
which may lead to many positive examples being classi-
fied as negative (false negatives). From the point of view
of basic thermodynamics, a protein and its mutated
form should be endowed with the same free energy
change. The problem of the asymmetric abundance of
the three classes can be solved by reversing mutation
(namely the mutation that transforms back the mutant
into the original protein) by considering the value of the
experimental measure with the opposite sign (-ΔΔG).

20-fold Cross validation test
The data set DBSEQ_Sep05 was adopted in our experi-
ments to make cross validation tests for different encod-
ing schemes. In order to make similarity sequences in
the same partition, DBSEQ_Sep05 sequences were
blasted themselves with the DBSEQ_Sep05 sequence
database. The results were shown in Additional file 5:

blast.DBSEQ_Sep05. With similarity > 25%, the mutation
samples were clustered into 58 groups. The groups were
random selected and joined to make a test set. The cor-
responding training set to the test set was produced
from the data set DBSEQ_Sep05 by finding entries that
were not in the test set. The groups, test sets and com-
plementary training sets were explained in the Addi-
tional file 6: blast.group.DBSEQ_Sep05 and Additional
file 7: TrainTestSet.description. The “serials” in the
explanations corresponded to the sample entries in the
Additional file 1: DBSEQ_Sep05.txt dataset. The “group”
was the GROUP number defined in Additional file 6:
blast.group.DBSEQ_Sep05. The test/training sets were
then balanced with reversing the ΔΔG sign with the cri-
teria of ΔΔG < -1.0 or ΔΔG > 1.0. The encoding
schemes applied to each test/training set afterwards.
Each round of the cross validation test consisted of
twenty iterations of the training/test procedure. Twenty
round cross validations were accomplished for each
encoding scheme, and the test accuracies were averaged
for the scheme.

The predictors
The LibSVM package 2.82 [23] was used for SVM train-
ing and prediction. The radial basis function (RBF kernel
= exp[-G || xi - xj ||

2]) was used as kernel function in the
experiment. The cost parameter C and kernel parameter
g were optimized with the package built-in tool grid,
which would take several hours for each training subset.
The optimized C and g values were determined by grid
results and were different from subset to subset depend-
ing on the data distributions of the specific random parti-
tions. C values varied from 2 to 32768 and g values from
0.0078125 to 2.0 from our lab record and theoretically
they could go even farther. The optimized C and g were
used to train LibSVM with the training subset and a
model resulted. The model was used to predict protein
stabilities with the corresponding test subset. A given sin-
gle point protein mutation was classified in one of the
three classes: stabilizing, destabilizing and neutral. The
classes were represented by three labels: “0” for stabiliz-
ing mutations (ΔΔG > 1.0 kcal/mole), “1” for destabiliz-
ing mutations (ΔΔG < -1.0 kcal/mole) and “2” for neutral
mutations (-1.0 ≤ ΔΔG ≤ 1.0 kcal/mole).

Input vectors and encoding schemes
One of important steps in machine learning approaches
is to encode the raw materials data into format data
that can be recognized by machines. To encode the
mutated position and the surrounding environments of
the position into vectors, we employed the deleted resi-
due, the introduced residue, the environment window
amino acids around the mutated position, experimental
pH and temperature, etc.
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Sparse encoding scheme
The most widely-used representation of an amino acid
sequence in bioinformatics modelling is the “sparse
encoding” scheme [19]. The input vector consists of 42
values. The first 2 input values account respectively for
the temperature and the pH at which the stability of the
mutated protein was experimentally determined. The
next 20 values (for 20 residue types) explicitly define the
mutation, setting to -1 the element corresponding to the
deleted residue and to 1 the new residue (all the
remaining elements are kept equal to 0). The last 20
input values encode the residue environment: each of
the 20 input values is the number of the encoded resi-
due type found inside a symmetrical window centred at
the mutated residue, spanning the sequence towards the
left (N-terminus) and the right (C-terminus), for a total
length of 31 residues [19].
11-factor encoding scheme
Sparse encoding scheme represents amino acids with
different numbers and the numbers themselves having
no relation with the physicochemical properties of the
amino acids. Leucine, for instance, have similar polarity
with isoleucine but quite different from glutamic acid.
However, Leu, Ile and Glu have same status in sparse
encoding scheme by taking different numbers. Sparse
encoding scheme does not account for any similarity in
physicochemical properties between amino acids. Liu
W. et al. successfully used amino acid property encod-
ing schemes with support vector machines [24]. They
extracted 17 amino acid physicochemical parameters
from AAindex, after eliminating related properties with
correlation coefficient factor (r2 > 0.8), and got a good
performance with 11 factors, which were linearly scaled
to the range of [0,1] from the raw data. We used their
11-factor encoding scheme in our experiment.
HEC encoding scheme
Chou-Fasman’s amino acid propensity parameters to
protein secondary structure conformation, namely helix
propensity (He), sheet propensity (Ee), and coil propen-
sity (Ce) [25], were recalculated with modern non-
redundant protein secondary structure dataset
CB513 [26] and RS126 [27]. To test the amino acid

