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A comparison study on feature selection of DNA
structural properties for promoter prediction
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Abstract

Background: Promoter prediction is an integrant step for understanding gene regulation and annotating
genomes. Traditional promoter analysis is mainly based on sequence compositional features. Recently, many kinds
of structural features have been employed in promoter prediction. However, considering the high-dimensionality
and overfitting problems, it is unfeasible to utilize all available features for promoter prediction. Thus it is necessary
to choose some appropriate features for the prediction task.

Results: This paper conducts an extensive comparison study on feature selection of DNA structural properties for
promoter prediction. Firstly, to examine whether promoters possess some special structures, we carry out a
systematical comparison among the profiles of thirteen structural features on promoter and non-promoter
sequences. Secondly, we investigate the correlations between these structural features and promoter sequences.
Thirdly, both filter and wrapper methods are utilized to select appropriate feature subsets from thirteen different
kinds of structural features for promoter prediction, and the predictive power of the selected feature subsets is
evaluated. Finally, we compare the prediction performance of the feature subsets selected in this paper with nine
existing promoter prediction approaches.

Conclusions: Experimental results show that the structural features are differentially correlated to promoters.
Specifically, DNA-bending stiffness, DNA denaturation and energy-related features are highly correlated with
promoters. The predictive power for promoter sequences differentiates greatly among different structural features.
Selecting the relevant features can significantly improve the accuracy of promoter prediction.

Background
The advent of the second generation sequencing greatly
speeds up the accumulation of genome data. One of the
most important tasks to understand such tremendous
data is to functionally annotate genomes and analyze
gene regulatory networks [1], for which, one pre-requi-
site step is to identify promoters from genomic
sequences [2,3]. Promoters refer to crucial control
regions surrounding transcription start sites (TSSs),
which are the basis of transcription initiation and are
responsible for steering the binding of RNA polymerase
[4,5]. A thorough understanding of promoter regions
can provide valuable insights into how, where and when
transcription takes place.

Concerning how RNA polymerase exactly locates a
promoter region at the initial stage of transcription, the
presumption is that promoter sequences possess some
special properties distinctive from the properties of the
surrounding non-promoter regions. Previous studies
mainly focus on DNA sequence compositional features.
These studies have found that some local sequence
compositional signals are specific to core promoter
regions [6], such as CpG islands (CGIs) [7], TATA
boxes [8], CAAT boxes [6], some specific transcription
factor binding sites (TFBSs) [9], pentamer matrix [8]
and oligonucleotides [10]. Based on these features, a
variety of computational methods have been proposed
for promoter prediction. Although much progress has
been achieved, recent studies strikingly reveal that exist-
ing promoter prediction methods have several common
limitations [6,11]. In fact, due to the complexity and
heterogeneity of promoter architectures, there are only a
limited number of promoters that exactly match the
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consensus motifs. The sequence motifs are not adequate
to identify promoters, which results in a high number of
false-positives when handling a whole genome. The
local sequence compositional signals alone can not
accurately discriminate promoters from non-promoters
[12]. The selection of appropriate biological signals to
predict promoters remains a field of intense
investigation.
Recently, the studies of DNA crystal structures have

brought to light the fact that structural properties of
DNA sequences play important roles in different gen-
ome functions [13,14]. The second-order structural
information encoded in promoter regions could be
recognized by RNA polymerase [15]. Specifically, the
curvature and bendability of DNA sequences may condi-
tion a favorable or inhibitory chromatin environment for
the binding of RNA polymerase, and may further contri-
bute to the transcription process [16]. Previous studies
have also shown that the eukaryotic core promoters
indeed have distinct structural properties when com-
pared with coding or non-regulatory sequences [17-20],
which presents a feasibility to explore promoter
sequences from a structural perspective. Up to now,
researchers have analyzed different structural features,
including duplex free energy [21], stacking energy [22],
DNA denaturation [23], duplex disrupt energy [24], pro-
tein deformation [25], Z-DNA [26], DNA-bending stiff-
ness [27], A-philicity [28], nuclesome position [29],
propeller twist [25], protein-DNA twist [30], B-DNA
twist and bendability [31]. Each of these features has
been respectively used to predict promoters [18,20]. As
the high dimensionality of feature space will deteriorate
the accuracy and time complexity of prediction models,
it is costly to combine all these features together for
promoter analysis. Meanwhile, biologists are practically
inclined to know which features are more correlated
with promoters. However, this issue has seldom been
addressed.
Thus, in this paper, we systematically compare thir-

