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Abstract

Background: Stochastic Context–Free Grammars (SCFGs) were applied successfully to RNA secondary structure
prediction in the early 90s, and used in combination with comparative methods in the late 90s. The set of SCFGs
potentially useful for RNA secondary structure prediction is very large, but a few intuitively designed grammars have
remained dominant. In this paper we investigate two automatic search techniques for effective grammars –
exhaustive search for very compact grammars and an evolutionary algorithm to find larger grammars. We also
examine whether grammar ambiguity is as problematic to structure prediction as has been previously suggested.

Results: These search techniques were applied to predict RNA secondary structure on a maximal data set and
revealed new and interesting grammars, though none are dramatically better than classic grammars. In general,
results showed that many grammars with quite different structure could have very similar predictive ability. Many
ambiguous grammars were found which were at least as effective as the best current unambiguous grammars.

Conclusions: Overall the method of evolving SCFGs for RNA secondary structure prediction proved effective in
finding many grammars that had strong predictive accuracy, as good or slightly better than those designed manually.
Furthermore, several of the best grammars found were ambiguous, demonstrating that such grammars should not be
disregarded.

Background
RNA secondary structure prediction is the process of
predicting the position of hydrogen bonds in an RNA
molecule based only on its nucleotide sequence. These
predictions can be used to better understand the func-
tioning of cells, characteristics of gene expression and
the mechanisms involved in protein production [1]. Early
attempts at systematic prediction include [2]; who sim-
ply evaluated all possible structures with respect to free
energy functions. Later, thermodynamic principles were
used to advance free energy methods in algorithms such
as UNAfold [3] and RNAfold [4]. (For a good overview
of RNA secondary structure prediction, see [5]). Whilst
energy minimisation models have proved popular, SCFG
based methods also have their merits.

Stochastic Context Free Grammars
A context–free grammar G (henceforth abbreviated to
“grammar”) is a 4–tuple (N, V, P, S) consisting of a finite
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set N of non–terminal variables; a finite set V of terminal
variables that is disjoint from N ; a finite set P of pro-
duction rules; and a distinguished symbol S ∈ N that
is the start symbol. Each production rule replaces one
non–terminal variable with a string of non–terminals and
terminals.
One possible grammar, generating strings whichmay be

interpreted as addition/multiplication expressions using
only the number 1, may be represented thus:

S → F + S|F
F → 1|(S)|F ∗ F .

Note that each instance of S (standing for sum) gener-
ates a sum of n ≥ 1 terms (F + F + . . . F), and each F
(standing for factor) generates a 1, a product of terms (F ∗
F), or a whole expression within parentheses. It should be
clear that many different expressions might be generated:
1+ 1+ 1, (1+ 1 ∗ 1) + 1+ (1), and so forth. Formally, the
grammar has non–terminal variables S, F, terminal vari-
ables (, ),+, ∗, 1, production rules S → F +S, S → F , F →
1, F → (S) and start symbol S. The order in which the
production rules are used forms the derivation of a string.
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One valid derivation would be S ⇒ F ⇒ (S) ⇒ (F) ⇒
(1), generating the string ‘(1)’ and using the sequence of
production rules S → F , F → (S), S → F , F → 1.
A SCFG is a grammar with an associated probability dis-

tribution over the production rules which start from each
T ∈ N . Beginning with the start symbol and following
production rules sampled from the relevant distribution,
a string of terminal variables can be produced (if the
grammar terminates). Choosing nucleotide symbols or
the three characters used in dot–parenthesis notation as
terminal variables, SCFGs can be constructed which pro-
duce strings corresponding to nucleotide sequences or
secondary structures.

Application of SCFGs to RNA Secondary Structure
Prediction
The use of SCFGs in RNA secondary structure predic-
tion was based on the success of Hidden Markov Models
(HMMs) in protein and gene modelling [6]. Any attempt
to apply HMMs to RNA secondary structure was pre-
vented by the long–range interactions in RNA [7]. SCFGs,
being generalisations of HMMs, offer a solution. This
was first exploited by [8] and then developed by others
(e.g. [9]).
The Pfold algorithm [10,11] is one of the most success-

ful approaches using SCFGs. It is designed to produce an
evolutionary tree and secondary structure from an aligned
set of RNA sequences. Pfold uses a SCFG designed specif-
ically for RNA secondary structure prediction (denoted
KH99 in this paper). Therefore, when only considering
a single sequence, Pfold is simply a SCFG prediction
method. There are other approaches which predict sec-
ondary structures from aligned RNA sequences, such as
RNAalifold [12] and Turbofold [13]. However, we are con-
cerned with the single–sequence prediction problem, so
these are not used here.
While KH99 was effective, it seems to have been chosen

