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Abstract

Background: Public resources of chemical compound are in a rapid growth both in quantity and the types of
data-representation. To comprehensively understand the relationship between the intrinsic features of chemical
compounds and protein targets is an essential task to evaluate potential protein-binding function for virtual drug
screening. In previous studies, correlations were proposed between bioactivity profiles and target networks,
especially when chemical structures were similar. With the lack of effective quantitative methods to uncover such
correlation, it is demanding and necessary for us to integrate the information from multiple data sources to
produce an comprehensive assessment of the similarity between small molecules, as well as quantitatively uncover
the relationship between compounds and their targets by such integrated schema.

Results: In this study a multi-view based clustering algorithm was introduced to quantitatively integrate compound
similarity from both bioactivity profiles and structural fingerprints. Firstly, a hierarchy clustering was performed with
the fused similarity on 37 compounds curated from PubChem. Compared to clustering in a single view, the overall
common target number within fused classes has been improved by using the integrated similarity, which indicated
that the present multi-view based clustering is more efficient by successfully identifying clusters with its members
sharing more number of common targets. Analysis in certain classes reveals that mutual complement of the two
views for compound description helps to discover missing similar compound when only single view was applied.
Then, a large-scale drug virtual screen was performed on 1267 compounds curated from Connectivity Map (CMap)
dataset based on the fused similarity, which obtained a better ranking result compared to that of single-view. These

target-specific compound similarity can be achieved.

available at http://lifecenter.sgst.cn/fusion/.

comprehensive tests indicated that by combining different data representations; an improved assessment of

Conclusions: Our study presented an efficient, extendable and quantitative computational model for integration of
different compound representations, and expected to provide new clues to improve the virtual drug screening
from various pharmacological properties. Scripts, supplementary materials and data used in this study are publicly

Background

To comprehend relationship between intrinsic charac-
teristics of chemical compound and the compound
interaction with protein target is an essential task to
evaluate potential protein-binding function for virtual
drug screening. Similarity relationship between com-
pounds can be characterized differently, depending on
different aspects of features to be measured. The simi-
larity measurement of small molecules has been the
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focus of essentially every compound-based approach to
design or identify novel drug candidates [1]. However, in
the process of novel drug screening, the representation
of a compound varies dramatically, which results in dif-
ferent similarity measurements. Such similarity differ-
ence has given rise to distinct candidate compound
similarity ranking lists with only generally about 15%
overlap [1]. It is demanding and necessary if information
from multiple data sources can be integrated together to
produce a comprehensive representation and assessment
of similarity relationship between small molecules [2],
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thus expected to boost the results of virtual drug
screening.

Generally, the drug candidates are related to spe-
cific targets. The investigation on the nature of
target-specific structure—activity relationships of mole-
cules should be based on the available data sources
concerning structure, activity and target-binding infor-
mation from a comprehensive and integrative per-
spective. Fortunately, public resources are in a rapid
growth both in the quantity of data and in the type
of data-generating, which provide us a great chance
to further mine the relationship between compounds
and their targets. Besides the classic representations
of small molecules, like various fingerprints character-
izing compound chemical structure, public high-
throughput experimental data representing bioactivity
of compounds are boosting with the development of
online database, including PubChem (http://pubchem.
ncbi.nlm.nih.gov/) [3], Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) [4] and
DrugBank (DrugBank, http://drugbank.ca/) [5] etc.,
which provides an alternative way for molecule

characterization based on bioactivity profiles. Several
recent studies on the relationship between different
compound features claimed that, correlations were
proposed between bioactivity profiles and target net-
works, especially when chemical structures were
similar [2,6-8]. By simply combining both public re-
positories of compound targets and compound bio-
activity, these studies indicates that comparison of
bioactivity profile can provide insight into the mode
of actions (MOA) at the molecular level, which will
facilitate the knowledge-based discovery of novel
compounds. However although various relationship
were found between multiple features, no effective
quantitative integrating methods was proposed or
evaluated to combine these multi-view features.
Inspired by previous works, two important and inter-
esting computational issues are needed to investigate:
(1) is there a quantitative relationship between com-
pound features (bioactivity profile and structural fea-
ture) and compound target that can be specifically
described? (2) Since the former works implicated that
an integration of multiple compound features may re-
sult in a better measurement of target-specific com-
pound similarity rather than only one specific type
was adopted, how such integration can be optimized
to quantitatively and automatically combine informa-
tion from various views of compound representations,
i.e., structural features, bioactivity features and other
more? Hereby in our study, we refer such multiple
features description and integration for compound as
a multi-view data representation and learning prob-
lem, and we aim at presenting a quantitative
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relationship between target-specific compound simi-
larity and multi-view representations of compound
features in an efficient multi-view learning schema.