teen structural features of promoters and non-promo-
ters, and propose a feature selection framework to
explore which structural features are more related to
promoter sequences. By taking advantage of various fea-
ture selection techniques, a small subset of highly discri-
minative features are selected and further utilized to
predict promoters. From the comparative analysis, we
observe that promoter sequences possess some specific
structural features, like DNA-bending stiffness, duplex
free energy and duplex disrupt energy. The results of
different filter and wrapper feature selection methods
indicate that energy-related features and DNA-bending
stiffness appear more frequently in the selected feature
subsets, indicating that these structural features have a
closer connection to promoter sequences and the

features differentiate in capability for promoter predic-
tion. This finding is in line with the classification accu-
racy based on each individual feature. Furthermore, the
experimental results demonstrate that the selected fea-
ture subsets can significantly improve the sensitivity and
accuracy of promoter prediction.

Results and discussion
Comparison of structural patterns of different features
Different from traditional promoter prediction methods
that are mostly based on sequence compositional fea-
tures, in this paper we first carry out an extensive com-
parison between promoter and non-promoter sequences
in order to explore whether promoters possess specific
structures. Here, our investigation focuses on thirteen
different kinds of structural features, including duplex
free energy, stacking energy, DNA denaturation, duplex
disrupt energy, protein deformation, Z-DNA, DNA-
bending stiffness, A-philicity, nucleosome position, pro-
peller twist, protein-DNA twist, B-DNA twist and bend-
ability. For these features, different structure models
have been derived from various biochemical experi-
ments. According to these models, DNA sequences can
be transformed into distinct structural profiles, as illu-
strated in Figure 1. Although these structural models
are based on dinucleotides or trinucleotides, several stu-
dies have proven that these structural features are differ-
ent in terms of the nucleotide information, and offer
additional thermo-physical information [20,32,33]. Based
on the conversion schemas, we transform the promoter
and non-promoter sequences into numerical vectors and
examine their similarities and differences with regard to
these structural features on the DBTSS human TSS
dataset (see Methods). For all these thirteen kinds of
structural features, we plot and compare the structural
profiles of promoters and non-promoters (Figure 2).
Through a comprehensive analysis, we obtain some

interesting observations. First, for each feature, the
structural values along promoter sequences are different
from those along non-promoter sequences. Second, pro-
moters have specific patterns of structural profiles, with
overall stable values and two sharp troughs or peaks.
The first clear trough (peak) locates at the position -30
bp upstream of TSS, where the TATA-binding protein
(TBP) binds. The second trough (peak) is around the
TSS. These two troughs (peaks) may guide transcription
apparatus to locate the appropriate initiation site, which
is in agreement with the fact that promoters bear a spe-
cial structure that is essential to the assembly of the
transcription machinery. On the contrary, the structural
profiles of non-promoters do not exhibit such patterns.
The different patterns may originate from the strongly
conserved sequences, such as the TATA box around the
-30 bp position and the Inr element at the TSS position.
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However, recent studies indicate that the presence of
these elements is not enough to explain the specific
structural patterns of promoters. Promoter sequences
without the TATA element still have a clear trough in
the structural profile of DNA denaturation, although the
trough is not as deep as that with TATA box [20]. This
finding suggests that promoter sequences can denature
more easily than non-promoter sequences, no matter
whether they contain those elements or not. In our pre-
vious study [34], the analysis on CpG-related and non-
CpG related promoters shows that the two different
kinds of promoter sequences exhibit similar structural
patterns. As a result, we may conclude that the struc-
tural features are not only affected by the specific ele-
ments such as TATA box, Inr element and CpG island,
but also by long-range combinations of nucleotides.
Third, as shown in Figure 2, there are two types of
structural features according to the profile patterns:
either a large trough stretching over the TSS region is
visible, such as the plots in the first two rows, or a peak
is visible, such as the features in the last three rows.
These distinctive peak or trough regions are possibly
useful for identifying TSSs. Furthermore, compared with
the non-promoter sequences, the structural patterns of
promoters with regard to some features are distinctive
and clear, such as energy-related features, DNA-bending
stiffness and DNA denaturation. By analyzing the struc-
tural models, we observe that these features are closely
related with the stability of promoter sequences. In con-
trast, the profiles of B-DNA twist, protein deformation
and protein-DNA twist are ambiguous and noisy. These
structural features have different capabilities of differen-
tiating promoters and non-promoters. These findings
suggest that a variety of possible mechanisms may lead