relatively arbitrarily, in that there is little discussion about
themotivation behind the choice of production rules. This
problem was addressed by [14], in which nine different
lightweight SCFGs were evaluated on a benchmark set
of RNA secondary structures. The set of grammars they
tested, however, was by no means exhaustive. All of these
grammars were constructed by hand and there was lit-
tle motivation for their production rules (except for the
extension to stacking grammars: production rules such as
Pbb̂ → aPaââ for nucleotides a, â, b, b̂). This suggested
that a computational search of a large space of grammars
might find stronger grammars, which is what we have
attempted in this paper.
Evolutionary approaches have already been imple-

mented for HMMs. Indeed, [15] used one to find the best
HMM for protein secondary structure prediction. A mild
improvement was found compared to HMMs which had

been constructed by hand. It is hard to tell quite how
conclusive the results were since the limited size of the
data set forced training and testing to be done on the
same data. Given the size of the data set, overtraining
may have caused unreasonably high quality predictions.
Clearly though, the method is potentially very powerful.

Methods
In this paper, only structure generating grammars are
considered (i.e. those which have terminal variables in
{( , ), . }). Strings generated by these grammars uniquely
define secondary structures, with a dot ‘.’ representing an
unpaired nucleotide and an opening parenthesis indicat-
ing pairing with its corresponding closing parenthesis.
Once a structure is generated, a generative model for
sequences is to stochastically allocate nucleotides to each
site according to the frequency of occurrence (paired and
unpaired) in some set of trusted sequences and structures.

Normal forms
To develop algorithms for analysing sequences under
grammatical models, it is convenient to restrict the gram-
mar to a normal form, with only a few possible types
of productions. The normal form most commonly used
is Chomsky Normal Form (CNF), as every context–free
grammar is equivalent to one in CNF. However, a gram-
mar in CNF cannot introduce the corresponding paren-
theses of paired nucleotides in a single production, and
therefore does not capture structure in a straightforward
manner. Thus it was necessary to create a new double
emission normal form (so called because paired bases
are emitted simultaneously) which was able to capture
the fundamental features of RNA secondary structure:
branching, unpaired bases, and paired bases. For any com-
bination of non–terminals (T, U, V ) we allow only rules of
the following form:

T → UV
T → .
T → (U)

This normal form allows the development of the struc-
tural motifs commonly found in RNA. For example (where
Vi correspond to non–terminals) base–pair stacking can
be generated by rules of the type V1 → (V1), hairpins by
V1 → (V2), V2 → V2V3|V3V3 and V3 → . , and bulges
by V1 → (V2), V2 → V3V1 and V3 → .|V3V3 .
Furthermore, with the exception of the ability to gener-

ate empty strings, this normal form allows the expression
of dependencies of any context–free grammar producing
valid structures. It was also designed to avoid cyclical pro-
ductions; that is, combinations of production rules which
result in the same string that they started from. These are
undesirable as they permit a countably infinite number of
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derivations for some strings. For this reason, rules of the
form T → ε and T → U were not considered. There is,
however, nothing intrinsically wrong with these rules; it is
quite possible to create strong grammars with these rules
present (many of those used in [14] have rules of this type).
As a result of eliminating these rules, many grammars

already established in RNA secondary structure predic-
tion cannot be exactly replicated, since they are not ini-
tially in the above normal form. For example, the KH99
contains the rule S → L. As this normal form is an exten-
sion of CNF, any context–free grammar can be converted
to this normal form, maintaining paired terminal symbol
emissions. For example if S → L and L → .|(F), the
forbidden rule S → L would be replaced by S → .|(F).
This produces the same strings, and a given probability
distribution for stochastic grammars can even be con-
served. However, the transformation will often change the
set of parameters in the model, whichmay result in differ-
ent predictions when the production rule probabilities are
inferred.

