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Abstract

Background: The estimation of parameter values for mathematical models of biological systems is an optimization
problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of
multiple minima in which standard optimization methods may fall during the search. Deterministic global
optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired
tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically
lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of
iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead
to large computational burdens.

Results: This work presents a deterministic outer approximation-based algorithm for the global optimization of
dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a
theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential
equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving
rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical
levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the
optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these
two levels until a termination criterion is satisfied.

Conclusion: The capabilities of our approach were tested in two benchmark problems, in which the performance of
our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy
produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.

Background
Elucidation of biological systems has gained wider interest
in the last decade. Despite recent advances, fundamental
understanding of life processes still requires powerful
theoretical tools from mathematics and physical sciences.
Particularly, mathematical modelling of biological sys-
tems is nowadays becoming an essential partner of
experimental work. One of the most challenging tasks
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in computational modelling of biological systems is the
estimation of the model parameters. The aim here is to
obtain the set of parameter values that make the model
response consistent with the data observed. Parameter
estimation can be formulated as an optimization prob-
lem in which the sum of squared residuals between the
measured and simulated data is minimized. The biologi-
cal model dictates the type of optimization problem being
faced. Many biological systems are described through
nonlinear ordinary differential equations (ODEs) that pro-
vide the concentration profiles of certain metabolites over
time. Recent methodological developments have enabled
the generation of some dynamic profiles of gene networks
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and protein expression data, although the latter are still
very rare. In this context, there is a strong motivation for
developing systematic techniques for building dynamic
biological models from experimental data. The param-
eter estimation of these models gives rise to dynamic
optimization problems which are hard to solve.
Existing approaches to optimize dynamic models can

be roughly classified as direct or indirect (also known
as variational) [1]. Direct methods make use of gradient-
based nonlinear programming (NLP) solvers and can in
turn be divided into sequential and simultaneous. In
sequential approaches, the optimization of the control
variables, which are discretized, is performed by a NLP
solver, whereas the ODE is calculated externally, that is,
both steps are executed in a sequential manner. In con-
trast, in simultaneous strategies, both the control and
state profiles are approximated using polynomials (e.g.,
Lagrange polynomials) and discretized in time by means
of finite elements [2,3]. In the latter strategy, the ODE sys-
tem is replaced by a system of algebraic equations that
is optimized with a standard gradient-based NLP solver.
Simultaneous approaches can handle dynamic systems
with unstable modes and with path constraints [1]. Fur-
thermore, they allow performing automatic differentiation
with respect to the control and state variables, avoid-
ing the need to calculate the derivatives numerically as
is the case in the sequential approach. Unfortunately, the
discretization step can lead to large scale NLPs that are
difficult to solve.
Models of biological systems are typically highly nonlin-

ear, which gives rise to nonconvex optimization problems
with multiple local solutions (i.e., multimodality). Because
of this, traditional gradient-based methods used in the
sequential and simultaneous approaches may fall in local
optima. In the context of parameter estimation, these
local solutions should be avoided, since they may lead to
inaccurate models that are unable to predict the system’s
performance precisely.
Global optimization (GO) algorithms are a special class

of techniques that attempt to identify the global optimum
in nonconvex problems. These methods can be classified
as stochastic and deterministic. Stochastic GO meth-
ods are based on probabilistic algorithms that provide
near optimal solutions in short CPU times. Despite hav-
ing shown great potential with large-scale problems like
parameter estimation [4], these methods have as major
limitation that are unable to guarantee convergence to
the global optimum in a finite number of iterations. In
other words, they provide solutions whose optimality (i.e.,
quality) is unknown, and may or may not be globally
optimal. In contrast, deterministic global optimization
methods ensure global optimality within a desired toler-
ance, but lead to larger computational burdens. Hence, in
addition to the solution itself, these methods provide as

output a rigorous interval within which the best possible
solution (i.e., global optimum) must fall. Despite recent
advances in deterministic global optimization methods
[5,6], their application to parameter estimation has been
quite scarce. Two main deterministic GO methods exist:
spatial branch-and-bound (sBB) [2,5-7], and outer approx-
imation [8]. Both algorithms rely on computing valid
lower and upper bounds on the global optimum. These
bounds tend to approach as iterations proceed, thus offer-
ing a theoretical guarantee of convergence to the global
optimum.
A rigorous lower bound on the global optimum of the

original nonconvex problem is obtained by solving a valid
relaxation that contains its feasible space. To construct
this relaxed problem, the nonconvex terms in the orig-
inal formulation are replaced by convex envelopes that
overestimate its feasible region. There are different types
of convex envelopes that provide relaxations for a wide
variety of nonconvexities. These relaxations are the main
ingredient of deterministic GO methods and play a key
role in their performance. In general, tighter relaxations
provide better bounds (i.e., closer to the global optimum),
thereby expediting the overall solution procedure.
To the best of our knowledge, Esposito and Floudas

were the first to propose a deterministic method for the
global solution of dynamic optimization problems with
embedded ODEs [2]. Their approach relies on reformu-
lating the problem as a nonconvex NLP using orthogonal
collocation on finite elements. This reformulated NLPwas
then solved by means of a sBB method. To this end, they
constructed a convex relaxation of the reformulated prob-
lem following the αBB approach previously proposed by
the authors [5-7]. Despite being valid for twice continu-
ous differentiable functions, these relaxationsmay provide
weak bounds in some particular cases and therefore lead
to large CPU times when used in the context of a spatial
branch and bound framework [9].
This work proposes a computational framework for the