It should be noted that the term “multi-view
learning” was initially presented from 3D-object
recognition by the machine learning and graphic
communities [9]. Naturally as implicated by its
name, multi-view learning combines models from
different aspects of one identical entity to obtain an
overall and comprehensive representation for further
study. Multi-view learning was classically introduced
as co-training, a semi-supervised learning procedure
to distinguish webpages using two different types of
data [10]. Thereafter the concept of integration of
different information sources has been developed for
years in the field of information retrieval [11-13].
On the other side, as an unsupervised-learning
method, multi-view clustering algorithms can be
divided into two categories in general [14]: (1) Fu-
sion of similarity data by deriving a convex combin-
ation of similarities from different views to minimize
a given penalty error [15,16]. (2) Fusion of clustering
decision derived from each view separately [17,18].
In the clustering process, other techniques like ca-
nonical correlation analysis (CCA) [19] and matrix
factorization [20] were employed to reduce the fea-
ture dimension or reconcile clustering groups. These
applications of multi-view learning commonly yield
better performance than that of single-view learning.
In our study, as both the structure and bioactivity
information are two distinguished intrinsic features
to describe the small molecule, it is natural to inves-
tigate the results with the integration of both the
chemical space (molecule structure) and genetic
space (bioactivity profile) of molecules for a better
evaluation of molecular properties and similarity
comparison.

In this study, firstly a data set of 37 compounds (in
Additional file 1: Table S1) from previous study based
on bioactivity profile similarity [6] were adopted. Two
similarity matrix characterizing bioactivity profile and
structural similarity were calculated. As we would like to
investigate the hierarchical structure of similarity among
compounds regarding to multiple data sources, rather
than only achieve an integrated ranking decision, a simi-
larity fusion method was employed and modified to
automatically optimize the weights of the combination
of different similarity data. A hierarchy clustering was
produced and discussed based on the fused similarity.
Then, in order to evaluate the fusion method on the
large scale dataset, Connectivity MAP dataset [21] con-
taining 1267 compounds with their gene expression pro-
file and structure fingerprint representation were used to
perform drug virtual screen based on similarity
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searching. The compound-target interaction in these
experiments was also analysed and compared quantita-
tively to demonstrate the benefits introduced by the in-
tegration of multiple data representations.

Materials and methods

Algorithm workflow

The workflow of our analysis is illustrated in Figure 1. The
intuition behind this workflow is to automatically identify
the weights for two molecule representations in fusion
under a mathematical optimization framework. Given two
similarity matrix Py and P,, weights a = (ay, ay) were to
be optimized for a final similarity matrix p = a;p; + aap,
. Initially two similarity matrices of different views were
used as input after standardization to the z-value and
renormalization. Then a two-step alternative minimization
was used to obtain the proper weights for the two similar-
ity matrix in fusion. In the first step, given the initial
weights  a = (a1, ap) Cross-entropy between the input
matrices and a combined non-negative factorization was
minimized by an EM algorithm. In the second step, given
the calculated cross-entropy, the weights were calculated
by minimizing the object function, i.e. the cross-entropy
and entropy of the weight. The two steps iterate until con-
vergence. The final a was used as an ideal weighing vector
that obtains balance between weighted sparseness and in-
formativeness. Details are shown below.
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Dataset

NCI-60 dataset

In our study, the same data set used in Cheng’s work [6]
rather than the up-to-date data is applied for equally com-
parison purpose, in order to illustrate the superiority of
target-relationship analysis with similarity fusion from in-
tegration of multi-view information. The NCI-60 data set
is available in the PubChem BioAssay Database, derived
from the bioassays titled “NCI human tumor cell line
growth inhibition assay” with relatively sufficient number
of tested compounds (more than 16,000). Finally, filtered
through 3 rules as Cheng defined [6], 37 small molecules
of eligible quality were curated as the final NCI-60 dataset
(in Additional file 1: Table S1).