conformation propensity properties in our experiment,
the propensity parameters were transformed into the
range [0,1] with 1/(1 + e-x) formula.
K-D encoding scheme
Amino acid hydrophobicity was believed to be one of
the most important properties to maintain the protein
tertiary structure. Kyte and Doolittle’s hydrophobicity
scale [28] was used to test a single amino acid property
effect in prediction. We transformed the Kyte and Doo-
little’s data into the range [0,1] with 1/(1 + e-x) formula,
and named as K-D encoding scheme.

Property encoding scheme (AAproperty15)
The 11-factor amino acid properties were combined with
the amino acid secondary structure conformation propen-
sity parameters He, Ee, and Ce. To emphasize hydrophobi-
city’s proportion in its influence in protein structure, Kyte-
Doolittle hydrophobicity scale was added to the encoding
scheme also. A list of 15 factors was obtained (Table 3).
We named the encoding scheme as “AAproperty15”.
Graded property encoding scheme (AAproperty15Grade)
Comparing with sparse encoding, complexity may be the
problem introduced by property encoding scheme. For
each property, amino acids take 20 different values. 15
properties and window length of 31 can make 9300
values. In addition to encoding the deleted residue, the
new residue, temperature and pH, property encoding
scheme introduced complexity while there are numerous
benefits and advantages associated with the scheme.
According to a specific physicochemical property, all

amino acids can usually be grouped into strong, middle,
or weak classes. For hydrophobicity, we can have strong
hydrophobic, middle hydrophobic, and weak hydropho-
bic amino acids. The amino acid numeric representa-
tions of each property can be partitioned into three
groups if we define two numeric thresholds.
Rather than direct using the amino acid property

numeric values in the encoding scheme, we define three
distinct numbers to represent the strong, middle, or weak
classes. When the numeric representation is less than the
lower limit, we represent the amino acid as 0.1; when
greater than the upper limit, we represent the amino acid
as 0.9; when the numeric is equal or greater than lower
limit but equal or less than upper limit, the amino acid is
represented as 0.5, as shown in Equation 1. The lower
limit and the upper limit are arbitrary numbers that can
partition 20 amino acids evenly into three groups accord-
ing to the distribution of the property numeric values.

Sai =

⎧⎪⎨
⎪⎩

0.1 if Pa
i < Li

0.5 if Li ≤ Pa
i ≤ Ui

0.9 if Pa
i > Ui

(1)

Where Sai is the score used in the coding scheme, Pa
i

is the numeric value of property i of amino acid a, Li is
the lower limit of property i, and Ui is the upper limit
of property i.
For each property, two thresh-holds partition twenty

amino acids into three classes: weak, middle, or strong
class. Each amino acid took one out of three rather than
one out of twenty different numbers for each property.
The complexity and noises can be much reduced in this
way. Table 3 showed fifteen amino acid property encod-
ing values and Table 4 showed scores used in the
graded encoding schemes, which were derived from
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Table 3 The amino acid property scores used in the AAproperty15 encoding scheme

