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Abstract

Background: Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular
biology. To fully understand this connection, it is necessary to consider the underlying networks and the time
factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in
interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and
temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link
discovery between processes. It uses a layered display to separate different levels of information while emphasizing
the connections between them. We present novel developments of the tool for the visualization and analysis of
dynamic genotype-phenotype landscapes.

Results: Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene
expression levels or other measures can be loaded and visualized at different time points and phenotypic
comparison is facilitated through clustering and correlation display or highlighting of impacting changes through
time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we
demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium
scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells.
Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell

network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we
investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the
mitotic process. Here, a potential new role for the gene Ism14a in cytokinesis is suggested. We also show how
phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.

Conclusions: We present a new visualization approach for perturbation screens with multiple phenotypic outcomes.
The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns
within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of
charge for academics as a downloadable standalone application from: http://arena3d.org/.

Background

Mapping the phenome in the context of dynamic genetic
factors is becoming one of the main interests of biology
nowadays. There is an increasing amount of data origi-
nating from time-resolved imaging experiments on RNA
interference screens, synthetic lethality or other systemic
perturbations [1-4]. The storage and analysis of this data
is however quickly becoming a daunting task. Given this
current inflow of time-resolved data, the necessity of
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developing tools capable of dealing with large amounts of
temporal information is hence becoming increasingly
evident.

The phenotypic landscape reflects the robustness of the
underlying genetic networks and its understanding
should help in elucidating the reverse rewiring of genetic
circuits. The dynamic factor in biological systems adds
another dimension of complexity and plays a major role
in understanding the process. Therefore the common
approach of excessively simplifying the dynamic factor
will result in a potentially critical loss of understanding.
Visualization tools can greatly enhance the ability to per-
ceive this type of complex data.
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Arena3D has been previously developed as a visualiza-
tion and analysis platform for the display and understand-
ing of connections between different data types of
biological information [5]. It uses a multi-layered concept
to allow the visualization of networks and links between
them in three-dimensional space. Each layer represents
one type of biological category (genes, proteins, structures,
diseases etc.) and the nodes on different layers are con-
nected according to known or predicted relations between
them. Different clustering algorithms are available to order
the nodes according to similarity measures. Here we
report on Arena3D version 2.0 that extends the capabil-
ities of the application by incorporation of time course
data handling through animations, clustering, tracking and
similarity scoring. It allows the direct visualization of com-
parative changes and time patterns for different pheno-
types, tissues, cellular compartments or other parallel
layers of biological information. The upgrade considerably
enhances the ability to interpret small to medium-sized
datasets of time-resolved information in the context of
genotype-phenotype landscape mapping. Furthermore, it
introduces a new concept of dynamic 3D data visualization
for extensive phenotypic studies.

While different tools for visualizing time course data,
gene expression and network clusters already exist, e.g.
VistaClara [6], GENeVis [7-9], Pathline [10], GATE [11],
clusterMaker [12], Prism [13], Arena3D has several
advantages over them. It uses a unique multi-layered
concept of displaying networks in 3D, which includes:
data integration (using different layers for different data
types), time course data (including movie generation),
gene expression data (changes of gene expression over
time). It can handle both non-time series and time series
data and, for the latter, comparison between different
networks or phenotypes can be easily performed. Are-
na3D enables tracking of individual genes, a feature that
is not encountered in most of the software mentioned.
Thus, it enables focused analysis, as well as global com-
parisons and classification into categories. Arena3D
offers more flexibility in laying out the networks com-
pared to GATE or GENeVis and also the possibility to
compare networks over time. Moreover, it does not
require a hierarchy and can handle larger amounts of
data than Pathline. Besides clustering abilities similar to
clusterMaker or gene expression tracking like in Vista-
Clara or Prism, Arena3D enables measurements of over-
all time series similarity of genes and of networks.
However, it does not offer a heat map view and its clus-
tering methods are less diverse compared to cluster-
Maker. The tool is generic and can be used even for non-
biological applications, whereas the other tools men-
tioned are more specific. The combination of dynamic
information visualization, 3D layout and similarity
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classification make it a useful tool for phenotypic com-
parison studies in a genetic network contextual
background.