CMap dataset

In order to demonstrate the performance of the feature in-
tegration on the large-scale dataset, similarity fusion was
performed on the well-known Connectivity Map dataset.
[21] Justin Lamb, et al. had created the first reference col-
lection of gene-expression profiles from cultured human
cells stimulated with bioactive small molecules, together
with the pattern-matching algorithm to mine these data.
To date, CMap contains approximately 7,100 expression
profiles representing 1,309 compounds. Some compounds
with only expression profiles of HT_HG-U133A_EA Gene
chips were not included in this study due to the lack of
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Figure 1 Workflow of this study. Initially two similarity matrices of different views were used as input after standardization to the

z-value and renormalization. Then a two-step alternative minimization was used to obtain the proper weights for the two similarity matrix in
fusion. In the first step, given the initial weights a = (a4, a,). cross-entropy between the input matrices and a combined non-negative
factorization was minimized by an EM algorithm. In the second step, given the calculated cross-entropy, the weights were calculated by
minimizing the object function, i.e. the cross-entropy and entropy of the weight. The two steps iterate until convergence. The final a was used as
an ideal weighing vector that obtains balance between weighted sparseness and informativeness.
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chip description information. Compared to the former
NCI-60 data, the gene expression profile for a compound
can also be viewed as a kind of bioactivity representation.

Methods

Test for NCI-60 dataset

Similarity matrix from two views: Bioactivity profile and
molecule structure

The pairwise similarities among the 37 molecules are
characterized by two similarity matrices in two views. In
the view of bioactivity, similarity between two com-
pounds is measured by the Pearson correlation coeffi-
cient of the two bioactivity profiles:

nZAiBi_ZAiZBi
r= (1)
\HEA-(5A)*\[nE B~ (5B,)

Where n is 37, A; and B; are the log(GI50) values in
the ith NCI-60 cell line for the compound A and B, re-
spectively. In the view of molecule structure, commonly-
used path-based 1024-bit fingerprint of each compound is
calculated via java CDK library to represent the molecular
structure, and the similarity of two compounds is measured
by the tanimoto-index of the two structural fingerprints:

Nyg

f=— 4
Ny + Np — Nyp

(2)
where N4 (N3) is the number of features in compound A
(B), and N3 is the number of features common to both A
and B. Both of the two similarity measurements are in the
interval from 0 to 1. It should be noted that correlation co-
efficient of bioactivity profile below O are assign to 0 for
two reasons: (1) only very few compounds pairs have a
negative correlation coefficient and the minimum is -0.2,
which is not significant as an evidence of negative correl-
ation; (2) regarding to the integration analysis of different
similarity information, negative correlation brings in no bet-
ter information of molecular similarity than noise. Finally,
as the input for multi-view fusion [15], the two n7in similar-
ity matrices S = (Su) were standardized as S =
(S—mean;) /sds and renormalized to P = S/¥;S;.

Fusion of similarity matrices by expectation-maximization
(EM) algorithm

The fused similarity matrix is a convex combination
of the L original matrices weighted by vector awith
Yia; =1 and a;20. The advantage of this model lies
that it can automatically learn the optimized proper
weights for each matrix for fusion rather than arbi-
trary setting the values. This is achieved by an two-
step alternative minimization method introduced by
T. Lange and J.M. Buhmann [15]. A brief process of
the two alternating steps is summarized as follow:
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1. Non-negative matrix factorization:

In this study the Non-Negative Matrix Factorization
(NMF) is used as one step of the minimization of cross-
entropy. The target fused matrix Pe[0,1]"" can be fac-
torized into a product VH’of the niik matrices of V and
H. Here the parameter k was assigned to 6 in accord-
ance with Cheng’s number of clustering [6]. It should be
noted that the selection of clustering number in a com-
mon cluster algorithm is always a non-trivial problem,
however in our study, we just set the same cluster num-
ber as in the former study for an equally comparison
purpose. The computational model proposed here is well
extendable to tune the optimal cluster number if any
pre-knowledge are unavailable. Then given the fixed
weights aof the similarity matrices (initial a of (0.5, 0.5)
is used and the value of « is updated in every iteration),
we can obtain estimated and using an EM-process which
minimize the cross-entropy between P and by updating
V and H iteratively.