Secondary structure prediction
Secondary structure can be predicted by two methods,
both of which are employed here. Firstly, one can find
the maximum likelihood derivation of a sequence, dur-
ing which a structure is generated. The Cocke–Younger–
Kasami (CYK) algorithm [16] determines, by dynamic
programming, the probability of the most likely deriva-
tion, and so backtracking can be used to find the most
likely structure. It is designed for grammars in CNF,
though there are established methods of dealing with
grammars in a different normal form [17].
Secondly, one can employ a posterior decoding method

using base–pairing probability matrices. The base–pair
probability matrix for a SCFG are obtained via the inside
and outside algorithms [18]. The secondary structure with
the maximum expected number of correct positions can
then be calculated via dynamic programming. Our decod-
ing algorithm follows [19], including a γ parameter spec-
ifying the trade–off between correct base pairs relative to
correct unpaired positions. For assessing the fitness of a
grammar in the genetic algorithm, a value of γ = 2 was
used, so as to maximise the expected number of positions
correctly predicted.
Both methods were used in the search, as this addi-

tionally gave a chance to compare the two prediction
methods.

Ambiguity and completeness
A grammar is said to be ambiguous if it produces more
than one derivation for a given structure [20]. If structure
A has one derivation with probability 0.3, and structure
B two derivations, each with probability 0.25, the CYK
algorithm will choose structure A, while structure B is

more probable. This may reduce the quality of predic-
tions using the CYK algorithm. The posterior decoding,
though, sums over all derivations in prediction, so might
be affected less by grammar ambiguity.
Nine grammars are tested in [14], of which two are

ambiguous. They find that the CYK algorithm does
choose suboptimal structures, and that the ambiguous
grammars perform poorly relative to the unambiguous
grammars. Consequently, efforts have been made to avoid
ambiguity [20]. The conclusion that ambiguous grammars
are undesirable is not necessarily justified. The ambigu-
ous grammars in [14] are small, with at most two non–
terminal variables, and one might expect them to be
ineffective regardless. Their poor predictive quality may
be due to deficiency in design rather than ambiguity.
We define a grammar to be complete if it has a deriva-

tion for all possible structures which have no hairpins
shorter than length two. Clearly the ability to generate
all structures is desirable for a grammar. However, one
should be careful not to overemphasise this desirability,
even for a complete grammar, once parameters have been
inferred, converting it to a SCFG, it is unlikely that all
structures have a probability significantly different from
zero for any sequence. Similarly, the posterior decoding is
not prone to grammar incompletness in the same way that
CYK is since, in theory, after obtaining the probabilities
of unpaired and paired positions, structures which can-
not be derived with the grammar can still be predicted.
One can perform a heuristic test for completeness by test-
ing on a sample of strings. Ambiguity can also be checked
for heuristically [20], but determining grammar ambiguity
and completeness is undecidable [21].
Practically, it is very difficult to ensure both unambigu-

ity and completeness. A complete, unambiguous grammar
cannot be simply modified without compromising one of
the properties. Adding any production rules (if they are
ever used) will create ambiguity by providing additional
derivations. Equally, removing production rules will cre-
ate incompleteness (unless the rule is never used in a
derivation), as the original grammar is assumed unam-
biguous. Because of this, an automated grammar design
based on simple–step modification is practically impos-
sible without creating ambiguous and incomplete gram-
mars. Moreover, grammars that are unambiguous and
complete are vastly outnumbered by grammars that are
not. Therefore, grammars not possessing these desirable
qualities must be considered and as a result our grammar
search serves as a test of the capabilities of ambiguous or
incomplete grammars.

Parameter inference
Training data, consisting of strings of nucleotides and
trusted secondary structures, is used to obtain the prob-
abilities associated with each production rule, as well as
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paired and unpaired nucleotide probabilities. If deriva-
tions are known for the training sequences, then there
are simple multinomial maximum likelihood estimators
for the probabilities. Usually, though, the derivation is
unknown. Again, one can estimate probabilities by finding
derivations for the training set using CYK, or by the inside
and outside algorithms.
For the CYK algorithm, in the case of ambiguous gram-

mars, one cannot know which derivation produced the
known structure, so probabilities cannot be obtained.
Consequently, we train these grammars using the same
approach as [14] to ensure comparability. That is, we
randomly select one derivation. For unambiguous gram-
mars, such as KH99, this has no effect on the training.
As with the prediction, inside–outside training works for
unambiguous and ambiguous grammars alike.
Again, both CYK and inside–outside were used for

parameter inference in the search and evaluation.

Evolutionary algorithm
With the double emission normal form, for m non–
terminal variables there are 2m3+m2+m grammars (m3 pro-
duction rules of type T → UV , m2 of type T → (U) and
m of type T → .). An evolutionary algorithm would allow
for efficient exploration of the space of grammars in the
above normal form. The way that the algorithm searches
the space is determined by the design of the initial popula-
tion, mutation, breeding and selection procedure. To find
effective grammars, these must be well designed.