Implementation

Arena3D was implemented using Java (JDK 1.6) and
Java3D (1.6.1 API). The JFreeChart library [14] is used for
the line plot view of time course values upon node click
events. The software is available as a standalone applica-
tion downloadable from the website. The Java Runtime
Environment http://www.java.com/ and Java3D libraries
http://java3d.java.net/ are required for running Arena3D
on any operating system and Macintosh users should also
install the JOGL libraries http://opengl.j3d.org/. Simple
API implementation for plug-in development is planned
for the future. The source code is available for download
for users that wish to customize their analysis.

The nodes are colored according to the associated values
of the respective biological entities on a yellow-blue color
scale, with grey representing absolute zero (or the cases
where there is no value associated to the node). The con-
version of the values to the scale is calculated such that
the colors map from yellow to blue to the interval (minVa-
lue, maxValue), where minValue is the absolute minimal
value that any node may have throughout the time course
for the respective layer and maxValue is the absolute max-
imal one. The gradient colors can be customized by the
user. The option of using other colorblind-safe gradients is
also offered. The scale is mapped separately for each layer,
as there may be cases where the parameters measured for
different layers of information are not comparable in mag-
nitude or units of measurement. Caution should therefore
be taken when interpreting results from comparisons
among different layers based on color alone.

Statistical calculations
To compute and graphically display correlations between
the time-resolved vectors associated to each node (repre-
senting a gene/protein or other biological entity) the
Pearson correlation calculation has been used. Only cor-
relations with a certain p-value (0.10, 0.05, 0.02 or 0.01)
are displayed. By default, correlations with a p-value of
0.05 will be shown. The significance of the correlation is
assessed according to the Pearson product-moment cor-
relation coefficient (PMCC) table of critical values, which
describes the minimal Pearson correlation coefficient
values for a certain level of significance depending on the
number of degrees of freedom. Importantly, for this cor-
relation measure the data is assumed to be normally
distributed.

As a non-parametric alternative to the Pearson corre-
lation calculation, the Spearman rank correlation is also
available for the user (results not shown). This is a
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better measure for the cases when the data is not nor-
mally distributed. The significance of the Spearman cor-
relation r is assessed using the following formula:

n—2
t=r\/l_r2 (1)

This has an approximate Student’s t distribution with
n-2 degrees of freedom under the null hypothesis, where
n is the number of time points in the series [15].

It is important to note that, since the different samples
in the time series data are not independent, the current
correlation measurements are limited and the results
should be interpreted with care. They are meant only to
provide a first rough indication of similarity between
time series, using very simplified assumptions. Exten-
sions to non-parametric association measures taking
into account the dependence between columns [16,17],
as well as multiple testing corrections (e.g. Benjamini-
Hochberg false discovery rate [18]) are planned for the
future.

The option to score genes by similarity of the asso-
ciated time-resolved vectors relies on two scoring
schemes, such that the score for each gene is computed
either as: (a) the average of the vector values; or as (b)
the lower bound of the Wilson score confidence interval
for a Bernoulli parameter as in:

) Y~ zft/z

P+ =+ Za/z\/ PRI an @)
S(g o) = 2 ,t € {0..N}
1+

for every gene g;, i[ {1.M} (M being the total number of
genes), where p represents the fraction of positive ratings,
Zyo s the (1-a/2) quantile of the Gaussian distribution
and 7 is the number of ratings [19,20]. The latter scoring
should balance the proportion of positive ratings with the
uncertainty of a small number of observations.

The scores are then converted to a scale from 0 to 10
and assigned to bins correspondingly, such that the colors
of the bins reflect the magnitude of the score and genes
with similar scoring are colored identically. A color scale
from white to red is used for this purpose, as depicted in
the following section.