2. Optimizations of weights for similarity matrices by
minimizing the cross-entropy:

Given the estimated factorized matrices, we minimize
the cross-entropy between and VH’

MingyuY,0;C(P;|[VH?) (3)

regarding to a« subject to Y4, =1 and ;20, where
C(P||Q) denotes the cross-entropy of P and Q, and:

C(P[|Q) = -Zup(x) logq(x) (4)

Hence the second step becomes a linear program
problem.

Since the solution of the linear program would tend to
be too sparse that only one of the data source would be
chosen to minimize the object function, which is against
our intention to combine multiple data source, it is ne-
cessary to modify the object function by introducing the
entropy of weight a so that both sparseness and inform-
ativeness could be taken into account. Since the infor-
mation quantity provided by the weights vector could be
measured by its entropy [15], the modified object func-
tion is: MingyuY,0;C(P;|[VH!)-nH(a) s.t. Ya = 1and
a;20 (5)Where H(a) denotes the entropy of a:

H(a) = -Zp(a;) logp(a;) (6)

Then the second step becomes a NLP problem and can
be solved with LINDO API 6.1.

Parameter optimization
The parameter n—oco controls the trade-off between
sparseness and informativeness. n—0 indicates that
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entropy will take few significance in the object function,
while n—e indicates that information are taken as the
most important factor in the object function, and the
weights of different source are evenly distributed. Tun-
ing nis a non-trivial work. In the previous work the
sampling-based assessment of 1 is not suitable for clus-
tering of small size objects (like the NCI-60 dataset in
this study). In our study a leave-one-out stability assess-
ment was used to assign a proper value of n. The ideal n
is expected to render better stability when a clustering is
performed. For NCI-60 dataset, we performed 37 times
leave-one-out sampling for clustering of the whole data,
and each time 36 compounds were selected. A series of
nranging from 0.001 to 1000 were used in the fusion
model. Two parameters were used as the evaluation of
the performance regarding to different n value, as listed
in the following. It should be noted that other measure-
ments can also be adopted to tune the n value in cluster-
ing, which will be generally consistent to these two
measurements and will not be discussed here:

1. Average mean disagreement (AMD)

AMD is defined as the average value of the mean dis-
agreement among the 37 subgroups. Given the cluster-
ing results Ye{1,2,...,k}" by cutting the clustering tree
into k class with by cutting the clustering tree into k
class with k€2, 15], the AMD is defined as:

1
AMD = B Zslmeany,yleyzlf’zll{yixy;} (7)

Where S is the number of subgroups, Y, Y are two clus-
tering result with equal k value, y; and y; are class labels
of element i in two results respectively, I{4, is the indica-
tor function of expression A. The n value with a lower
AMD in the clustering result is considered as a good
parameter.

2. Average Dunn’s Index (ADI)

ADI is used to describe the partition quality in a clus-
tering result. Dunn’s index is defined as the ratio of the
minimal interclass distance and maximal intra-class dis-
tance. Higher Dunn’s index indicates better validity of
partition. For NCI-60 dataset we calculate the average
Dunn’s index regarding to a range of class number
ke[2,15] as defined in AMD. The n that obtains a high
Dunn’s index with low variance could be considered as a
proper estimation.

Fused similarity matrix
After estimating the sparseness controlling parameter,
the alternative minimization steps were repeated on the
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whole dataset. Final weights vector a was calculated and
the fused similarity matrix can be obtained as the convex
combination of the two original similarity matrices with
the weights a.