to promoter recognition by RNA polymerase. The bind-
ing of RNA polymerase could result from the DNA
sequence preferences. Alternatively, promoter recogni-
tion may also be guided by the boundaries of the speci-
fic structural peaks or troughs around the TSSs.

Comparison of classification performance of different
structural features
The above analysis implies that the structures of DNA
sequences are important signals in promoter recognition
of RNA polymerase, and integrating structural features
may be helpful for promoter prediction. In order to
identify the most promising features, we move forward
to test how well each individual feature can differentiate
promoters and non-promoters. The experiments are
conducted on the DBTSS human promoter dataset. For
each feature, we respectively convert the positive pro-
moter and negative non-promoter sequences into corre-
sponding numerical feature vectors. Because of the
outstanding classification performance of the support
vector machine (SVM) classifier, we apply it to discrimi-
nate promoters from non-promoters. We train thirteen
SVM classifiers corresponding to all these different
structural features and test their classification perfor-
mance, which is evaluated by three measures, including
sensitivity, specificity and F-measure.
Figure 3 shows the five-fold cross-validation perfor-

mance of all these thirteen structural features on the
human dataset. The experimental results indicate that
these structural properties are indeed different in pre-
dictive power for promoters. Generally, protein defor-
mation, DNA-bending stiffness and protein-DNA twist
have fairly high sensitivity values, but specificity values
are slightly lower than those of the other features. On
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Figure 1 The schematic illustration of converting a sequence into a numerical vector according to the conversion schema. For all
thirteen structural features, the conversion schemas are respectively obtained through specific physical or chemical experiments, which are
summarized from different literatures [18,46].
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Figure 2 The structural profiles of thirteen different features along the promoter and non-promoter regions. The structural profiles are
plotted according to the average value on each position. Each panel represents a structural feature, and the feature name is shown on the left
side of the panel.
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the contrary, duplex free energy, DNA denaturation, Z-
DNA and DNA-bending stiffness strike a balance
between sensitivity and specificity, leading to much
higher values of F-measure.

Ranking structural features by filter methods
To identify the discriminative structural features for
promoter prediction, we adopt different filter feature
selection methods to select feature subsets from the
thirteen kinds of structural features. First, each sequence
(length 251 bp) is converted to thirteen numerical vec-
tors corresponding to the thirteen different structural
features. Since the values of these features are at differ-
ent levels, we respectively normalize these vectors into
the range 0[1]. Second, we combine these feature vec-
tors into an integrated vector whose dimension is
13*251, and add a Boolean dimension as class label with
‘true’ for promoters and ‘false’ for non-promoters.
Third, various filter selection methods based on four
evaluation metrics, including information gain (IG), Chi

Square (CHI), ReliefF and Correlation-based Feature
Selection (CFS), are used to select the most discrimina-
tive dimension subsets (see Methods). Then, all these
dimensions are ranked based on the scores that are
assigned by the feature selection methods. For the
selected dimension subset, we calculate the ratio of each
feature in the subset, that is, the ratio of the number of
dimensions related to this feature over the total number
of dimensions in the selected dimension subset. Only
the top-ranked features are used for further classifica-
tion purpose. In order to obtain a general trend, for
each evaluation criterion, we select several dimension
subsets with growing dimensionality, including 100, 200,
300, 400 and 500. Furthermore, we use the SVM classi-
fier to evaluate the predictive ability of each selected
subset.
Table 1 presents the distribution of each feature in the

resulted dimension subsets based on different evaluation
criteria. Here we show the selected dimension subsets
with the dimensionality of 200 and 300. Specifically,