Clustering of values for individual time points

The clustering of genes at individual time points is per-
formed separately for every layer based on distance geo-
metry of the values associated to the genes for the
respective layer. Given a distance matrix between a set of
points, the distance geometry algorithm calculates the
coordinates of each point in 3D space, and subsequently
places the nodes with shortest scoring distance closer to
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each other, as described in [21]. For this algorithm one
does not need to specify the number of clusters the genes
should be classified into, but rather places them in close
proximity according to the distance matrix. The clustering
is performed purely for visualization purposes, for faster
identification of genes with similar phenotypic time course
profiles, and does not affect any of the results. The user
can employ a different clustering algorithm of his wish at
any point during the analysis.

Results and discussion

Several new features have been implemented in version
2.0. The main enhancements deal with analyzing time-
course multiple-level data through: (a) changes in gene
expression, protein concentration or other parameters
tracked through color changes; (b) clustering of entities on
different layers based on associated values; (c) individual
gene tracking; (d) display of gene correlations; (e) scoring
and coloring based on similarity features. The color
scheme used for tracking time-resolved changes or for
similarity depiction can be changed according to the user’s
wish, including gradients visible for colorblind people. A
more detailed listing of the new features can be found in
Table 1. These can be accessed within the application as
described in Figure 1.

We illustrate these features by application to two data-
sets from time-resolved genotype-phenotype experi-
ments. The corresponding files in Arena3D format for
the two case studies are available as Additional file 1
archive.

Experimental case study 1: system-level differences in the
epigenetic, transcriptional and translational dynamics of
embryonic stem cells

Phenotypic differences arising from the downregulation
of potent regulatory factors in the cell propagate at var-
ious levels, from epigenetic to organismal. An illustrative
example is the one that has been recently studied for the
downregulation of the pluripotency regulator Nanog.
The results synthesize a systems-level analysis of dynamic
changes in embryonic stem cells (ESCs) upon downregu-
lation on three different layers: epigenetic, transcriptional
and translational. The dataset contains measurements of
histone acetylation, RNA polymerase II localization,
mRNA abundance and protein levels for a set of genes
[22]. We look at the dynamic changes within the core
ESC protein-protein interaction network, as defined in
[22] (see Additional files 2 and 3 for the description of
the genes used to perform this analysis and their time
course values). The changes are recorded for three time
points (days 1, 3 and 5). We show how Arena3D func-
tionality enables us to find interesting patterns in the
data not identified in the original paper, like patterns of
perturbation propagation from the epigenetic to the
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Table 1 Arena3D versus previous version

Functionality Previous versions Arena3D 2.0

Load network data X X

Load time course data X

Layouts
Circular
Grid
Spherical

xX X X X
xX X X X

Hierarchical

Clustering
Fruchterman - Reingold
Distance Geometry
Affinity Propagation
Markov Clustering
K-Means

Neighbor Joining
UPGMA

Move nodes X X

X X X X X X X
X X X X X X X

Move/scale/spin layers X X

Time course data analysis

Time slider

Cluster by gene expression

Highlight peaks

Cluster by top expression changes
Play animation

Individual gene tracking
Pearson/Spearman correlation display
Similarity scoring

Choose color scheme

X X X X X X X X X X

Colorblind-safe color scheme

Network export
Medusa format
Pajek format
VRML format
JPEG format

xX X X X

X
X
X
X

Listed are the different functionality improvements with respect to the
previous version of the software.

translational level or recurrent correlations in dynamic
changes throughout all systemic layers.

The four layers of systems dynamics are visualized cor-
respondingly: histone acetylation, chromatin bound RNA
polymerase II, mRNA levels and nuclear protein abun-
dance. On each layer, the ESC core network is repre-
sented, with nodes corresponding to genes/proteins and
links to the interactions between them. Nodes are colored
according to the level of acetylation, polymerase localiza-
tion on chromatin, mRNA abundance or protein levels,
respectively, for the corresponding gene. Values map to
node color on a yellow-blue color scale, such that lowest
values are coded in blue, highest in yellow and the inter-
mediate ones according to the gradient in-between. Grey
represents absolute 0. The changes in these values for the
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three days of measurement can be easily tracked using a
slider that updates the network and the node colors for
every time point. One can then further analyze snapshots
of phenotypic profiles for different stages of the experi-
ment (Figure 2).

