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Abstract

Background: As genome sequencing is becoming routine in biomedical research, the total number of protein
sequences is increasing exponentially, recently reaching over 108 million. However, only a tiny portion of these
proteins (i.e. ~75,000 or< 0.07%) have solved tertiary structures determined by experimental techniques. The gap
between protein sequence and structure continues to enlarge rapidly as the throughput of genome sequencing
techniques is much higher than that of protein structure determination techniques. Computational software tools
for predicting protein structure and structural features from protein sequences are crucial to make use of this vast
repository of protein resources.

Results: To meet the need, we have developed a comprehensive MULTICOM toolbox consisting of a set of protein
structure and structural feature prediction tools. These tools include secondary structure prediction, solvent
accessibility prediction, disorder region prediction, domain boundary prediction, contact map prediction, disulfide
bond prediction, beta-sheet topology prediction, fold recognition, multiple template combination and alignment,
template-based tertiary structure modeling, protein model quality assessment, and mutation stability prediction.

Conclusions: These tools have been rigorously tested by many users in the last several years and/or during the last
three rounds of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7-9) from 2006 to 2010,
achieving state-of-the-art or near performance. In order to facilitate bioinformatics research and technological
development in the field, we have made the MULTICOM toolbox freely available as web services and/or software
packages for academic use and scientific research. It is available at http://sysbio.rnet.missouri.edu/multicom_toolbox/.

Keywords: Protein structure prediction, Bioinformatics tool, Secondary structure, Solvent accessibility, Domain,
Contact map, Tertiary structure, Protein model quality assessment, Fold recognition, Protein disorder
Background
The central dogma of protein science is that protein se-
quence specifies protein structure; and protein structure
determines protein function. Therefore, understanding
protein structure is crucial for elucidating protein func-
tion and has fundamental significance in biomedical
sciences including protein function analysis, protein de-
sign, protein engineering, genome annotation, and drug
design. Since the experimental determination of the first
two protein structures - myoglobin and haemoglobin -
using X-ray crystallography [1,2], the structures of more
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and more proteins have been solved by either X-ray crys-
tallography or Nuclear Magnetic Resonance (NMR) tech-
niques. Currently, there are about 75,000 protein
sequences with determined structures deposited in the
Protein Data Bank (PDB), which account for about
0.07% of the total known protein sequences (i.e. > 108
million). With the exponential growth of protein
sequences with unsolved structures produced by various
high-throughput, next generation sequencing techniques,
predicting protein structure from sequence, which is crit-
ical for filling the sequence-structure gap [3], has be-
come one of the most fundamental problems in
structural bioinformatics and genomics. Accurate high-
throughput protein structure prediction tools are ur-
gently needed for both scientific research as well as the
bio-tech industry. These tools will also fulfill a very im-
portant and major goal of the structural genomics
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project, namely to provide a rather complete set of ex-
perimentally determined structures for predicting the
structure of about 99.9% of proteins with unsolved struc-
tures [3].
The protein structure prediction problem is usually

decomposed and attacked from the three different dimen-
sional levels: 1D structure prediction, 2D structure predic-
tion, and 3D structure prediction [4]. One-dimensional
(1D) structure prediction is the prediction of protein struc-
tural features such as secondary structures, solvent accessi-
bilities, disordered residues or domain boundaries along
one-dimensional sequences. Since 1D prediction is usually
the first step to obtain protein structure, the largest num-
ber of methods and tools had been developed for it, such
as Porter [5], SAM [6], SSpro [7,8], PSIPRED [9], SABLE
[10-13], YASSPP [14], Jpred [15], PREDATOR [16-18], and
GOR [19] for secondary structure prediction; NetSurfP
[20], ACCpro [7,21] and Real-SPINE [22] for solvent acces-
sibility prediction; PONDR [23,24], MFDp [25], DIS-
OPRED [26], SPINE-D [27], PrDOS [28], Spritz [8],
POODLE [29-31], IUPRred [32,33], DISOclust [34], and
IntFOLD-DR [35] for disorder prediction; DomPred [36],
DomSVR [37], PPRODO [38], CHOPnet [39], DoBo [40]
and SSEP-Domain [41] for domain boundary prediction;
and PredictProtein [42], Distill [43], and SCRATCH [7] for
all four kinds of 1D predictions.
Two-dimensional (2D) structure prediction is to pre-