Compound-target interaction analysis

A compound-target interaction network can be con-
structed via target annotation in the PubChem BioAssay
database. In general, one compound (identified by CID)
was linked to a target protein (identified by NCBI pro-
tein ID, or GI) if this compound was tested active in the
bioassay which was specified with the protein target. All
the target annotation and activity information was
retrieved from PubChem BioAssay database via E-
Utilities tool. The interaction network was constructed
and visualized by using the Cytoscape (version 2.7.0)
[22], containing 37 compound nodes and 138 target
nodes (in Additional file 1: Table S2).

We proposed a quantitative method to analysis the re-
lationship between compound similarity and their pro-
tein targets. This method is based on the concerning
that compounds which have similar features, either
structural or biological, tend to share common protein
target. Based on such assumption, it is nature to build a
connection between the quantitative similarity between
compounds and the common target number within a
group of compounds. And it is obvious to conclude that
the common target number in a cluster derived by a
clustering algorithm is an efficient measurement to
measure the quality of the similarity adopted for this
clustering. The larger common target number obtained
in a cluster generally reveals a more reasonable similarity
adopted. Followed by this strategy, in our study the
compound-target interaction network was modified by
taking out all the target nodes by linking two compound
nodes together if they have a common protein target.
The modifying process was carried out using Pajek [23].
And an average degree within a cluster was presented,
which is calculated as an efficient measurement of the
common target number in this cluster:

1
D=3 .D, (8)

Where D; is the degree of node j in the graph and # is
the number of nodes. The degree analysis was accom-
plished by using igraph package (version 0.5.1) [24] in R
(version 2.12.0) [25].

Similarity fusion on large-scale CMAP dataset

In order to demonstrate the performance of the feature in-
tegration on the large-scale dataset, similarity fusion was
performed on the CMap dataset. In this study, in order to
generate pair-wise relationship among all the compounds,
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Gene Ontology (GO) fingerprint [26], which is presented in
our previous study as a well-defined bioactivity representa-
tion, was adopted to combine all the expression profiles of
one compound and reduce the high dimensions and noises
in the microarray data. This descriptor was used to describe
drug in a biological activity view. Similarly, the same struc-
tural fingerprint as used for NCI-60 data was used here to
describe drug in a compound structure view.

The fusion of structural fingerprint and GO-
fingerprint similarity matrices was performed following
the same workflow aforementioned for NCI-60 data.
And the detailed parameter optimization will not be dis-
cussed here. Considering that clustering result of large
scale dataset cannot be analysed straightforwardly as the
former 37-compound dataset, two typical HDAC and
HSP90 inhibitors, which was used as the examples in
Lamb’s work, were chosen as the queries to validate our
fusion method from the perspective of virtual drug
screen. For each query, the ranks of similarity searching
derived by the fused similarity were compared to that
with only single view, and the targets of top-ranked
compounds with similarity above 0.5 to queries were
also analysed for further discussion.

Results and discussions

Test results for NCI-60 dataset

Assessment of the sparseness-controlling parameter for
NCI-60 data

For the stability assessment, n was chosen in a range as
(0.001, 0.01, 0.1, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4,
5,6,7,8,9, 10, 100, 200, 500, 1000). It should be noted that
if n is smaller than 0.5, extreme large weight would be
added on one of the two original similarity matrices (larger
than 0.99), while n larger than 10 will generally separate the
weight evenly between the two matrices, ie. 0.5 for each.
After the 37 times leave-one-out subgroup clustering, two
parameters, AMD and ADI were calculated as the evalua-
tions of the clustering quality (Figure 2).

As shown in Figure 2A, the Average Mean Dis-
agreement reached the lowest value when n = 3. Fur-
thermore, the Average Dunn’s Index indicated the
validity of the clustering. As shown in Figure 2B, the
ADI grew gradually when n increased below 3. The
decreasing variance suggested an accretive clustering
quality. It should be noted that when n =3 ADI has
a sharp rise, while after that the trend of growing has
become attenuated. Later calculation of weights «
reveals that n lower than 3 or greater than 100 will
tend to give biased weights to the two matrix, ie. ei-
ther a« = [0,1] or a = [0.5,0.5]. In summary, given the
best value of n in AMD, and a relative high value in
AD], it is reasonable to choose n =3 as a proper es-
timation to control the sparseness.
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Clustering result