Figure 3 Performance comparison of different structural features. Sensitivity (Se), specificity (Sp) and F-measure of the classifiers built on
thirteen kinds of structural features. These structural features exhibit different predictive power for promoters.
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since CFS is a multivariate evaluation metric, it is unfea-
sible to rank each dimension subset. Genetic search
strategy is applied to search the feature space. For CFS,
we choose the two selected subsets with dimensionality
227 and 319 to compare with the other three criteria.
Although the selected subsets vary from case to case, a
general trend is observed. There is a marked enrichment
of DNA bending stiffness, duplex free energy and duplex
disrupt energy in the selected dimension subsets.
Whereas, some features such as B-DNA twist and pro-
tein-DNA twist seldom appear in the selected dimension
subsets. In the case of information gain and Chi Square,
B-DNA twist is not selected in the subsets, whereas
some structural and thermodynamic features related to
energy content and stiffness are more specific for pro-
moters. These results indicate that the structural fea-
tures are not equally correlated with promoter
sequences. Promoter sequences are characterized not
only by sequence features, but also by high order

chromatin structures. For example, as GC base pairing
is stronger than AT base pairing, GC content of DNA
sequences is related with the stability-related features,
such as DNA bending-stiffness, DNA-denaturation and
duplex free energy. Since regions with high free energy
are more unstable than those with low thermodynamic
energy, the highly unstable peaks surrounded by the
overall stable regions are hard to bend for nucleosome
formation, and easy to denature. These specific struc-
tural features are important indications for the binding
of RNA polymerase.
As filter selection methods rank features totally based

on the inherent characteristics of datasets, we need to
further evaluate whether the selected features are effec-
tive for classification. Therefore, the selected feature
subsets are further used to build SVM classifiers. Table
2 shows the performance of the SVM classifiers of each
selected feature subset. Each evaluation criterion
includes two subsets with dimensionality 200 and 300.
In the case of information gain, it gains the best perfor-
mance when the top 400 dimensions are selected. While
for ReliefF and CHI, the subset with 300 dimensions is
preferable. As for CFS criterion, subsets with dimension-
ality 319 or 274 are selected, and the subset with 319
dimensions is better for classification.

Ranking structural features by wrapper methods
Wrapper methods provide alternatives to perform multi-
variate feature selection, which are dependent on the
target classifiers whose accuracies are utilized to evalu-
ate the candidate feature subsets. Thus, the selected fea-
ture subsets are closely related to specific classifiers, and
the classification performance is usually better than that
of filter methods. As it is prohibitively costly to evaluate
all possible subsets, we adopt the genetic search strategy
to search for the optimal subsets, in combination with
SVM and kNN classifiers respectively.
Table 3 summarizes the performance of the wrapper

feature selection methods. The first two rows report the
classification results with the wrapper feature selection,
while the third and fourth rows are the classification
results without feature selection. From the table, we
observe that the classifiers with the wrapper feature
selection achieve much better classification performance
than those without feature selection. Compared with the
results of the filter feature selection methods, the wrap-
per methods are better in most cases, except ReliefF.
For the wrapper methods, we also compute the ratio of
each feature in the selected subset as mentioned above.
From the distribution plots in Figure 4, the subsets
selected by the wrapper methods indicate the similar
trend as the filter methods. The ratios of duplex free
energy, DNA-bending stiffness and DNA denaturation
in the selected subsets are much higher than those of

Table 2 The performance evaluation of the feature
subsets selected by different filter feature selection
methods

IG CHI ReliefF CFS

Peformance 200 300 200 300 200 300 200 300

Specificity 0.759 0.759 0.755 0.76 0.751 0.772 0.733 0.746

Sensitivity 0.704 0.718 0.707 0.704 0.718 0.743 0.727 0.731

F-measure 0.73 0.738 0.73 0.731 0.734 0.757 0.73 0.738

ROC score 0.74 0.745 0.738 0.741 0.74 0.762 0.731 0.741

Based on the feature subsets selected by four filter feature selection methods,
we respectively build SVM classifiers and compare the performance of these
classifiers.