Dynamic clustering on different layers

In order to get a feeling of how similar the biological enti-
ties are on each layer, clustering is enabled for individual
layers separately: in this way, one can compare different
phenotypic layers in terms of how the genes cluster accord-
ing to their impact values. To enable this, the user must
select “Cluster by gene expression” in the “Time-course
data analysis” tab in the application and then move
through time using the slider. Furthermore, gene-asso-
ciated values change throughout the time course, but sud-
den peaks or declines often prove particularly more
interesting than individual values at time points. We enable
fast discovery of genes exhibiting this behavior by high-
lighting those that have the highest change in impact
between two consecutive time points. Such a gene will be
connected throughout all layers for easy recognition. To
enable this feature, “Highlight highest changes” must be
selected. The clustering changes dynamically at each time
point.

Clustering on different levels for different time points as
shown in Figure 2 reveals that downregulation of nanog
strongly reflects in dynamic changes at the epigenetic level,
but less prominent at the transcriptional (mRNA) and
translational (protein) level. The genes/proteins seem to
maintain similar levels of abundance and similar clustering
in time for the last two levels, which indicates a dampening
of the perturbation induced at the chromatin level. The
highest impact changes are noticed for genes smarcadl
(SWI/SNEF-related, matrix-associated actin-dependent reg-
ulator of chromatin [Ensembl:ENSG00000163104]), prmtl
(an arginine methyltransferase [Ensembl:ENSG0000
0126457]) and rnf2 (ring finger protein belonging to the
Polycomb group [Ensembl:ENSG00000121481]), which are
highlighted by connecting throughout the layers (Figure
2b). Given that all these proteins act at the level before
mRNA production, the intensity of signal being higher for
epigenetic levels is justified. The strong impact change of
all three genes upon nanog downregulation is rather puz-
zling, as smarcadl, prmtl and rnf2 only interact with
nanog through mediators rexI and nacl (whose values do
not change throughout the experiment) and are situated at
the periphery of the ESC network [22]. This could suggest
that there may be an alternative route from nanog to the
respective genes that makes them so susceptible to the
impact of downregulation.

Correlation display

Gene pairs with a significant positive or negative correla-
tion in expression can be identified by connecting the two
genes with a line colored correspondingly. We exemplify



Secrier et al. BMC Bioinformatics 2012, 13:45 Page 5 of 11
http://www.biomedcentral.com/1471-2105/13/45

aAnNno Arena3D
File Spin Graph Selected Layer About
Time-course data analysis | Statistics/Graphs [ Multi Layered Universe
The option for changing { General Layer Nodes | Connection

gradient colors s located

i the General tab Change gradient color:

Drag to move throughout the time course > start color: |

Time slider ..
> end cotor: [l
0 S 1015 20 25 30 35 40 45 50 55 60 65 70 75 B0 B5 90

Cluster on different | | Cluster by gene expression | [ Highlight highest changes

Reset graph Restore Node Colors
Cannect nades with

highest change in values
between cansecutive —] | Cluster by most significant gene expression changes

time points ~number of top significant genes: [0 |~ | _Cluster

Highlight the mast
significant events, ——|
together with time points
and name of gene

Play time lapse dustering movie (saves images): Go

Track gene throughout time series:

|p|u w|[ Track gene |

Individual gene tracking 1
- Correlations: ® pearson O Spearman  p-val: [0.05 <]
Display correlations -

betueen genes as inks
connecting the 1| [Ipisplay only recurrent(an more layers) gene correlations(all)

respective genes
UL Only positive [] Only negative

[[]Compute ALL gene correlations and display them

Setp-value for
correlation significance

r+ Show genes with similar patterns for chosen layer: PHENOTYPE 3
|n|imli( delay -
Highiiqht genes with =
similar patterns based -based on averaged time course values: | Show Shaw all
andifferent scoring SR
method

| Only highest signal

an’ Gradients.
[ -based on Wilson score: | Show | Showall Gradient for time series display:

Gradient for similarity di

Quick option t switch toi—— | Colorblind-safe gradients | Display gradients ———
a colorblind-safe gradient] / I
I