dict the spatial relationships (e.g., residue-residue con-
tacts, disulfide bonds, or beta-residue pairings) of two
residues. 2D prediction is a challenging and increasingly
important problem [44]. Some methods and tools for 2D
prediction are PROFcon [45], Distill [43], TMHcon [46],
DiANNA [47], GDAP [48], CYSPRED [49], BETAWRAP
[50], SVM-BetaPred [44], BETTY [51], ProC_S3 [52],
FragHMMent [53], SVMSEQ [54], and SAM [55].
Three-dimensional (3D) structure prediction is to pre-

dict the 3D coordinates of each residue [56-61], which is
the ultimate goal of structure prediction. Some popular
tools are I-TASSER [62-64], MODELLER [65,66], HHpred
[67], QUARK [68], chunk-TASSER [69], Rosetta [61],
Pcons-net [70], SAM [71], Raptor-X [72], SparksX [73],
and MULTICOM. 1D, 2D, and 3D protein structure pre-
diction methods are routinely evaluated in the Critical As-
sessment of Techniques for Protein Structure Prediction
(CASP) [74] - a community-wide experiment for blind
protein structure prediction that has been held every two
years since 1994. CASP experiments have driven the de-
velopment of protein structure prediction methods by ob-
jectively assessing the state of the art of the most active
and imperative protein structure prediction problems. The
last two CASPs (CASP8, 2008 and CASP9, 2010) [75] fo-
cused on trying to solve the most pressing structure pre-
diction problems: disorder region prediction (1D) [76],
residue-residue contact prediction (2D) [77], protein
tertiary structure prediction (3D) [78-80], evaluation of 3D
models [81-87], and protein model refinement [74,88,89].
During the last several years, we have developed a

series of tools for predicting protein structure and struc-
tural features at the 1D, 2D, and 3D levels, including sec-
ondary structure prediction, solvent accessibility
prediction, disorder region prediction, domain boundary
prediction, contact map prediction, disulfide bond pre-
diction, beta-sheet topology prediction, protein fold rec-
ognition, multiple template combination and alignment,
protein tertiary structure modeling, protein model qual-
ity assessment, and mutation stability prediction. Most
of these tools have been rigorously tested by many users
in the last several years and/or during the last three
rounds of the Critical Assessment of Techniques for Pro-
tein Structure Prediction (CASP7-9) achieving state-of-
the-art or near performance. In order to facilitate bio-
informatics research and technological development in
the field, we have incorporated updates and improve-
ments accumulated over years into these tools and
packed them together into one single comprehensive
MULTICOM toolbox equipped with tutorials, documen-
tation, software executables, some source code, web ser-
vice, and online mailing list for technical support.
The organization of the MULTICOM toolbox is shown

in Figure 1. The 1D protein structure prediction tools
are comprised of PSpro for the prediction of secondary
structure and relative solvent accessibility, PreDisorder
for disordered residue prediction, and DoBo for domain
boundary prediction. The 2D protein structure predic-
tion tools include SVMcon and NNcon for residue-resi-
due contact prediction, DIpro for disulfide bond
prediction, and BETApro for beta-sheet pairing predic-
tion. The 3D protein structure prediction tools are com-
prised of MULTICOM for tertiary structure prediction
and APOLLO for protein model quality assessment. The
MULTICOM toolbox also contains several other protein
bioinformatics tools including SeqRate for protein fold-
ing rate prediction, MUpro for the prediction of stability
changes caused by single-residue mutation, MSACompro
for multiple protein sequence alignment, and HMMEdi-
tor for visualization of protein Hidden Markov models.
The entire MULTICOM toolbox is freely available for
academic use and scientific research at http://sysbio.rnet.
missouri.edu/multicom_toolbox/. Users may download
and install most of the tools locally or access them
through web services.