AA Steric
parameter

Hydrogen
Bond
Donors

Hydrophobicity
scale

Hydrophilicity
scale

Average
Accessible
surface area

van der
Waals
Parameter R0

van der Waals
Parameter
Epsilon

Free
Energy
of
solution
in water

Average
side
chain
orientation
Angle

Polarity Isoelectric
point

He Ee Ce KDe

A 0.510 0.169 0.471 0.279 0.141 0.294 0.000 0.262 0.512 0.000 0.404 0.811 0.667 0.700 0.858

R 0.667 0.726 0.321 1.000 0.905 0.529 0.327 0.169 0.372 1.000 1.000 0.777 0.691 0.719 0.011

N 0.745 0.390 0.164 0.658 0.510 0.235 0.140 0.313 0.116 0.065 0.330 0.691 0.655 0.790 0.029

D 0.745 0.304 0.021 0.793 0.515 0.235 0.140 0.601 0.140 0.956 0.000 0.725 0.624 0.783 0.029

C 0.608 0.314 0.760 0.072 0.000 0.559 0.140 0.947 0.907 0.028 0.285 0.661 0.804 0.737 0.924

Q 0.667 0.531 0.178 0.649 0.608 0.529 0.140 0.416 0.023 0.068 0.360 0.778 0.683 0.722 0.029

E 0.667 0.482 0.092 0.883 0.602 0.529 0.140 0.561 0.163 0.960 0.056 0.812 0.652 0.707 0.029

G 0.000 0.000 0.275 0.189 0.103 0.000 0.000 0.240 0.581 0.000 0.401 0.619 0.665 0.821 0.401

H 0.686 0.554 0.326 0.468 0.402 0.529 0.140 0.313 0.581 0.992 0.603 0.715 0.754 0.732 0.039

I 1.000 0.650 1.000 0.000 0.083 0.824 0.308 0.424 0.930 0.003 0.407 0.734 0.844 0.658 0.989

L 0.961 0.650 0.734 0.081 0.138 0.824 0.308 0.463 0.907 0.003 0.402 0.792 0.768 0.664 0.978

K 0.667 0.692 0.000 0.568 1.000 0.529 0.327 0.313 0.000 0.952 0.872 0.755 0.701 0.731 0.020

M 0.765 0.612 0.603 0.171 0.206 0.765 0.308 0.405 0.814 0.028 0.372 0.794 0.763 0.665 0.870

F 0.686 0.772 0.665 0.000 0.114 0.853 0.682 0.462 1.000 0.007 0.339 0.747 0.807 0.676 0.943

P 0.353 0.372 0.012 0.198 0.411 0.588 0.271 0.000 0.302 0.030 0.442 0.629 0.608 0.835 0.168

S 0.520 0.172 0.155 0.477 0.303 0.206 0.000 0.240 0.419 0.032 0.364 0.681 0.711 0.773 0.310

T 0.490 0.349 0.256 0.523 0.337 0.235 0.140 0.313 0.419 0.032 0.362 0.667 0.780 0.748 0.332

W 0.686 1.000 0.681 0.207 0.219 1.000 1.000 0.537 0.674 0.040 0.390 0.759 0.815 0.661 0.289

Y 0.686 0.796 0.591 0.477 0.454 0.853 0.682 1.000 0.419 0.031 0.362 0.721 0.813 0.692 0.214

V 0.745 0.487 0.859 0.036 0.094 0.647 0.234 0.369 0.674 0.003 0.399 0.714 0.864 0.655 0.985
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Table 3 with two thresholds. The thresholds used were
arbitrary and the intention was to get as equal number
of the amino acids in each group as possible. The
thresholds (lower limit/upper limit) are: steric parameter
0.65/0.7; hydrogen bond donors 0.35/0.66; hydrophobi-
city scale 0.25/0.65; hydrophilicity scale 0.18/0.55; aver-
age accessible surface area 0.2/0.5; van der Waals
parameter R0 0.3/0.7; van der Waals parameter Epsilon
0.1/0.5; free energy of solution in water 0.4/0.55; average
side chain orientation angle 0.3/0.7; polarity 0.02/0.5;
isoelectric point 0.3/0.401; He 0.72/0.76; Ee 0.67/0.8; Ce
0.7/0.75; and KDe 0.1/0.8.

Scoring the performance
Seven indices, total accuracy(sensitivity) (Q3) (Equation
2) and total Matthew’s correlation coefficient (MCC)
(Equation 3) [29], the accuracy(sensitivity) (Q) (Equation
4), specificity(Equation 5), positive predictive value
(PPV) (Equation 6), negative predictive value(NPV)
(Equation 7), MCC (Equation 8), were calculated for the
assessment of the prediction system.

Qtotal =

k∑
i=1

p(i)

N

(2)

MCCtotal =

k∑
i=1

(p(i) + u(i))MCC(i)

N

(3)

Q(i) =
p(i)

p(i) + u(i)
(4)

specificity(i) =
n(i)

n(i) + o(i)
(5)

PPV(i) =
p(i)

p(i) + o(i)
(6)

NPV(i) =
n(i)

n(i) + u(i)
(7)

MCC(i) =
p(i)n(i) − u(i)o(i)√

[p(i) + u(i)][p(i) + o(i)][n(i) + u(i)][n(i) + o(i)]
(8)

Here, i is the any subfamily, N is the total number of
sequences, k is the subfamily number, p(i) is the number
of correctly predicted sequences of subfamily i, n(i) is
the number of correctly predicted sequences not of sub-
family i, u(i) is the number of under-predicted
sequences, and o(i) is the number of over-predicted
sequences, in other words, p(i) = TP, n(i) = TN, u(i) =
FN, o(i) = FP.