Initial population
When forming the initial population, the size of the space
of grammars quickly becomes problematic. The space is
clearly large, even for small m, so the population size
cannot approach that usually afforded in evolutionary
algorithms [22]. We start with an initial population of
small grammars, and use mutation and breeding rules
which grow the number of non–terminal variables and
production rules. Our initial population comprised six-
teen grammars, of the form:

S →
{
SS
−

∣∣∣∣ SB−
∣∣∣∣ BS−

∣∣∣∣ BB−
∣∣∣∣ (S)

∣∣∣∣ .
B → .

where between zero and four of the S → UV rules were
excluded. We also tried initial populations containing the
SCFGs from [14] to consider examining SCFGs close to
these.

Mutation
Mutations constitute the majority of movement through
the search space, so are particularly important. They give
the grammar new characteristics, allow it more structural
freedom, and add production rules which may be used
immediately or may lie dormant. For non–terminals Vi ∈

N , and corresponding production rules PVi , the allowed
stochastic mutations were:

• The start variable (and corresponding production
rules) change,

• A production rule is added or deleted,
• A new non–terminal variable V ′ is added along with

two new rules that ensure that V ′ is reachable and
that PV ′ is not empty,

• A non–terminal variable is created with identical
rules to a pre–existing one,

• A production rule of the form Vi → VjVk is changed
to Vi → VjVl, Vi → VlVk or Vi → VlVp, or
production rule of the form Vi → (Vj) is changed to
Vi → (Vk).

This form of mutation is very basic, but allows many
structural features to develop over generations. The rate
of mutation determines movement speed through the
search space and development of these structural fea-
tures. Adding rules too slowly prevents grammars from
developing structure, while too many results in a lot of
ambiguity and thus creates ineffective grammars. Delet-
ing rules almost always results in a worse grammar. To aid
the grammar design, especially in consideration of facets
of the normal form, the rule B → . was kept constant in
the evolutionary process.
More complex mutation is clearly possible. The deriva-

tion could be used to find the rules used more often and
makemutations of those rules more or less likely. A model
for simultaneous mutations could be developed, which
might be able tomake use of expert understanding of RNA
structure, in combination with an evolutionary search.We
have found the above model to give sufficient mobility in
the search space, and therefore did not investigate other
extensions.

Breeding
The breeding model forms a grammar which can pro-
duce all derivations of its parent grammars. The grammar
G formed from breeding G1 and G2 has start symbol S,
non–terminals V 1, V 2, . . . , Vn and W 1, W 2, . . . , Wm, B,
terminals .,(,) and production rules

• PS = PS1 ∪ PS2 ,• For Vi: PVi where all occurrences of S1 are replaced
with S,

• For Wi: PWi where all occurrences of S2 are replaced
with S.

This breeding model was chosen to keep the size of the
grammar relatively small, whilst allowing expression of
both bred grammars to be present in derivations.

Selection
We grow the population in each generation by introducing
a number of newly mutated or bred grammars, then
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we pare it back to a fixed population size by stochastic
elimination. We determine the probability of elimina-
tion of a grammar by the inverse of some fitness mea-
sure. Fitness functions we use include mountain metric
distances [23] between the predicted structure and the
trusted structure, sensitivity (True Positives/(True Pos-
itives + False Negatives)) and positive predictive value
(PPV) (True Positives/(True Positives + False Positives)).
We follow the definition of accuracy in [14], where a
base pair constitutes a true positive if it is present in
both the predicted and true structures, false positive if
present in only the predicted structure, and false nega-
tive if present in only the trusted structure. We also tried
these accuracy measures in combination with other fac-
tors in the fitness function, including largest correctly
predicted length, inability to predict structures, and cost
for grammar complexity.

Brute force search
In addition to the evolutionary algorithm, we have run
a brute force search to evaluate small grammars which
might be effective. One of the main points of emphasis of
[14] was to look for lightweight grammars. In searching
exhaustively for a small grammar, computational prob-
lems are quickly encountered. The search is feasible for
grammars with only two non–terminals in addition to
the rule B → . (16,384 grammars) but not for 3 non–
terminals (over 500 billion grammars). Whilst the search
in three non–terminals may be worthwhile, especially
since KH99 contains only 3 non–terminals, it was far from
computationally feasible for the purposes of this paper.