Methods and benchmarks
1D structure prediction tools
PSpro2.0 for secondary structure and relative solvent
accessibility prediction
PSpro2.0 is an improved and combined version of the
popular tools SSpro/ACCpro 4 [7,8,21] for the prediction
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Figure 1 The organization of the MULTICOM toolbox.
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of protein secondary structure and relative solvent acces-
sibility. It integrates both homology-based and ab initio
methods to make predictions. The ab initio approach
uses a 1-D recursive neural networks (1D-RNN) [7,90]
and takes the profile of a query protein sequence as in-
put to predict its secondary structures (i.e. helix, strand,
and loop) or relative solvent accessibility (i.e. exposed
and buried) at 20 different exposure thresholds (i.e. 0%,
5%, 10%, . . ., 95%). The sequence profile was generated
by using PSI-BLAST to search the query sequence
against a Non-Redundant protein (NR) sequence data-
base, which has been updated to the most recent version.
The PSpro2.0 allows users to plug in any version of the
NR database of their choice.
The homology-based method in PSpro2.0 is called to

make predictions if a significant homologous template
protein can be found for a query protein in the Protein
Data Bank (PDB) [91]. The homology-based method uses
BLAST to search the query sequence against a locally
compiled version of the PDB database to identify hom-
ologous hits. Information regarding the alignment be-
tween the query and the most significant hit, including
the alignment e-value, the number of amino acids
aligned, number of gaps, sequence identity, is gathered
and used by a linear regression function to predict the
accuracy of transferring the secondary structure and
solvent accessibility of the hit to the query protein. The
linear regression function was trained on a set of query-
template alignments with known alignment information
and transferring accuracy. If the predicted transferring
accuracy is>= 0.82 for secondary structure (resp.
>= 0.80 for relative solvent accessibility), the secondary
structure (resp. relative solvent accessibility) is trans-
ferred from the hit to the query as predictions. Other-
wise, ab initio predictions will be used. The combination
of the ab initio method and homology-based method
can automatically apply the most appropriate method for
the query proteins having or not having significant hom-
ology with a known protein structure in order to im-
prove the prediction performance. In order to take
advantage of abundant new protein structures in the
PDB, PSpro2.0 uses an updated local version of the PDB
database comprised of 62,607 proteins. The new local
PDB database is a few times larger than the old one used
with SSpro/ACCpro 4 which had 22,064 proteins.
We benchmarked PSpro2.0 on the protein targets of

the last two Critical Assessments of Techniques for Pro-
tein Structure Prediction (CASP8 in 2008 and CASP9 in
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2010). The CASP datasets were chosen because of their
wide adoption in the field, their balance of easy (hom-
ology-based) and hard (ab initio or weak homology) tar-
gets, and their relatively large size. When the homology-
based method was tested, the target proteins in the
CASP8 and CASP9 data sets were removed from the
local PDB database in order to avoid using themselves to
make predictions. 100 CASP9 targets and 119 CASP8
targets that were not present in the local PDB database
were used in this test.
Table 1 reports the accuracy of secondary structure

prediction and relative solvent accessibility prediction at
a 25% threshold for both the combined method and the
ab initio method alone. Here the accuracy is defined
simply as the percent of correct predictions, i.e. the
standard Q3 score for three-category secondary structure
prediction, and the Q2 score for two-category relative
solvent accessibility prediction. The results show that the
accuracy of secondary structure prediction and relative
solvent accessibility prediction of the combined method
is in the range [80.8%, 83.3%] and [74.6%, 77.5%], re-
spectively, higher than [76.6%, 77.7%] and [74.2%, 75.9%]
of the ab initio method. Using homology prediction
seems to improve secondary structure prediction more
than relative solvent accessibility prediction. Combining
homology and ab initio approaches seems to improve
secondary structure prediction more than solvent acces-
sibility prediction.

PreDisorder1.1 for protein disorder prediction
PreDisorder1.1 is an efficient and reliable ab initio pre-
diction tool for protein disorder regions on the genomic
scale. PreDisorder uses only sequence-related informa-
tion in conjunction with neural networks to predict the
disorder probability of each residue of a protein se-
quence. The earlier and most recent versions of PreDis-
order had been consistently ranked as one of the top
protein disorder predictors in the last three Critical
Assessments of Techniques for Protein Structure Predic-
tion (CASP7, 8, 9) in 2006, 2008, and 2010, respectively
[92,93]. Evaluated on 117 CASP8 targets and 117 CASP9
targets separately, PreDisorder yielded an AUC score of
0.86 and 0.82, respectively [92,93]. AUC score represents
the area under the Receiver Operating Characteristic
(ROC) curve (true positive rates versus false positive
Table 1 The accuracy of the prediction of secondary
structure (SS) and relative solvent accessibility (SA) on
100 CASP9 targets and 119 CASP8 targets, respectively