Table 1 The feature selection results of the filter
methods

IG CHI ReliefF CFS

Structural features 200 300 200 300 200 300 200 300

A-philicity 2 5 2 5 5 4.7 7.9 8.8

B-DNA twist 0 0 0 0 2 2.7 6.2 4.7

Bendability 2 3 2 3 6 6.7 8.4 7.8

Stacking energy 3 3 3 3 7 7.7 5.7 9.4

DNA-bending stiffness 19.5 17.3 20 17.3 13 12 17.6 9.4

DNA denaturation 11 14.7 10.5 14.7 9 9.7 18.9 10.1

Duplex free energy 21.5 20 22 20 15 15.7 11 8.5

Duplex disrupt energy 23.5 17.7 23 17.7 17.5 16.3 5.7 5

Nucleosome position 2 2.3 2 2.3 3 4 2.6 7.5

Propeller twist 6 8 6 7.7 5.5 5.3 5.3 9.1

Protein deformation 4 4 4 4 6.5 5.7 3.1 7.5

Protein-DNA twist 2 1.3 2 1.3 3.5 4 4.4 4.7

Z-DNA 3.5 3.7 3.5 4 7 5.7 3.1 7.5

The distribution of each feature in the dimension subset selected by different
filter methods. The percentage of each feature in a selected subset is
calculated as follows: (the number of dimensions related to the feature/the
total number of dimensions in the selected dimension subset)*100%.
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the other features, indicating that they are more predic-
tive for promoter prediction.

Classification performance comparison with other existing
methods
In this section, we evaluate the effectiveness of the
selected structural feature subsets in promoter predic-
tion (termed as FSPP in this paper), and compare them
with nine existing promoter prediction methods. We
select five classical methods that perform well in pre-
vious comparative studies [12,35], including FirstEF [36],
Eponine [37], DragonGSF [7], McPromoter [8] and
ARTS [38]. These methods are all traditional, in the
sense that they were mainly built on sequence composi-
tional features, such as CpG island, TATA box and a
number of motifs. FirstEF is based on quadratic discri-
minant analysis of promoters, the first exon and the first
donor site. Eponine constructs a relevance vector
machine based on TATA box in a G+C rich domain.
DragonGSF utilizes artificial neural network. McPromo-
ter also adopts neural network to predict promoters, but
uses combined features from different segments. By

using support vector machine, ARTS integrates several
compositional features and two structural features.
Meanwhile, we include four newly proposed methods
that depend on structural features to predict promoters.
EP3 directly uses a deviation from the average structural
value to locate the promoter regions [20]. Observing the
distinct structural patterns of promoter regions, PNNP
develops a pattern-based promoter prediction method
[34]. Based on DNA melting temperature, Profisi pre-
dicts promoters using simple thresholding [39]. ProSOM
applies self-organizing maps to distinguish promoters
from non-pomoters [40].
To achieve an unbiased evaluation of different promo-

ter prediction methods, we conduct the performance
comparison on the CAGE dataset, which is different
from our training dataset. All the predictions are subject
to the same evaluation criterion. If a prediction is within
500 bp of an annotated TSS, we call it a true positive
hit. All existing prediction methods are tested with their
default settings, which are provided as the optimal para-
meters by their developers. The empirical performance
results of different promoter prediction methods are
shown in Table 4. Though McPromoter has a consider-
able specificity, its sensitivity is low, which leads to a
bad F-measure score. On the contrary, FirstEF achieves
a balanced sensitivity and specificity. From Table 4, we
observe that the promoter prediction methods based on

Table 3 The performance evaluation of the wrapper feature selection methods

Classifier Wrapper Specificity Sensitivity F-measure ROC score Dimensionality

SVM SVM 0.761 0.723 0.742 0.786 320

KNN KNN 0.705 0.731 0.718 0.745 300

SVM NULL 0.733 0.72 0.731 0.732 All

KNN NULL 0.637 0.753 0.69 0.723 All

The performance comparison of two classifiers (SVM and kNN) for promoter classification: with the wrapper feature selection (the first two rows) vs. without
wrapper feature selection (the last two rows).