Data
We took data from RNASTRAND [24], a collection of
other databases [25-31]. We filtered the data set so that
the sequences and structures could ensure reliability of
predictions. We removed identical sequences and dis-
regarded synthetic data and sequences with ambiguous
base pairs. We further cleaned the data to filter out
any sequences with greater than 80% base pair similar-
ity with another structure (the standard used in [14]).
Furthermore, we removed all sequences with pseudo-
knots as it is well established that SCFGs cannot predict
pseudoknots [32].
The spectrum of sequence length, is of particular sig-

nificance in selecting data. The CYK and training algo-
rithms are of cubic order in the length of the string,
so we decided to use large training and test sets with
small strings. Longer strings require longer derivations,
thus they have a larger weight in the parameter training,
which might lead to overtraining. Equally, if one omits
longer strings, poorer predictions may result from over-
training on the shorter strings. We found the trained
parameters highly sensitive to the choice of training data

set, and struggled to balance this with computational
efficiency.
We used a final data set from a variety of families, con-

sisting of 369 sequences with corresponding structures.
There was a total of 57,225 nucleotides with 12,126 base
pairs. As with [14] and [10,11], sensitivity and PPV were
used as the measures of structure fit, as well as F–score
(2*True Positives/(2*True Positives + False Negatives +
False Positives)), a more balanced measure of sensitivity
and PPV.We investigated the practice of dividing data into
training and test sets. [18] randomly generate training sets
of 200 and 400 strings for parameter training. [14] use a
training set of 278 structures and test set of 403 total struc-
tures. Meanwhile, [10] used a considerably larger training
set, with 2273 structures, and a much smaller test set of
just four sequences. Our training and test sets used in the
evolutionary algorithm were disjoint sets of size 109, cho-
sen at random from those sequences in our data of length
less than 200 nucleotides. The remaining data form our
evaluation set, on which grammars’ sensitivities and PPVs
are reported.
As well as measuring performance on our own data, we

have used results obtained with the [14] data. This helped
us to verify the performances of the new grammars, to
check our results against earlier work, and to verify that
KH99′ is a good representation of KH99.

Results and discussion
Figure 1 shows a typical realisation of the search pro-
cess. The average fitness (here, smaller fitness is desirable)
of the population is shown, as well as the fitness of the
best recorded (champion) grammar. The average fitness
of the population falls consistently as stronger grammars

Figure 1 Fitness evolution. The change over generations in average
fitness of population, and the fitness of the best SCFG. Here, a lower
fitness is more desirable, the SCFG predicting better secondary
structure. Many improvements to both the whole population and
best SCFG are made in the first 100 or so generations. After this, the
best SCFG does not becomemuch better, but the average population
fitness continues to fluctuate. Clearly the algorithm continues to
explore alternative SCFGs and tries to escape the local optimum.
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are found for approximately 100 generations, and then
only minor improvements to the champion grammar were
found. However, the population fitness continues to fluc-
tuate as areas around the local optimum are searched.
Across all our experiments, over 300,000 grammars

were searched. A number of strong grammars were found
using both CYK and IO training and testing, denoted
GG1–GG6. KH99′ is KH99 in the double emission nor-
mal form. Results on the sensitivity, PPV, and F–score of
each grammar can be found in Table 1, in addition to
the benchmark with the [14] data, and results on differ-
ent training and testing methods can be found in Table 2.
Table 2 also gives the scores of the combined best pre-
diction, calculated by selecting, for each structure, the
prediction with the highest F–score, and then recording
the sensitivity, PPV, and F–score for that prediction.

KH99′
A → BA|.|(C)

B → .|(C)

C → BA|(C)

GG1
A → AA|BA|.|(A)|(C)

B → .|(C)

C → BA|(C)

GG2
A → AA|AB|BA|BB|CB|BC|.|(B)|(C)

B → .
C →AA|AB|BA|BB|BC|CA|CB|.|(A)|(B)|(C)

GG3

A → AB|BA|BB|AA|DD|(A)|(B)|(C)|(D)

B → .
C → AA|.|(D)

D → CD|BD|(A)|(C)

GG4

A → CC|CB|BC|EC|(A)|(E)

B → .
C → CB|BB|(A)

D → GC|(C)

E → AB|CD|.
F → AB
G → FB

GG5

A → DA|CC|.|(B)

B → .
C → AA|HF|(G)

D → .|(E)

E → (F)

F → FB|BF|AA|.|(A)|(F)