both ab initio and homology ab initio alone

Dataset SS SA SS SA

CASP8 83.30% 77.50% 77.73% 75.94%

CASP9 80.78% 74.56% 76.60% 74.20%
rates) of disorder predictions. Considering different
methods may use different criteria to set a probability
threshold to make order/disorder decisions, we also cal-
culated the break-even score and its corresponding deci-
sion threshold on predicted disorder probabilities. The
break-even score is the value at which the sensitivity (i.e.
recall) and specificity (i.e. precision) of disorder predic-
tions are equal. The break-even scores on the CASP8
and CASP9 dataset are in the range [0.45, 0.56] using a
probability threshold of around 0.5. Figures 2 and 3 illus-
trate the plots of sensitivity versus specificity over a vary-
ing decision threshold from 0.1 to 0.9 at step of 0.005 on
the CASP8 and CASP9 data sets, respectively. The inter-
sections in the figures denote the break-even points/
scores.

DoBo for protein domain boundary prediction
Protein domain boundary prediction is often used as a
means to decompose the modeling of a large, multi-do-
main protein in to smaller, more manageable pieces. In
order for such a technique to be applicable to hard, free
modeling targets it should not rely extensively on tem-
plates or known structures to delineate protein domain
boundaries. DoBo [40] is the sequence based protein do-
main boundary predictor we have developed and
included in the MULTICOM toolbox. It leverages evolu-
tionary information contained in multiple sequence
alignments to identify potential domain boundary sites.
These candidate sites are then classified using a support
vector machine. Predicted domain boundary sites are fi-
nally scored and a confidence value provided.
We recently evaluated DoBo on 14 continuous, multi-

domain CASP9 targets [40]. DoBo is able to recall 70% of
the domain boundaries, which occur at least 40 residues
from the N or C terminal end of the sequence. The preci-
sion of the domain boundary prediction is 49%. Here, a do-
main boundary prediction is considered correct if it occurs
within 20 residues of a true domain boundary. Further-
more, on a large benchmark dataset using a 10 fold cross
validation procedure, DoBo achieves a break-even point of
60% (ie, precision equals recall) for domain boundary pre-
dictions [40].

2D structure prediction tools
NNcon and SVMcon for general residue-residue contact
prediction
Residue-residue contact prediction continues to be an
area of active research and becoming of greater import-
ance in the latest rounds of CASP. Of particular import-
ance to tertiary structure prediction are sequence based
(ie ab-initio) contact prediction methods and recent
work by Wu et al. has shown that predicted contact in-
formation can be used to significantly improve predic-
tions for free modeling targets [94]. The MULTICOM



Figure 2 The plot of sensitivity and specificity (y axis) against different probability thresholds of classifying residues as disordered
residues on CASP8 targets.

Figure 3 The plot of sensitivity and specificity (y axis) against different probability thresholds of classifying residues as disordered
residues on CASP9 targets.
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toolbox contains two general residue-residue contact
predictors – NNCon [95] and SVMcon [96]. NNcon [95]
is a sequence-based, ab initio method to predict intra-
chain protein residue-residue contacts. NNcon uses a set
of two-dimensional (2D) recursive neural network
ensembles [90] which predict the probability that the dis-
tance between any two residues are below a threshold (i.
e. in contact). Features used for each residue include a
sequence profile, secondary structure and solvent
accessibility.
SVMcon [96] is an ab initio method based on a sup-

port vector machine (SVM). For each residue pair, a set
of features including secondary structure, solvent acces-
sibility and a sequence profile is encoded for a 9-residue
window centered on each residue. This feature vector is
fed into a SVM trained on a large dataset which classifies
the residue-residue pair.
Both of our predictors participated in the most recent

rounds of CASP (CASP8 and CASP9) and ranked among
the top residue-residue contact predictors [97]. As an add-
itional assessment, we evaluated both NNcon and
SVMcon on all CASP9 targets. Table 2 shows the accuracy
for medium and long range predicted contacts. Here, two
amino acid residues are said to be in contact if the distance
between their Cβ atoms (Cα for glycine) in the experimen-
tal structure is less than 8 Å. Long range contacts are
defined as residues in contact whose separation in the se-
quence is greater than or equal to 24 residues. Medium
range contacts are defined by interacting residues which
are 12 to 23 residues apart in the sequence. These defini-
tions were used in accordance with previous studies and
CASP residue-residue contact assessments [97,98]. A com-
mon evaluation metric for residue-residue contact predic-
tions is the accuracy of the top L/5 or L/10 predictions
where L is the length of the protein in residues and the
predictions are ranked using a score provided for each pre-
diction. Accuracy is defined as the number of correctly
predicted residue-residue contacts divided by the total
number of contact predictions considered. For medium
range contacts, NNcon and SVMcon are capable of
achieving accuracies at or above 35% when considering
the top L/10 predictions and accuracies near 31% when
considering the top L/5 predictions. For long range con-
tacts, SVMcon performed notably better on the CASP9
targets with accuracies of 27% and 24% for the top L/10
Table 2 Accuracy for NNcon and SVMcon contact
predictions on all CASP9 targets