Figure 4 The feature selection results of the wrapper methods.
The distribution of each feature in the selected feature subsets by
the wrapper feature selection methods. Two different target
classifiers, SVM and kNN are used in the wrapper feature selection.

Table 4 Performance comparison of promoter prediction
methods on the human genome

Methods Specificity Sensitivity F-measure

FirstEF 0.415 0.448 0.431

DragonGSF 0.686 0.357 0.470

McPromoter 0.623 0.204 0.307

EP3 0.565 0.413 0.477

Profisi 0.604 0.392 0.475

ARTS 0.672 0.381 0.486

Eponine 0.671 0.367 0.475

ProSom 0.573 0.414 0.481

PNNP 0.593 0.433 0.501

FSPP(ReliefF-300) 0.657 0.528 0.585

FSPP(Wrapper-SVM) 0.662 0.536 0.592

These methods include nine existing promoter prediction methods and our
prediction methods based on the filter and wrapper feature selection.
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structural features perform better than those methods
utilizing sequence compositional features. However, as
these methods use only one structural feature to predict
promoters, the improvement of performance is not sig-
nificant. By adopting the feature selection methods to
select the most discriminative feature subsets from all
these structural features we studied, the sensitivity and
specificity can be greatly improved.

Conclusions
Since most current promoter prediction methods rely
on local sequence compositional signals, they suffer
from low accuracy in identifying promoters. This paper
systematically analyzes promoter sequences from various
structural perspectives. We investigate thirteen different
structural features to examine whether promoter
sequences exhibit some specific structures for promoter
recognition by RNA polymerase. By converting the pro-
moter and non-promoter sequences into numerical vec-
tors, the structural profiles of different features are
explicitly presented. These structural profiles manifest
some useful findings. On one hand, compared with non-
promoter regions, promoter regions indeed show differ-
ent structural values and patterns. We infer that struc-
tural properties may be effective to differentiate
promoters from non-promoters. On the other hand, the
profile patterns of all structural features are not equally
distinct for promoters and non-promoters. The profiles
of some features such as duplex free energy, duplex dis-
rupt energy and DNA-bending stiffness are much more
distinct than those of the other features.
Comparative classification analysis based on individual

feature further suggests that the predictive power of
these structural features are quite different. In order to
quantify the difference, we turn to various feature selec-
tion methods including four typical filter methods and
two wrapper methods based on SVM and kNN. As filter
methods are independent on the classifiers, they are
more general for use. For the wrapper methods, the fea-
ture selection results depend on the classifiers and the
prediction performance may vary. Overall, B-DNA twist
and protein-DNA twist seldom appear in the resulted
feature subsets. Whereas the ranks of DNA-bending
stiffness and energy-related features based on these fea-
ture selection methods are higher than those of the
other features, indicating a strong correlation with pro-
moters. This result is consistent with our further corre-
lation analysis among all these structural features. The
pairwise Pearson correlation coefficients indicate that
the energy related features, including Duplex free
energy, Duplex disrupt energy and DNA denaturation,
are highly correlated with each other (Additional File 1,
Table S1). Also, the DNA-bending stiffness and bend-
ability are closely related to the energy-related features.

As a result, these features show similar presence in the
selected feature subsets. By analyzing these thirteen
kinds of features in a uniform feature selection frame-
work, the results show that the energy-related features
and DNA-bending stiffness are highly correlated with
promoter sequences. These specific structures of promo-
ters can be taken as clues for promoter prediction.
Furthermore, rather than use a single structural feature,
we use the selected feature subsets to predict promoters.
The performance of promoter prediction confirms that
the selected feature subsets are informative in promoter
prediction.
The findings perhaps not only have biological meaning

but also facilitate the applications of more powerful pro-
moter prediction models on various genomes.