G → (E)

H → BG

GG6

A → DE|AB|BA|AH|.|(F)|(H)

B → .
C → (H)

D → BB|AC
E → .|(H)

F → FB|CF|.
G → GH|(H)|(C)

H → FA|AF|HH|(B)|(H)

This shows grammars with very different structures per-
form well on the same (full evaluation) data set. KH99′
is still a strong performer, but we have shown that there
exist many others which perform similarly (these GG1–
GG6 form just a subset of the good grammars found in the
search).
GG1 is KH99′ with two rules added, A → AA and

A → (A). These rules were used infrequently (probabili-
ties 0.007 and 0.047 respectively). The mild improvement
in functionality allows for an additional fraction of base
pairs to be correctly predicted.
GG2 and GG3 were found using the posterior decod-

ing version of the evolutionary algorithm. They have a
high density of rules, that is many rules for each non–
terminal variable. Particularly, GG2 has almost all of the
rules it is possible for it to have, given B → . is kept
constant through the evolutionary algorithm. Given this,
it is not surprising that they performed poorly using
the CYK training and testing. However, with posterior
decoding, the base–pair probabilities are still effective for
good predictions.

Table 1 Sensitivity and specificity of evolved SCFGs and other predictionmethods

Grammar KH99′ GG1 GG2 GG3 GG4 GG5 GG6 KH99 UNAfold RNAfold Pfold

Our data

Sensitivity 0.496 0.505 0.408 0.413 0.474 0.469 0.526

PPV 0.479 0.481 0.551 0.550 0.454 0.467 0.479

F–score 0.478 0.441 0.473 0.470 0.461 0.339 0.488

DE data

Sensitivity 0.465 0.466 0.372 0.379 0.408 0.487 0.465 0.47 0.558 0.558 0.39

PPV 0.406 0.405 0.643 0.646 0.344 0.432 0.376 0.45 0.501 0.495 0.69

F–score 0.480 0.468 0.466 0.472 0.430 0.479 0.451

The sensitivities, PPVs, and F–scores of grammars GG1–GG6 and KH99′ on the evaluation set and on the on the [14] data, as well as the benchmarked sensitivities and
PPVs of UNAfoldv3.8 and RNAfoldv1.85 on the [14] data. Results for KH99 and Pfold are taken from [14].
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Table 2 Sensitivity and specificity of evolved SCFGs using different training and testingmethods

Grammar KH99′ GG1 GG2 GG3 GG4 GG5 GG6 Best

Grammar found by Local IO IO CYK CYK CYK

CYK Sensitivity 0.496 0.505 0.330 0.374 0.474 0.469 0.526 0.675

PPV 0.479 0.481 0.258 0.322 0.454 0.467 0.479 0.585

F–score 0.478 0.441 0.426 0.435 0.461 0.339 0.461 0.622

IO Sensitivity 0.387 0.392 0.408 0.413 0.373 0.404 0.410 0.450

PPV 0.552 0.517 0.551 0.550 0.566 0.556 0.583 0.584

F–score 0.461 0.443 0.473 0.470 0.449 0.471 0.488 0.493

The sensitivities, PPVs, and F–scores of grammars GG1–GG6 and KH99′ on the evaluation set, using different methods of training and testing. ‘CYK’ indicates that the
CYK algorithmwas used, and ‘IO’ that the inside and outside algorithms were used. The column ‘Best’ was calculated by selecting, for each structure, the prediction
with the highest F–score, and then recording the sensitivity, PPV, and F–score for that prediction. It is perhaps not surprising that the ‘best’ predictions for CYK are
better than the ‘best’ predictions for IO, as IO is in some sense averaging over all predictions. One might expect the predictions to be more similar than those from
CYK, as seen by comparing IO values for GG6 and ‘best’, giving less increase when considering those with best F–score.