Multi-class ROCR
Currently, ROCR supports only binary classification
[30,31], if there are more than two distinct label sym-
bols, execution stops with an error message. To over-
come the binary classification limit of ROCR package,

Table 4 The graded amino acid property encoding scheme AAproperty15Grade

AA Steric Donors Hydrophobicity Hydrophilicity Accessible R0 Epsilon FreeEnergy Angle Polarity Isoelectric He Ee Ce KDe

A 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 0.5 0.1 0.9 0.9 0.1 0.5 0.9

R 0.5 0.9 0.5 0.9 0.9 0.5 0.5 0.1 0.5 0.9 0.9 0.9 0.5 0.5 0.1

N 0.9 0.5 0.1 0.9 0.9 0.1 0.5 0.1 0.1 0.5 0.5 0.1 0.1 0.9 0.1

D 0.9 0.1 0.1 0.9 0.9 0.1 0.5 0.9 0.1 0.9 0.1 0.5 0.1 0.9 0.1

C 0.1 0.1 0.9 0.1 0.1 0.5 0.5 0.9 0.9 0.5 0.1 0.1 0.9 0.5 0.9

Q 0.5 0.5 0.1 0.9 0.9 0.5 0.5 0.5 0.1 0.5 0.5 0.9 0.5 0.5 0.1

E 0.5 0.5 0.1 0.9 0.9 0.5 0.5 0.9 0.1 0.9 0.1 0.9 0.1 0.5 0.1

G 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.1 0.9 0.5

H 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.9 0.9 0.1 0.5 0.5 0.1

I 0.9 0.5 0.9 0.1 0.1 0.9 0.5 0.5 0.9 0.1 0.9 0.5 0.9 0.1 0.9

L 0.9 0.5 0.9 0.1 0.1 0.9 0.5 0.5 0.9 0.1 0.9 0.9 0.5 0.1 0.9

K 0.5 0.9 0.1 0.9 0.9 0.5 0.5 0.1 0.1 0.9 0.9 0.5 0.5 0.5 0.1

M 0.9 0.5 0.5 0.1 0.5 0.9 0.5 0.5 0.9 0.5 0.5 0.9 0.5 0.1 0.9

F 0.5 0.9 0.9 0.1 0.1 0.9 0.9 0.5 0.9 0.1 0.5 0.5 0.9 0.1 0.9

P 0.1 0.5 0.1 0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.9 0.1 0.1 0.9 0.5

S 0.1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.5 0.5 0.5

T 0.1 0.1 0.5 0.5 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.1 0.5 0.5 0.5

W 0.5 0.9 0.9 0.5 0.5 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.9 0.1 0.5

Y 0.5 0.9 0.5 0.5 0.5 0.9 0.9 0.9 0.5 0.5 0.5 0.5 0.9 0.1 0.5

V 0.9 0.5 0.9 0.1 0.1 0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.9 0.1 0.9
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we defined functions split.class and split.probabilities to
split classes and probabilities independently and make
the data become one-against-rest. We collected the
three class probabilities with ROCR built-in function
predict (probability = TRUE). With list function, we
then joined the independent data of three classes
together and plot ROC curve. The ROC curve can then
represent the three class classification. User defined
functions can be found in the Additional file 8: multi.
class.functions.rocr.

Additional material

Additional file 1: DBSEQ_Sep05. The file containing the data for cross-
validation tests is available as supplementary material as ASCII files.

Additional file 2: Clean.independent.zip. The file containing the
independent test files with no sequence similarity > 25% to
DBSEQ_Sep05 sequences is compressed in zip file and available as
supplementary material as ASCII files. The file contains clean.PoPMuSic,
clean.Potapov, clean.S388, clean.S1615 and clean.TEST_May11 files, which
are described in Table S1 and S2.

Additional file 3: Table S1: independent test set statistics. Table S2:
data descriptions of the independent test set.

Additional file 4: Blast.independent175.against.seq58. The file
containing the blast results of independent test set sequences to
DBSEQ_Sep05 sequence database is available as supplementary material
as ASCII files.

Additional file 5: Blast.DBSEQ_Sep05. The file containing the blast
results of DBSEQ_Sep05 sequences to DBSEQ_Sep05 sequence database
is available as supplementary material as ASCII files.

Additional file 6: Blast.group.DBSEQ_Sep05. The file containing the
cluster results with group similarity > 25% sequences in blast results is
available as supplementary material as ASCII files.

Additional file 7: TrainTestSet.description. The file containing the
random group selections and test-training set descriptions used in the
cross-validation tests is compressed in zip file TrainTestSet.zip and
available as supplementary material as ASCII files.

Additional file 8: Multi.class.rocr.functions. The file containing the
user defined functions used to multi-class ROCR is available as
supplementary material as ASCII files.
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