Methods
Core promoter datasets
To extensively analyze the structural features of promo-
ter sequences, we retrieve a collection of promoter
sequences from DBTSS (version 7.0) [41]. DBTSS is
built on experimentally validated TSSs, which is mainly
based on full-length cDNA transcripts, and the 5’-ends
of oligo-cap selected cDNAs are experimentally deter-
mined [42]. This dataset provides the best training data
to recent computational studies in genomic annotation
and promoter analysis. DBTSS includes the promoter
sequences of several species. Here, our analysis is based
on one of the largest dataset, the human dataset. We
extract the sequences from 200 bp upstream to 50 bp
downstream flanking TSSs as the promoter sequences.
Through filtering, we obtain 11,682 experimentally vali-
dated human TSSs. Correspondingly, we retrieve the
same number of non-promoter sequences. In order to
avoid the position bias in extracting sequences from the
human genome, we build a randomized non-promoter
dataset by shuffling the real promoter sequences. From
the promoter dataset, we obtain a first-order Markov
model that preserves the dinucleotide frequencies.
Furthermore, based on the Markov model, the rando-
mized non-promoter sequences are generated.
To unbiasedly compare the performance of different

promoter prediction methods, the comparative evalua-
tion is conducted on another dataset - the CAGE data-
set, which is different from our training dataset and
has a wider coverage of human genome. The CAGE
dataset is based on the cap analysis gene expression
(CAGE) technique and is retrieved from the Riken
institute website [3]. As previous study, only tag clus-
ters identified by two or more tags are included in our
analysis [35]. Mapping these tags to human genome
allows us to obtain 181,046 unique human TSSs. The
whole genome (hg19) is retrieved via the UCSC Gen-
ome Browser [43].
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Calculating structural profile
Because of important roles in different key biological
processes, many studies have focused on biophysical
understanding of the intrinsic structural properties of
DNA sequences. Recent experimental analyses have
shown that, in some manner, eukaryotic core promoters
are indeed marked by specific structures comparing
with coding or non-regulatory sequences. For instance,
the duplex free energy content at TSS positions is much
higher than that at the other positions. As a region with
high free energy is more active than a region with low
thermodynamic energy content [21], the stable regions
may provide a contrasting background for the highly
unstable peaks, and make the peaks prominent for guid-
ing transcription apparatus to locate the appropriate
transcription sites [34]. Also, the propeller twist capacity
measures the rigidity of a sequence [44]. A region with
high negative propeller twist is rigid, which makes this
region hard to wrap around a nucleosome and facilitates
RNA polymerase to bind in this area [45]. Besides these
two features, we also investigate other eleven structural
properties, including stacking energy [26], DNA dena-
turation [22], duplex disrupt energy [24], protein defor-
mation [25], Z-DNA [23], bending stiffness [27], A-
philicity [28], nucleosome position [29], protein-DNA
twist [25], B-DNA twist [30], and bendability [31].
In order to quantitatively analyze structural properties

of promoters, we convert the retrieved promoter and
non-promoter sequences into numerical structural pro-
files corresponding to different structural features. For
each feature, the calculation of structural profile is
divided into two steps, as illustrated in Figure 1. We
first transform each DNA sequence into a numerical
vector. Each dinucleotide (or trinucleotide) is replaced
by its corresponding structural value [18,20]. The trans-
formation models for different structural features are
obtained from various bio-chemical experiments, and
are summarized as the validated conversion schemas by
Florquin et al. [18]. Specifically, since genome-wide
nucleosome maps for different species have been
recently published, we use the new in vivo human
nucleosome positioning data from Schones et al.’s study
to calculate the structural profiles related to nucleosome
positioning [46]. We take all the nucleosome-bound
sequences from their collection, and then align these
sequences with regard to their centers. By using the
same method as in the previous study [47], we obtain
the new nucleosome parameters. Accordingly, the new
structural profiles related to nucleosome positioning are
calculated. Second, we use a sliding window approach to
smooth the raw profiles, with a window-size of 3 nt and
a step-size of 1 bp. When the window slides along a
sequence, a vector of structural values is output. We
plot the average value on each position to get the

structural profile of the sequence with regard to each
feature. At last, every sequence has thirteen structural
profiles corresponding to all these structural features.