GG4 has only two variables (A and C) used almost
exclusively in producing base pairs. It then uses vari-
ous exit sequences to generate different sets of unpaired
nucleotides and returns to producing base pairs. Finally,
GG5 and GG6 are typical of larger grammars we have
found with complex structure. It is not obvious to us how
their structure relates to their success in secondary struc-
ture prediction. GG4, GG5, and GG6 were all found using
the CYK version of the evolutionary algorithm, and per-
haps their complex structure can be accredited to this.
GG6 is a strong performer throughout, particularly when
considering F–score.
Most grammars achieved lower predictive power on the

Dowell and Eddy dataset. The difference in performance
between KH99 and KH99′ is small and confirms that the
representation of KH99 as KH99′ is a good one. Partic-
ularly noteworthy is the performance of GG3 and GG5.
GG3 has had a considerable increase in PPV, likely due
to the posterior decoding prediction method. Given many
of the structures in the Dowell and Eddy dataset con-
tain pseudoknots, other grammars score poorly trying to
predict pairs where there are not, in contrast to GG3.
By predicting fewer base pairs, GG3 gains higher PPV as
more of them are correct, but lower sensitivity. GG5 is
a grammar which was unremarkable in its results on the
original data set, however, it has outperformed the rest
of the grammars on the benchmark set and is the only
grammar with improved sensitivity when compared to the
RNASTRAND dataset.
Figure 2 shows the sensitivity–PPV curve for grammars

KH99′ and GG1–GG6. This was produced using the pos-
terior decoding method by varying the parameter γ . GG6
again proves to do slightly better than the other gram-
mars, having the largest area underneath the curve. KH99′
does not distinguish itself much from the other grammars,
being in the middle in terms of area underneath the curve.
Overall, the grammars found in the evolutionary search

still performwell because they are not overadapted to deal

with the original data. Determining which is best depends
on the measure of strength of prediction, whether the size
of the grammar is a concern, ability to approximate struc-
tures with pseudoknots effectively, and so on. However,
it is clear that a selection of effective grammars has been
found. Results shown by UNAfold and RNAfold continue
to be superior to those produced by SCFG methods.
We also checked that the grammars obtained from the

evolutionary algorithm do not merely produce similar
structures to KH99′ by using different derivations. To do
this we define the relative sensitivity of method A with
respect to method B as the sensitivity of method A as a
predictor of the structures produced by method B. The
relative PPV is defined in a similar manner. We then com-
pared the predictions of the grammars by building a heat
map of the relative sensitivities and PPVs (Figure 3), using
the evaluation set. As expected, KH99′ and GG1 pre-
dict almost identical structures, as they are highly similar.

Figure 2 Sensitivity/PPV curve. A graph showing how sensitivity
and PPV change for grammars when the posterior decoding
parameter γ is changed to alter the frequency of base–pair
prediction. The parameter γ ranged from 0.05 to 5 in increments of
0.05 for each grammar, and the sensitivity and PPV were measured on
the full evaluation set. Grammar GG6 shows further strong
performance here, having the largest area underneath the graph.
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Figure 3 Relative sensitivities/PPVs. A heat map showing the relative sensitivities and PPVs of the different prediction methods, or between
prediction method and known structure. KH99′ and GG1, produce very similar structures which is not surprising, given they were found by
changing one and two rules of KH99′ respectively. Otherwise, the methods have relative sensitivities/PPVs of approximately 0.5 − 0.6, which is as
expected, given they are all designed to predict RNA secondary structure. However, it is clear that they are markedly distinct from KH99′ in their
structure predictions.

Similarly, it is perhaps not surprising that GG2 and GG3
have very similar predictions given they produce structure
through posterior decoding. The rest of the methods have
sensitivity and PPV relative to other prediction methods
of approximately 0.4 – 0.6. As they are designed to pre-
dict RNA secondary structure using the same training
set, one would expect some similarity in the predictions,
although not as much as with KH99′ and GG1. This is
confirmed by our results, suggesting that the new gram-
mars produce different kinds of structures which are good
representations of RNA secondary structure.

Further analysis of KH99
To test the local features of the space, we evaluated varia-
tions of KH99′ against the full data set.Where a single rule
was deleted, only one grammar had prediction accuracy of
the order of KH99′. This is the grammar without the rule
A → (C) (which would have been used only infrequently
in KH99′, with probability 0.014). However, it is clear that
deleting rules has a strong negative effect on the predic-
tive power of KH99′, given that no others have sensitivity
greater than 0.25. Of course, this might be expected given
that this SCFG has been constructed manually, and it is
therefore unlikely to have unnecessary production rules.
With addition of rules, the number of grammars to

check quickly becomes large. With one production rule
added, 32 grammars must be evaluated, with two added
this increases to 496. A similar local search for larger
grammars would be impractical, since there are many
more grammars with one or two altered production rules
(for GG6, there are 584 grammars with only one new pro-
duction rule, and 170,236 with two). Ambiguity of tested
grammars had little or no effect. Results of this local
search can be seen in Figure 4.