PHENOTYPE 4

Displays the aradients ——1

Figure 1 Panel with time-course data analysis features. The main functionality implemented for dealing with time-resolved data and how it
can be accessed is pinpointed.
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Figure 2 Dynamic clustering of layered biological profiles. The network of ESC core genes is shown connected on each one of the four
layers depicting phenotypic outcomes in terms of histone acetylation levels (HIS), RNA polymerase binding affinity (POL), mRNA production
(RNA) and protein translation levels (PRO) upon knockdown of nanog. Nodes correspond to genes and are colored according to the values
associated at every time point for each informational level, on a yellow-to-blue gradient as indicated. Clustering at three distinct time points is
shown for each level: (@) day 1; (b) day 3; (c) day 5. There seems to be a transition in terms of dynamics based on the evolution of gene-
associated values and clustering outcomes from the epigenetic levels (most dynamic) to the translational level (most stable). Genes with highest
change in associated impact value between consecutive time points are connected between layers for better emphasis (b): close-up picture
shows genes prmt1, smarcadl and rnf2 as the ones displaying the highest change.
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this by looking at the Pearson correlations, but the same
workflow can be applied when the user wants to use the
Spearman rank correlations instead. First, the correlation
algorithm (Pearson/Spearman) should be chosen. In the
case of the Pearson correlation coefficient, significance of
correlation is assessed according to the PMCC table of cri-
tical values, as described in the previous section. Visualiz-
ing this type of relationship for different layers allows us
to identify recurrent correlations between pairs of genes
for different biological measurements, from chromatin
modifications to protein abundance.

To display all significant correlations, the user must
select “Compute ALL gene correlations and display them”
in the “Correlations” section. For recurrent correlations
only, the “Display only recurrent (on more layers) gene
correlations” will be selected, and the options of only dis-
playing positive or only negative correlations are available.
The p-value can be set to a desired threshold.

Even though for the given data there are only three time
points (degree of freedom equal to 1), which could be con-
sidered insufficient for significant correlations, we do find
several cases when the correlation coefficient is greater
than 0.997, such that the p-value is less than 0.05, thus
denoting significant correlations (Figure 3, left hand side).
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For illustration purposes we consider this sufficient. How-
ever, the assessment of whether the data volume is suitable
for applying such calculations should be done on a case-
by-case basis.

The right hand side of Figure 3 shows the different
patterns of recurrent correlations at systemic level. Gene
pairs yyl - ewsrl and sall4 - ewsrl are negatively corre-
lated at the level of mRNA production, as well as the
protein level. This means that there are post-transcrip-
tion factors that make the two genes differ in the
mRNA expression level, perhaps within the processing
of mRNA precursors, which will consequently lead to
negatively correlated levels of protein obtained. Even
more interesting patterns are obtained for genes wdri8
and zfp219. They are positively correlated in the propor-
tion of histone acetylation, but negatively correlated in
terms of mRNA levels and uncorrelated for the other
levels. This indicates subsequent steps after acetylation
that lead to differentiation of mRNA and protein pro-
duction levels.

While these examples show that there is a high level
of heterogeneity from the epigenetic down to the trans-
lational level, we can also observe that a couple of corre-
lations are rather uniform throughout layers. Similar or

sl
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Figure 3 Recurrent correlations display from the epigenetic to the protein level. Phenotypic outcomes at the level of histone acetylation,
chromatin binding, mRNA production and nuclear protein abundance are shown for the genes that form the ESC core network on each layer.
Nodes are colored corresponding to the gene value on a yellow-blue color scale. Correlations between the vectors of time-resolved values
associated to each gene are highlighted by connecting the corresponding nodes with a yellow line (for positive correlations) or a red line (for
negative correlations). Left hand side: all correlations with p-value < 0.05 (i.e. coefficient greater than 0.997) are represented as connections
between nodes for each layer. Right hand side: only recurrent correlations on at least two layers are displayed for the corresponding layers. The
layer of chromatin bound RNA polymerase Il is not shown because there are no recurrent correlations on that layer.
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recurring patterns are particularly noticeable between
the mRNA and protein level, which is in concordance
with the fact that protein and mRNA copy numbers
correlate, despite the fact that their half-lives do not
[23].