Feature selection framework
Feature selection has been an important issue in
machine learning, data mining and statistics fields, and
has drawn much attention in diverse bioinformatics
applications [48]. Here, to gain a deeper insight into the
structural properties of promoters, to avoid the overfit-
ting problem and to improve the performance of pro-
moter prediction models, we adopt different feature
selection techniques to analyze these structural features
we studied. We identify features that are highly corre-
lated with promoter sequences and effective in promoter
recognition. According to the combination mode
between feature selection and classification process, fea-
ture selection techniques generally fall into the following
two categories: wrapper and filter methods [49].
A wrapper method depends on a target classifier to

identify the optimal feature subset that provides the tar-
get classifier with the best classification performance.
The feature selection process consists of a search in the
feature space guided by the performance of the target
classifier. While bringing good accuracy for the final
classifier, wrapper methods are computationally expen-
sive. Filter methods are independent of any target classi-
fier. These methods select features by looking only at
the intrinsic properties of the data, such as class separ-
ability or correlation between features and classes. First,
a feature relevance score is calculated, and the low-scor-
ing features are filtered. Afterwards, selected features
can be presented as input to a classification algorithm.
Hence, the filter feature selection methods are computa-
tionally efficient and can easily scale to high-dimen-
sional datasets.
Generally, feature selection techniques differ from

each other with respect to two main aspects: evaluation
criterion of features and search strategy in the feature
space. To gain a systematical and unbiased analysis,
here we take advantage of various feature selection tech-
niques based on different evaluation functions in con-
junction with search strategies, as shown in Figure 5.
For filter methods, four different evaluation criteria are
adopted to evaluate features, assigning a score to each
feature that suggests how valuable the feature is for clas-
sification. The four evaluation criteria include two uni-
variate criteria: information gain (IG) and Chi Square
(CHI), and two multivariate criteria: ReliefF and Corre-
lation-based Feature Selection (CFS) [48]. Then, all fea-
tures are ranked by their scores and the highly relevant
features are obtained according to a given threshold. At
last, these features subsets selected by different filter
methods are evaluated by classification performance. As

Gan et al. BMC Bioinformatics 2012, 13:4
http://www.biomedcentral.com/1471-2105/13/4

Page 9 of 12



the calculation of correlation coefficients among features
is costly and it is prohibitively expensive to rank each
feature subset, we adopt the genetic search strategy for
CFS, which is different from the other criteria. For
wrapper models, the target classifier and search strategy
are critical elements. We respectively use SVM and
kNN as target classifiers, utilizing the accuracy of classi-
fication to measure the quality of selected features.
Meanwhile, the genetic search algorithm is applied to
search for optimal feature subsets in the feature space.
This combination is due to the following reasons. In lit-
erature, SVM classifier is widely used because of its high
classification accuracy [50], and the instance-based clas-
sifier kNN is quite efficient [51]. Genetic search is effec-
tive in high-dimensional search space. All our feature
selection methods are developed based on an open-
source data-mining tool, Weka [52]. Finally, we report
the 5-fold cross validation estimate of classification
accuracy.

Performance measures
Sensitivity (Se) and specificity (Sp) are two criteria
widely used to evaluate the performance of promoter
prediction models [12]. Additionally, we utilize F-mea-
sure and ROC score to measure the overall performance
of the prediction models. These measures are defined as
below:

Se =
TP

TP + FN
(1)

Sp =
TP

TP + FP
(2)

F −measure =
2(Se · Sp)
Se + Sp

(3)

TP, FP and FN represent the numbers of true posi-
tives, false positives and false negatives respectively.
Generally, sensitivity is the proportion of correct predic-
tions of TSSs over all experimental TSSs. Specificity is
the proportion of correct prediction of TSSs out of all
counted positive predictions. The higher the value of Se
is, the more false positives may be reported, and the
lower the value of Sp is. It is a trade-off to balance sen-
sitivity and specificity. F-measure is a single measure
that can compare prediction methods with different sen-
sitivity and specificity. Meanwhile, the quality of a classi-
fier can be evaluated by ROC score, which computes the
area under the ROC curve [53]. The value of the ROC
score ranges from zero to one, with a score of 0.5 corre-
sponding to random guess and a score of 1.0 indicating
perfect separation. The ROC score indicates the accu-
racy with which a classifier separates promoters from
non-promoters.

Additional material

Additional file 1: Table S1. Pairwise Pearson correlation coefficients
among structural profiles of thirteen different structural features across
the human genome.
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