Predictor medium range contacts
(12<= seq. separation< 24)

long range contacts
(seq. separation>= 24)

top L/10 top L/5 top L/10 top L/5 top L

SVMcon .35 .32 .27 .24 .14

NNcon .36 .31 .21 .18 .11
and L/5 predictions, respectively, while NNcon obtained
accuracies of 21% and 18%.

DIpro2.0 for protein disulfide bond prediction
DIpro2.0 is a tool that uses kernel methods, two-dimen-
sional recursive neural networks, and weighted graph
matching for large-scale protein disulfide bridge predic-
tion [99,100]. Given a protein sequence, it can predict if
a cysteine in the protein participates in a disulfide bond
and how bonding cysteines are connected. The method
can handle proteins with arbitrary number of disulfide
bonds. Benchmarked on a large disulfide bond data set
[99], the specificity and sensitivity of classifying individ-
ual residues as bonded or non-bonded are 87% and 89%,
respectively, and the accuracy of overall disulfide con-
nectivity pattern prediction is 51%. Some other disulfide
bond prediction tools are DiANNA [47], GDAP [48],
and CYSPRED [49].

BETApro1.0 for protein beta-sheet structure prediction
BETApro1.0 integrates two-dimensional recursive neural
networks and graph algorithms with protein sequence
profiles and predicted structural features (e.g. secondary
structure and relative solvent accessibility) to predict
specific beta residue pairs, beta strand pairs, strand align-
ments, strand pairing direction, and beta-sheet topology
for beta sheets in a protein [101]. BETApro1.0 was evalu-
ated on a large dataset using different standard measures
[101]. At the break-even point, the specificity and sensi-
tivity of beta-residue pairing predictions is 41%. At 59%
specificity, the sensitivity of beta strand pairing predic-
tions is 54%. Some other beta-sheet prediction tools are
BETAWRAP [50], SVM-BetaPred [44], and BETTY [51].

3D structure prediction and evaluation tools
MULTICOM for tertiary structure prediction
MULTICOM [102], an automated multi-level combin-
ation method, combines complementary and alternative
templates, alignments, and models to predict protein ter-
tiary structures. Several implementations of this ap-
proach with minor differences were tested in the last two
Critical Assessments of Techniques for Protein Structure
Predictions (CASP8 and CASP9) in 2008 and 2010, re-
spectively [102]. One significant improvement on multi-
template combination benchmarked in CASP9 is to
check the structural consistency between multiple tem-
plate candidates. This procedure avoids potential atom
clashes caused by conflicting structural conformations
from inconsistent templates. The structural similarity of
a pair of query-template alignments was checked by
comparing the structures of two templates after they are
aligned to the same regions of the query using TM-Align
[103]. Only structurally similar query-template align-
ments are combined. Both MULTICOM-server and



Figure 4 Superimpositions of predicted models (blue) and
native structures (orange) of four CASP9 targets. (A) T0520, TM-
Score = 85, (B) T0527, TM-Score = 74, (C) T0634, TM-Score = 88, (D)
T0641, TM-Score = 91.
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MULTICOM-human predictors were ranked among the
best in CASP8 and CASP9.
Table 3 illustrates the evaluation results of one MUL-

TICOM server predictor and one MULTICOM human
predictor. The evaluation was conducted on 107 CASP9
targets, whose native structures were downloaded from
the Protein Data Bank [104]. We used TM-Score [103]
to compare predicted models with native structures to
calculate their similarity scores in terms of both GDT-TS
score [105] and TM-Score [103]. GDT-TS scores or TM-
Scores are in the range [0, 100], where 0 means com-
pletely different and 100 exactly the same. Generally, a
TM-Score of 50 indicates a reasonable model with
largely correctly predicted topology and a score greater
than 80 is a high-quality model. On average, the GDT-
TS score and TM-Score of the first MULTICOM server
models are 59.28 and 66.76, respectively, indicating the
average quality of server models is good. The average
score of MULTICOM-server models is 2–4 points lower
than MULTICOM-human’s, one of the best CASP9
human predictors that made predictions by exploring the
entire CASP9 model pool. This suggests that the auto-
matically generated MULTICOM-server predictions are
approaching the best performance among CASP9 mod-
els. Figure 4 shows good-quality models predicted by
MULTICOM-server on four CASP9 targets.