Experimental case study 2: profiling phenotypic defects in
cell division upon single perturbations in the system
Gene knockdown studies have been performed exten-
sively in high-throughput experiments and the outcome
is often challenging to analyze. One of the interesting
examples that has come up lately in the literature looks
at cell division defects derived from suppression of
genes essential to the cell cycle. This large scale experi-
ment was performed on HeLa cells and consists of
siRNA knockdown screens for genes involved in cell
division, as described in [24]. The knockdown outcomes
are followed through time-lapse imaging of the cells and
the observed cell division defects are classified into
seven main phenotypes: mitotic delay, binuclear, poly-
lobed, grape, large, dynamic and apoptosis. For each
gene that upon knockdown causes problems in cell divi-
sion a vector of time-point values is assigned, summariz-
ing the penetrance of each phenotype in the cell
population at each time point through a score based on
morphological features. We look at a total number of 90
time points, spanning 45 hours of cell life.
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We visualize the effects of every gene knockdown
(represented by nodes) for every resulting phenotype
(each represented in one separate layer). The dynamic
changes in gene knockdown impact are visualized
through corresponding changes in node color as
described for the previous experiment. The changes can
be again tracked, as shown in Figure 4. The same visua-
lization can also be applied to other datasets for changes
in gene expression, protein concentration or any other
kind of time-resolved variables.

Clustering knockdown outcomes

Dynamic clustering performed for a selected subset of
genes from this dataset as chosen in [24] (see Additional
files 4 and 5 for details) reveals comparative patterns of
more resistant or more volatile phenotypes: Figure 4
shows how phenotypes “mitotic delay”, “binuclear” or
“polylobed” tend to preserve similar clustering patterns
throughout time. In contrast, the other morphological
categories display more frequent changes, indicating that
they are intermediate phenotypes rapidly succeeded by
others within the cell population. The “apoptosis” pheno-
type is revealed to be rather dynamic, which might seem
counterintuitive at first, but in fact is not: the effects are
measured at the level of cell populations and not indivi-
dual cells, so in one plate there will be a constant turn-
over of cells that divide with/without defects and then
die, followed by other cells that start dividing and so on -
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Figure 4 Time-resolved clustering and individual tracking of a gene. A subset of essential mitotic genes (see Additional file 4) is depicted
on each layer as nodes colored according to the associated knockdown effect, from yellow to blue (low to high impact). Grey represents O
impact. Each layer corresponds to one phenotype. Clustering of gene knockdown profiles and gene tracking are highlighted for three individual
time points: @) t = 2 h; (b) t = 7 h; (c) t = 33 h. Dynamic clustering of genes on different layers reveals more dynamic changes for the “grape’,
“large” and “dynamic” phenotypes compared to “mitotic delay” or “polylobed”, which tend to stay more constant, indicating that these
phenotypes may be more stable compared to the previous ones. The gene Ism14a is tracked by node expansion (also indicated using arrows for
“mitotic delay” and “grape”). Its silencing has a mild to more pronounced impact for the “mitotic delay” phenotype (a-b), while having no
influence on phenotype “grape” in the beginning (a) and high towards the end (c), indicating a latent impact on the cell upon this particular
knockdown that determines it to adopt “grape” morphology after stagnation during mitosis.
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hence making apoptosis not a permanent but rather a
cyclic phenotype. Clustering enables positioning a certain
gene of interest and observing how its impact compares
to other genes whose suppression results in a particular
phenotype, as explained in the next subsection.

Individual gene tracking

If one is interested in following the patterns in time for
a particular gene, tracking of the corresponding node is
enabled through an increment in node size. In this way,
one can easily observe how the gene’s knockdown effect
changes through time, how it clusters with effects of
other genes and how similar its behavior is to others.
To enable gene tracking, the user must select the gene
of interest from the section “Track gene throughout
time series” in the application and then click the corre-
sponding button for tracking.