A hierarchy clustering result for the 37 compounds
based on fused similarity is shown in Figure 3. It should
be noted that there exist several differences on the struc-
ture of the hierarchy clustering tree compared to single-
view similarity clustering, as shown in Cheng’s work
(The previous clustering results of single-view similarity
are shown in Additional file 1: Figure S1). Generally
speaking, using correlation of bioactivity profile instead
of Euclidean distance helps to find a new member in
one cluster (referred to as cluster B in Cheng’s work [6]),
and our fused similarity clustering result combines dis-
tinct clusters that exist in different single-view clustering
separately. It should be noted that clusters with low
fused similarity (with a distance above 0.7 in this study)
have neither significant structural nor biological resem-
blance, hence no detailed analysis was presented. In the
following part 3 interesting findings for NCI-60 data
from the multi-view clustering were discussed compared
to the clustering with only bioactivity profiles or struc-
tural fingerprints respectively.

Overall average common target number As shown in
Figure 4, the x axis is the number of classes the hier-
archy tree was cut into; the y axis was the average com-
mon compound target number within one class. It is
apparent that the common target number would de-
crease as the member within each class drops when class
number increases, since the number of objects in each
class decreased. The common target obtained by fused
similarity, structural similarity, bioactivity profile similar-
ity and bioactivity profile Euclidean distance were repre-
sented by red, green, blue and purple lines respectively.
It is interesting to find that in general the common tar-
get number obtained by fused similarity is larger than
those obtained by the other two single-view similarities,
which indicates that the multi-view data representation
provides a better similarity measurement and clustering
validity in target-specific compound analysis compared
to single-view clustering.

Highly similar structure as complement of bioactivity
profiles In the hierarchical tree a cluster (Cluster B in
Figure 3) with 6 compounds [CID: 72402, 354677,
3246719, 60699, 24360 and 97226] is distinctive in the
final clustering result. Among the 6 compounds, 5 of
them correspond to the Cluster B in the previous clus-
tering achieved only with bioactivity profiles [6]. It is
quite interesting that the one excluded in the single-view
clustering was finally introduced into this cluster when
the structural information and bioactivity profile infor-
mation were considered in an integrated way. An insight
into the bioactivity profiles reveals that compound [CID:
3246719] was excluded in the former study for a
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Figure 2 Parameter optimization. Average Mean Disagreement(AMD) and Average Dunn’s Index(ADI) with different n value. When n=3, AMD

probable reason that its bioactivity profile shifts above
the other 5 profiles (Figure 6A), but keeps the similar
shape of the profile curve. By further comparing their
structures, it is clearly to observe the high similarity
among the 6 compounds (Figure 6B). It is possible to
reason that the intrinsic similar structures of the 6 com-
pounds results in the similar pattern of bioactivity pro-
files, i.e. similar chance to function in the compound-
target network, and the up-shift dosage of the outlier
compound above other bioactivity profiles will influence
little on its functions related to specific target. However,
with only bioactivity profile distance measurement, such
information may be lost by ignoring structural resem-
blance and corresponding bioactivity correlation. It can

be seen that there exist an approximately 1 order of
magnitude difference between the GI50 of compound
[CID:3246719] and the other 5 compounds. Therefore
their bioactivity profiles will varied significantly while
the correlation remains relative large.

Further compound-target interaction analysis on
the protein targets within this cluster shows that the
compound CID: 3246719 shares common protein
target with other members in the group, while this
compound was missing in the previous compound-
target network [6] as shown in Additional file 1: Fig-
ure S1A. It can be seen that there’re three protein
target linked to compound CID: 3246719 [GL:
119579178, 222080095 and 3287985] (Figure 5). All
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(g

the three protein targets are shared in the former
single-view clustering. It is indicated that by using
multi-view similarity analysis a missing group mem-
ber was discovered by introducing extra structural
information. It is evident that compounds sharing

Average Common Target Number

— fused
fingerprint
— bio_corr

common target number
4

number of classes

Figure 4 Average common target number of the clustering
result. The hierarchy clustering tree was cut into a range of classes.
The common target obtained by fused similarity, structural similarity,
bioactivity profile similarity and bioactivity profile Euclidean distance
were represented by red, green, blue and purple lines respectively.
The value of the default class number 6 was marked with a yellow
line.

similar structural features and bioactivity profiles
simultaneously will give bonus to the performance in
a similarity-based search. In addition, other two
compounds (Cluster C, [CID: 4212 and 5458171])
can be another good examples. These two com-
pounds are significantly similar both in structure and
bioactivity profiles (Additional file 1: Figure S3);
hence they get a notably high similarity in the hier-
archy tree (Figure 3).