APOLLO for protein model quality assessment
APOLLO is a software package that can predict global
and residue-specific qualities of individual or multiple
protein models without knowing native structures [106].
For an individual model, APOLLO uses a machine learn-
ing method (support vector machine) to predict its abso-
lute global [107] and residue-specific qualities [106]. The
absolute global quality of a model is the overall struc-
tural similarity between the model and its native struc-
ture in terms of GDT-TS score, whereas the absolute
residue-specific qualities are the structural deviations at
each residue position in terms of Angstrom (Å). The fea-
tures used in the machine learning algorithm include
amino acid sequence and the differences between pre-
dicted (predicted from amino acid sequence) and parsed
(parsed from protein model) secondary structures, solv-
ent accessibilities, and residue-residue contact probabil-
ities. For multiple models, APOLLO uses a pair-wise
Table 3 The average GDT-TS and TM scores of top-one
and best-of-five models of MULTICOM predictors on 107
CASP9 targets

Predictor First Model Best of Five

GDT-TS TM-Score GDT-TS TM-Score

MULTICOM (human) 63.14 70.53 64.41 71.85

MULTICOM (server) 59.28 66.76 62.02 69.29
comparison method to predict their relative global qual-
ities [108]. This algorithm performs a full pair-wise com-
parison of each model against all the others by the
structural alignment program TM-Score [103]; and the
average structural similarity scores are used as the pre-
dicted global qualities. APOLLO also employs a hybrid
approach to refine absolute quality scores. It selects the
top five models ranked by initial quality scores as refer-
ence models and then superimposes every model with
each of the reference models by TM-Score [109]. The
average GDT-TS score resulted from the superimposi-
tions is used as the predicted global quality.
We evaluated the APOLLO software package on the

models of 107 valid CASP9 targets whose experimental
structures were available in the Protein Data Bank [104].
For global quality prediction, the average Pearson’s correla-
tions between predicted and real quality scores of pair-
wise, hybrid, and machine learning methods are 0.917,
0.870, and 0.671, respectively [106]. For residue-specific
quality prediction, APOLLO has an average error deviation
of 2.60 and 3.18 Å on the residues whose actual distances
to the native are<= 10 and 20 Å, respectively [106].

Other protein bioinformatics tools
MUpro1.0 for protein mutation stability prediction
MUpro1.0 [110] is a tool using support vector machines
to predict protein stability changes for single amino acid
mutations. It can predict the amount of the energy
change caused by an amino acid mutation from a protein
sequence, a protein structure, or both. MUpro1.0 was
evaluated on a large dataset of single amino acid



Figure 5 The MULTICOM toolbox web site.

Cheng et al. BMC Bioinformatics 2012, 13:65 Page 8 of 12
http://www.biomedcentral.com/1471-2105/13/65
mutations [110]. It predicted the direction (positive ver-
sus negative) of the mutation-induced energy changes at
84% accuracy. The method can also reliably predict the
absolute value of an energy change. Some mutation sta-
bility prediction tools are PoPMuSiC [111], SDM [112],
I-Mutant2.0 [113], and CUPSAT [114].

SeqRate for protein folding rate prediction
SeqRate [115] is a sequence-based tool for large-scale
protein folding rate prediction. It uses a Support Vector
Machine regression method with a set of features derived
from protein sequences alone to make predictions. The
tool can predict both folding kinetic types and real-value
folding rates. The folding kinetic type prediction accur-
acy of SeqRate on a standard benchmark is 80% [115].

MSACompro1.2.0 for protein multiple sequence alignment
with predicted structural features
MSACompro1.2.0 [116] is a new tool that integrates pre-
dicted secondary structure, solvent accessibility, and con-
tact map information with protein sequences to improve
protein multiple sequence alignment. MSACompro1.2.0
was evaluated on the BAliBASE 3.0 datasets [117],
yielding an average alignment Sum of Pair score (SP
score) of 88.85 and the average alignment True Column
score (TC score) of 61.31. The results showed that in-
corporating protein structural features into multiple se-
quence alignment improves alignment accuracy over
existing tools without using structural features.