Figure 4 shows how the gene Ism14a that is being
tracked reveals a latent effect upon knockdown of deter-
mining the cells to slowly assume the grape morphology,
which, remarkably, is a “rare” phenotype. Grape is
termed a “rare” phenotype because there are very few
cells that adopt this morphology upon perturbation,
which makes it interesting to study for understanding
the causative factors. Additionally, comparative tracking
of gene Ismi4a on the different phenotypic layers at dif-
ferent time points enables identification of ordered phe-
notypic succession processes: the cells seem to exhibit a
transition from mitotic delay to grape, as Ismi4a shows
a mild “mitotic delay” phenotype in Figure 4a) and more
pronounced in 4b), after which the phenotype “grape”
becomes prominent in 4c).

Ism14a is an Sm-like protein believed to be involved
in pre-mRNA splicing and the formation of P-bodies
[25-27]. There is also evidence that it becomes asso-
ciated with the mitotic spindle [28], suggesting that its
knockdown might cause problems in spindle assembly.
This analysis enables us to obtain further hypotheses
about potential functions of the gene IsmI14a. Consider-
ing the effects of its knockdown, there are indications
that it could be involved not only in karyokinesis, but
also in cytokinesis processes, as the “grape” morphology
exhibits many micronuclei which can be a result of both
improper nuclear and cytoplasmic division. This raises
interesting observations about the versatility and adapt-
ability of this gene. Further experimental evidence is
needed in order to identify the subprocesses in which
the product of this gene is involved.

Similarity scoring

Given a large set of genes, one would like to find those
that have similar patterns through time. This is done by
coloring each node according to a similarity score that
takes into account the entire vector of values associated
to each gene. This further enables straightforward
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comparison of temporal progression among different
layers of information.

The two scoring schemes used allow for rather differ-
ent interpretations. This is why both options are avail-
able to the user to choose the most suitable one to the
respective data. To enable coloring based on similarity,
the user must select a layer in the section “Show genes
with similar patterns for chosen layer” and then click
“Show” or “Show all” (for all layers). The corresponding
button will be clicked depending on whether one opts
for the average or the Wilson scoring scheme.

The score based on averaging (Figure 5a) is revealing
some genes with high effect upon knockdown on the
cell phenotypic landscape. The highest peaking signals
overall are found for the polylobed phenotype, which is
indeed a strongly prevalent phenotype in many of the
screens. This scoring scheme thus allows selective deci-
sions about potentially interesting targets for further
experiments.

On the other hand, the Wilson scoring scheme allows
for a more detailed analysis of the true signal within a
single phenotype by noise elimination. Figure 5b) reveals
several genes scoring high for several morphologies. The
intensity of the signal is, however, uniquely scored for
every phenotype, such that one cannot compare or
make any hypotheses about the “most resistant/suscepti-
ble” phenotypes. Caution should be taken when using
the Wilson scoring scheme, as the normalization used
tends to bring out many points of high signal in a pool
where most values are low (e.g., the “grape” phenotype
is a rare one but most genes appear to be scoring highly
for it because of the normalization effect). To recapitu-
late, using the latter scoring scheme one can look for
true signals within a particular phenotype but not com-
pare among phenotypes.

As highlighted in Figure 5, downregulation of gene
incenp (an inner centromere protein antigen [Ensembl:
ENSG00000149503]) is scored as highly influential for
the polylobed phenotype according to scoring scheme
(a) and not as much for the same phenotype according
to scoring scheme (b). On the other hand, the suppres-
sion of gene ranbp3 (a RAN binding protein [Ensembl:
ENSG00000031823]) receives a high score for the poly-
lobed morphology under the latter scoring scheme and
a lower score for the former scoring scheme. The time-
line of variation for the two genes is obtained by click-
ing on the respective nodes and reveals the line chart
for the respective genes for all phenotypic layers. Here
one can see that in fact both genes have a high signal
for the polylobed phenotype. Since gene ranbp3 has a
lower average than incenp, it did not score high by the
averaging scheme, but its signal is captured by the sec-
ond scheme which manages to balance out some of the
noise. This shows that similarity scoring performs well
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MITOTIC DELAY ‘n