Highly similar bioactivity profiles as complement of
moderately similar structure Another cluster composed
of three compounds [CID: 2723601, 3246652 and
5351879] are noteworthy to explain in the fused hierarchy
clustering tree. If we only measure the compound similar-
ity with structural information, we can see that there are
relatively less similar. However, when combined with the
bioactivity information, these three compounds success-
fully merged into the first cluster during hierarchical clus-
tering [6]. (Additional file 1: Figure S2). Target interacting
analysis reveals that these three compounds share a com-
mon target [GL: 4504349], indicating a potential common
function in biological process. It is notable that certain
fragment of the compounds, thioguanine in this example,
instead of the complete structure, is essential in a binding
event. Therefore when compounds that bind to a common
target exhibit only relatively low overall structural similar-
ity, it could be a good complementary to introduce the
bioactivity profiles to suggest a more strong correlation
with target binding potent. Such advantage of multi-view
similarity assessment could be remarkable when no prior
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Figure 5 Compound-targets network of clustering. Protein Targets are represented in rectangle shape, and the corresponding compounds
are represented in eclipse shape in cluster B. Compounds in previous cluster B were marked in purple. The newly discovered class member using

fused similarity was marked in blue.

knowledge about either specific functional fragment or  similarity searching based on fused similarity, GO finger-

target is available. print and structural fingerprint respectively. The top 10

ranking results were listed in Table 1. It is very interest-
Drug virtual screen based on fused similarity of CMap ing that among all the ranking compounds, vorinostat
dataset and scriptaid, two strong HDAC inhibitors [28,29] were

Firstly, trichostatin A (TSA), a typical Histone deacety-  successfully retrieved in the top 2 (1°* and 2" of the
lases (HDAC) inhibitor [27], was used as the query of 1267 compounds) using fused similarity. As shown in
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Figure 6 Bioactivity profile(A) and compound structure (B) of the 6 compounds in cluster B. Bioactivity profile and compound structure of
the 6 compounds in cluster B were presented in Figure 6A and 6B respectively.
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Table 1 Similarity search based on fused similarity: HDAC inhibitors

Fused similarity GO fingerprint Structural fingerprint
Rank Compound Similarity Compound Similarity Compound Similarity
1 vorinostat 0.5831 vorinostat 0.6842 chlorambucil 0.3768
2 scriptaid 0.5308 scriptaid 0.6293 mifepristone 03512
3 mycophenolic acid 0.3849 thapsigargin 04567 IC-86621 0.3289
4 thapsigargin 0.3825 mycophenolic acid 04444 menadione 0.3037
5 rifabutin 03719 rifabutin 04372 ciclopirox 0.2941
6 penbutolol 0.3630 ouabain 04245 3-hydroxy-DL-kynurenine 0.2903
7 benzethonium chloride 0.3575 cephaeline 04196 crotamiton 0.2857
8 cephaeline 0.3566 penbutolol 04162 fenbufen 0.2766
9 GW-8510 0.3562 GW-8510 04144 N-phenylanthranilic acid 0.2761
10 flunixin 0.3530 benzethonium chloride 04081 bupropion 0.2701

Trichostatin A (TSA) was used as the query compound.
Top-ranked HDAC inhibitors were marked in bold.