HMMEditor for visualization of hidden Markov models of
protein sequence family
HMMEditor [118] is a visual, interactive editor for visu-
alizing and manipulating profile Hidden Markov Models
of a protein family. It provides a series of functions to
visualize the profile HMM architecture, transition prob-
abilities, and emission probabilities. It also allows users
to align a sequence against the profile HMM and
visualize the corresponding Viterbi path.

Software packages, web services, documentation, and
user support
Most tools in the MULTICOM toolbox are available as
both downloadable software packages and online web
services at the one-stop web site http://sysbio.rnet.mis-
souri.edu/multicom_toolbox/ (Figure 5). Some tools that
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Table 4 The availability and running environment of the MULTICOM tools

Tools Software Package Source Code Web Service Platform Documentation

PSpro2.0 Yes Yes Yes Linux, Browser PDF, HTML

PreDisorder1.1 Yes Yes Yes Linux, Browser PDF, HTML

DoBo Yes Browser PDF, HTML

NNCon Yes Yes Linux, Browser PDF, HTML

SVMcon Yes Yes Linux, Browser PDF, HTML

DIpro2.0 Yes Yes Linux PDF, HTML

BETApro1.0 Yes Yes Yes Linux, Browser PDF, HTML

MULTICOM Yes Browser PDF, HTML

APOLLO Yes Yes Yes Linux, Browser PDF, HTML

MUpro1.0 Yes Yes Yes Linux, Browser PDF, HTML

SeqRate Yes Yes Linux, Browser PDF, HTML

MSACompro1.2.0 Yes Linux PDF, HTML

HMMEditor Yes Yes Linux, Browser, Unix, Windows PDF, HTML
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are only available as web services will be released as soft-
ware packages in the near future. The documentation
and relevant publications of these tools are also available
at the same web site. Table 4 summarizes the availability
and running environment of the MULTICOM tools.
The MULTICOM toolbox has been implemented in

different programming languages including C++, Java,
and Perl. The tools have been extensively tested on the
Linux platform. We expect to gradually release some
standalone tools for other popular platforms such as
Windows and Mac. Most of the tools in the toolbox are
available as online web services, which makes it easy for
users to make predictions on a small scale without a
need to install the software. The web interface is gener-
ally simple and intuitive and requires a minimum
amount of information from the user. The results may
be sent to users by email or be presented in the browser.
Most tools are also available as software packages that
can be downloaded by users for large-scale prediction or
other purposes. In general, installing these tools is
straightforward and often only requires unzipping the
software, setting a few paths in a configuration file, and
running a configuration script. The package of each tool
includes a readme file that contains both installation
instructions and a quick guide on using the tool. One or
more test examples with expected results are often pro-
vided with the package for users to test an installation.
In order to facilitate the use of the tools, the user man-

uals for these tools have been developed in PDF and
HTML format and are available at the MULTICOM web
site. The user manuals usually include step-by-step in-
stallation instructions, application examples, references
to more technical documents, and frequently asked
questions (FAQ) and solutions. In order to better serve
users and gather community feedback to improve the
toolbox, a mailing list is created. After subscribing the
MULTICOM mailing list (multicom_toolbox@google-
groups.com), a user can post a message to the mailing
list and view the collection of all prior postings. The
technical support of the MULTICOM toolbox regularly
reads the message postings and answers questions. Col-
lected improvements will be released in future versions
of the toolbox.

Conclusion
We developed a comprehensive MULTICOM toolbox
consisting of a number of protein structure and struc-
tural feature prediction tools. These tools have been ex-
tensively tested and used internally and externally during
the last several years yielding good performance. All the
tools are freely available as software packages and/or on-
line web services for academic use and scientific research
at the MULTICOM web site. This makes them useful for
large-scale annotation of structure and function of vast
protein sequence resources generated in the genomic
era. In the future, we will continue to improve the per-
formance, usability, and documentation of these tools,
make them available to more platforms (e.g. Windows
and Mac), and add new protein structure and function
prediction tools into the toolbox. Improvements and
new developments will be released on the MULTICOM
toolbox web site.
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