DYNAMIC

APOPTOSIS

Figure 5 Similarity scoring of gene knockdown impact profiles. Scoring the overall impact of individual gene knockdowns on the
prevalence of different phenotypes. We look at the span of one cell cycle, approximately 50 time points. Nodes correspond to gene knockdown
events and are colored according to the scoring scale, as indicated (white-dark red, low-high). A set of 1067 essential mitotic genes is
represented on each layer. One gene has the same position on all layers. Two alternative scoring schemes are presented: (a) averaging the
values in the gene knockdown vector; (b) the lower bound of Wilson score confidence interval. A line chart of timeline evolution of knockdown
values for each phenotype can be obtained by clicking on a particular node of interest, as shown for genes incenp and ranbp3, both of which
display increasingly higher signal for the phenotype “polylobed” (green line) throughout the time course.

e

Time course for gene ranbp3

%

in identifying global patterns in the data, especially in
the context of a high number of samples, and the two
scoring schemes are best used complementarily.

Conclusions

Genetic pleiotropy and locus heterogeneity are two phe-
nomena that contribute to making the landscape of gen-
otype-phenotype relations progressively intricate [29].
Visualization tools like Arena3D can become a great
asset in the attempt to elucidate these connections,
especially in a dynamic context.

We have shown how this tool can be used in phenoty-
pic profile classification, as well as in multigene trait
prediction from the genotype. The functionality of Are-
na3D can provide the basis to identifying both rare and
prevalent phenotypes and their underlying signalling
networks, components of which may be used as markers
for diseases.

One of the main assets of this tool is the interactive
analysis of temporal data: it enables the discovery of glo-
bal patterns, but also of time patterns for individual
genes of interest, given small to medium datasets with a
few or many time points. The advantage is that one can
also focus on a particular time point that may stand out
as exhibiting interesting behavior of genes/proteins and
look deeper into the reasons for this highlight. This

approach thus allows for a better understanding of the
role time plays within the biological process.

It is becoming increasingly important that the analysis
of networks and pathways should switch from a global
to a time-resolved, tissue-specific view, as there are
essential differences encountered at this level [30]. Ana-
lyzing mutational effects by taking into account tissue
and organ specificity can provide an insight into devel-
opmental patterns of the system. It can also help
uncover functional redundancies or complementarities
that could be useful for rescuing detrimental phenotypes
[29]. In this respect we believe Arena3D will prove par-
ticularly suitable, with the ability to compare and con-
trast expression levels in different tissues over time,
opening the path towards a better understanding of cell
and tissue-specific regulation and eventually towards dif-
ferential treatment of diseases.

Availability and requirements
Project name: Arena3D
Project home page: http://arena3d.org/
Operating system(s): Platform independent
Programming language: Java, Java3D
Other requirements: Java 1.6 (or higher)
License: Arena3D is available free of charge for aca-
demic use.
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Any restrictions to use by non-academics: Commer-
cial users should contact the authors.
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Additional material

Additional file 1: Files for testing in Arena3D. Input files in the
Arena3D format, for users wishing to test the examples discussed in the
paper directly with the software. The archive contains 3 files:
ESC_core_network_timeseries_forARENA3D.txt - data for case study 1;
mitotic_genes_all_timeseries_forARENA3D.txt - data for case study 2, all
genes, 50 time points; mitotic_genes_subset_timeseries_forARENA3D.txt -
data for case study 3, defined subset of genes, 90 time points.

Additional file 2: The ESC core network. List of the genes involved in
the ESC core network along with their description from Ensemble release
63 [31], as described in [22].

Additional file 3: Time series values for genes in the ESC core
network. List of the genes involved in the ESC core network along with
their associated time series values for the four levels: histone acetylation,
chromatin binding, mRNA and protein levels for the 3 days of the
experiment.

Additional file 4: List of potentially interesting mitotic genes. Subset
of genes involved in cell division, chosen according to the targets discussed
in [24], along with their description from Ensemble release 63 [31].

Additional file 5: Time series values for potentially interesting
mitotic genes. Subset of genes involved in cell division, chosen
according to the targets discussed in [24], along with their associated
time series values corresponding to the seven phenotypes for 90 time
points.
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