Table 1, vorinostat and scriptaid ranks as the top two
candidates in the view of GO fingerprint, which indi-
cates their similar expression profiles. However in the
view of structural fingerprint, vorinostat and scriptaid
were ranked 83™ and 295" respectively. Further analysis
on the weighing scheme reveals that this is reasonable
since the optimized fusion method successfully give a
larger weight on the information-rich GO fingerprint.
More interesting results were discovered on the similarity
searching of geldanamycin, an HSP90 inhibitor [30].
(Table 2) It can be seen that tanespimycin and alvespimycin,
both the derivants of geldanamycin, which are also typical
HSP90 inhibitors [31,32], were ranked at 1st and 2 rd place
using fused similarity. In addition, monorden, which is an-
other common HSP90 inhibitor [33] was ranked in top 10
(rank 8"). However, when using only GO fingerprint and
Structure fingerprint, monorden was ranked 10" and 123"
respectively. More interestingly, 15-delta prostaglandin J2

(15d-PGJ2), suggested to exert anti-inflammatory effects
in vivo [34], ranked 3 in the fusion similarity searching,
Further literature research on its target indicates that
HSP90 is a target for modification by 15d-PGJ2 in renal
mesangial cells. [35] This result shows that by assigning
balanced weights to the two views, our fusion method suc-
cessfully picked out this newly discovered HSP90 inhibitor,
thus demonstrated the fused similarity provides an effective
quantitative assessment of drug-target relationship.

Conclusions

A multi-view clustering method was introduced to dis-
cover a more robust correlation between fused multi-
view similarity and compound-target interacting pattern.
By using a similarity-based optimization and fusion
model, a hierarchy clustering integrated with both struc-
tural and bioactivity profile information was presented
on the NCI-60 dataset. It is interesting that comparing

Table 2 Similarity search based on fused similarity: HSP90 inhibitors

Fused similarity GO fingerprint Structural fingerprint
Rank Compound Similarity Compound Similarity Compound Similarity
1 tanespimycin 0.7481 tanespimycin 0.7262 tanespimycin 0.8253
2 alvespimycin 0.6155 15-delta prostaglandin J2 0.5914 alvespimycin 0.7880
3 15-delta prostaglandin J2 0.5111 alvespimycin 0.5667 securinine 04055
4 thiostrepton 04894 sodium phenylbutyrate 0.5579 sirolimus 0.3826
5 scopolamine N-oxide 04785 scopolamine N-oxide 0.5568 tacrolimus 03723
6 monorden 04737 thiostrepton 0.5455 meclocycline 0.3524
7 cefsulodin 04693 nordihydroguaiaretic acid 0.5375 rifabutin 03516
8 tetracycline 04603 monorden 0.5366 chlortetracycline 0.3508
9 sodium phenylbutyrate 04550 prochlorperazine 0.5326 demeclocycline 0.3508
10 LY-294002 04544 cefsulodin 05294 5707885 0.3471

Geldanamycin was used as the query compound.

Top-ranked HSP90 inhibitors were marked in bold.
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to single view analysis, the overall common target num-
ber within fused classes has been promoted by integrat-
ing information from two views, which indicated a more
robust and efficient representation of compound related
to specific target. Analysis of compound-target inter-
action network shows that fusion of data source from
different views enhances similar compound discovery,
leading to a more comprehensible assessment of target-
binding potent. Further analysis in certain classes with
high fused similarity shows that the mutual complement
of the two views can lead to the discovery of missing
similar compound with only one view. A further large-
scale similarity searching on the CMap data based on
the fused similarity also obtained a better ranking results
compared to that of single-view for two inhibitors as
queries, thus indicate the potential use of our quantita-
tive similarity fusion in virtual drug screen. In summary,
our findings are interesting for the following reasons:
Firstly, both the bioactivity profiles and structural finger-
print lack to be a completely direct indicator of inter-
action, ie. only partial features instead of overall
characterization from either view are essential in a bind-
ing event. Hence by integrating potentially correlating
features from both views to maximize the utility of avail-
able data source, a robust similarity assessment could be
achieved without prior knowledge about the detail rela-
tionship between target-binding rules and compound
features. Secondly, the fusion method in this study pro-
vides an extendable framework of integrating multi-view
data. Fusion process is applicable to various situations
when more than two data sources are available. A com-
prehensive assessment of the similarity can be achieved
in virtual drug screening when various potential pharma-
cological properties of compounds are integrated.

Additional file

Additional file 1: Additional tables and figures were saved in the
word file entitled “supplementary.doc”, containing the 37
compounds CID list, target information and other clustering results
for the NCI-60 dataset, etc.
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