Brute force search
The brute force search illustrated how, with this normal
form, larger grammars are needed to provide effective

prediction. Most small grammars will only be able to
produce one type of string. Also, it suggested that the
existing grammars are close to locally optimal and that the
space around them is quite flat, demonstrating the need
for intelligent searching methods. Figure 5 illustrates the
distribution of sensitivity across the space of grammars
with at most 2 non–terminal variables. No grammar has
sensitivity higher than 0.25 and approximately one quar-
ter of grammars have sensitivity 0 (those which cannot
produce long strings).

Ambiguity and Completeness
One of the results of the search which we find most inter-
esting is the ambiguity and completeness of GG1–GG6,
shown in Table 3. All grammars found in the search were
ambiguous, and still predicted structure effectively. In par-
ticular, ambiguous grammar GG1 performed better than

Figure 4 Local search results. Summary of the effects of adding one
(giving 32 grammars) or two (giving 961 grammars) production rules
to KH99′. The plot shows the cumulative proportion of grammars
with given sensitivity. The grammars’ sensitivity is mostly still equal to
the sensitivity of KH99′, with only a few outliers. GG1 was the top
outlier for two production rule added. In this sense the space is
reasonably flat.



Anderson et al. BMC Bioinformatics 2012, 13:78 Page 9 of 10
http://www.biomedcentral.com/1471-2105/13/1/78

Figure 5 Brute force search. The distribution of sensitivity and
corresponding PPV of grammars with at most 2 nonterminal
variables. Approximately one quarter of grammars have sensitivity 0,
as many cannot produce long strings. It is only the larger grammars
that start to predict long strings which might correspond to structure.
However, the prediction quality is still poor by both measures.

KH99′, being a slight modification of it. Particularly, it is
clear that GG2 and GG3 have many different derivations
for each structure, and their strong performance relies on
this ambiguity, as they perform poorly when tested with
CYK. GG5 demonstrates further that ambiguous gram-
mars can even be effective at approximating structures
with pseudoknots. The effectiveness of some ambiguous
grammars is likely due to the prediction algorithm pick-
ing structures that, whilst perhaps suboptimal, are close to
what the best prediction would be. Clearly there is room
for a further investigation into quite why some grammars
cope better with ambiguity than others.
Similarly, it might be surprising that some of the gram-

mars found (GG4 and GG5), are incomplete. However,
heuristically it seems that the structures that cannot be
generated have little biological relevance (e.g. GG4 cannot
generate “(. . . )(. . . )(. . . )(. . . )”). In some sense therefore, the
incompleteness is permissible, as the grammar is still able
to generate any relevant structure.

Table 3 Ambiguity and completeness

Grammar Ambiguity Completeness

KH99′ No Yes

GG1 Yes Yes

GG2 Yes Yes

GG3 Yes Yes

GG4 Yes No

GG5 Yes No

GG6 Yes Yes

Ambiguity and completeness of KH99′ and GG1–GG6 grammars. All grammars
found in the search were ambiguous. Some of the grammars found (GG4 and
GG5), are incomplete but heuristically it seems that the structures that cannot be
generated have little biological relevance.

Conclusions
Our brute force search and search around KH99 demon-
strate that intelligent searching methods are necessary,
and overall, the method of evolving SCFGs for RNA sec-
ondary structure prediction proved effective. We found
many grammars with strong predictive accuracy, as good
or better than those designed manually. Furthermore,
several of the best grammars found were both ambigu-
ous and incomplete, demonstrating that in grammar
design such grammars should not be disregarded. One
of the strengths of the method is the ease of applica-
tion and effectiveness for RNA structure problems. In
particular, grammatical models are used in phylogenetic
models of RNA evolution [33] which make use of man-
ually constructed grammars, and so the accuracy might
be improved with automated grammar design. Overall
though, whilst many grammars have been found with
good predictive power, the space of grammars grows
rapidly with the number of non–terminals, so we cannot
conclude that no better grammars exist. The effective-
ness of the search heuristic is supported by the fact that
we consistently find grammars on par with the best man-
ually created grammars. The equally consistent inability
to achieve any significant improvement on this level of
performance, and the relative limited prediction corre-
lation between the many good grammars found points
to the inherent challenge of grammar design, or indeed
to the limitations of SCFG based methods as a whole.
It appears that the number of grammars able to achieve
this level of performance is large, and may depend lit-
tle on the overall grammar structure, and at the same
time it appears that a performance improvement may
be difficult or impossible to achieve with a grammatical
approach.
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