deterministic global optimization of parameter estima-
tion problems of nonlinear dynamic biological systems.
The main contributions of our work are: (1) the appli-
cation of deterministic global optimization methods to
dynamic models of biological systems, and (2) the use
of several known techniques employed in dynamic (i.e.,
orthogonal collocation on finite elements) and global opti-
mization (i.e., symbolic reformulation of NLPs and piece-
wise McCormick envelopes) in the context of an outer
approximation algorithm. The approach presented relies
on discretizing the set of nonlinear ODEs using orthog-
onal collocation on finite elements, thereby transforming
the dynamic system into an equivalent nonconvex NLP
problem. A customized outer approximation algorithm
that relies on a mixed-integer linear programming (MILP)
relaxation is used in an iterative scheme along with the
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aforementioned NLP to solve the nonconvex model to
global optimality. The MILP relaxation is tightened using
a special type of cutting plane that exploits the prob-
lem structure, thereby expediting the overall solution
procedure.
The capabilities of our algorithm are tested through

its application to two case studies: the isomerisation of
α-Pinene (case study 1) and the inhibition of HIV pro-
teinase (case study 2). The results obtained are compared
with those produced by the state-of-art commercial global
optimization package BARON (Branch And Reduce Opti-
mization Navigator). Our algorithm is proved from these
numerical examples to produce near optimal solutions in
a fraction of the CPU time required by BARON.

Methods
Problem statement
The problem addressed in this work can be stated as fol-
lows: given is a dynamic kinetic model describing the
mechanism of a set of biochemical reactions. The goal is
to determine the appropriate values of the model coeffi-
cients (e.g., rate constants, initial conditions, etc.), so as to
minimize the sum-of-squares of the residuals between the
simulated data provided by the model and the experimen-
tal observations.

Mathematical formulation
We consider dynamic parameter estimation optimization
problems of the following form:

min
θ ,ẑu

∑

j∈JM

∑

u∈U
(ẑu, j − z̄u, j)2 (1)

s.t. żj = g(z, θ , t) ∀j ∈ J (2)
zj(t0) = z0 ∀j ∈ J (3)

t ∈ [ t0, tf ] (4)
ẑu, j = zj(tu) ∀u ∈ U ; ∀j ∈ JM (5)

Where ż represents the state variables (i.e., metabolite
concentrations), z0 their initial conditions, ẑu, j represents
the experimental data variables, z̄u, j are the experimental
observations, J is the set of state variables whose deriva-
tives explicitly appear in the model, θ are the parameters
to be estimated and tu, is the time associated with the uth
experimental data point in the set U.
Our solution strategy relies on reformulating the

nonlinear dynamic optimization problem as a finite-
dimensional NLP by applying a complete discretization
using orthogonal collocation on finite elements. This NLP
is next solved using an outer approximation algorithm (see
Figure 1). In the sections that follow, we explain in detail
the main steps of our algorithm.

Figure 1 Solution Strategy. The system of ODEs is first reformulated
into a nonconvex NLP using the orthogonal collocation on finite
elements approach. This NLP is decomposed into two levels: a master
MILP and a slave NLP. The master MILP, which is constructed using
piecewise McCormick envelopes and supporting hyper-planes,
provides a rigorous lower bound on the global optimum. The slave
NLP corresponds to the original nonconvex NLP that is solved using
as starting point the solution of the MILP. The algorithm iterates
between these two levels until the optimality gap (i.e., the relative
difference between the upper and lower bounds) is reduced below a
given tolerance.

Orthogonal collocation approach
There is a considerable number of collocation-based dis-
cretizations for the solution of differential-algebraic sys-
tems [10]. Without loss of generality, we employ herein
the so-called orthogonal collocation on finite elements
method [11,12]. Consider the following set of ODE’s
defined as

żj = g(z, θ , t) ∀j ∈ J (6)

The state variables are first approximated using
Lagrange polynomials as follows:

zNK+1(t) =
NK∑

k=0
ξkφk(t) φk(t) =

NK∏

q=0, q �=k

t − tq
tk − tq

(7)

These polynomials have the property that at the orthog-
onal collocation points their coefficients, ξk , take the value
of the state profile at that point. Therefore, the collocation
coefficients ξk acquire physical meaning which allows to
generate bounds for these variables.
Because state variables may present steep variations, the

whole solution space is commonly divided into time inter-
vals called finite elements. Hence, the time variable t is
divided into NE elements of length �ηe and rescaled as
τ ∈[ 0, 1]. Within each finite element, NK + 1 orthogonal
collocation points τ(0), τ(1), τ(2), · · · , τ(NK) are
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distributed at the shifted (between 0 and 1) roots of the
orthogonal Legendre polynomial of NK degree. Recall
that the 0th orthogonal collocation point is located at the
beginning of each element (Figure 2).
Following the collocation method [10], the residual

equations arising from the combination of Eqs. 6 and 7,
are defined for each element e in the set E and state vari-
able in the set J, giving rise to the following constraints:

NK∑

k=0
ξe, k, jφ̇e, k, j(τk′) − �ηegj(ξe, k′, j, θ , te, k′) = 0

∀e ∈ E k′ = 1, . . . , NK ; ∀j ∈ J (8)

The state variables have to be continuous between ele-
ments, so we enforce the following continuity constrains:

ξe, 0, j−
NK∑

k=0
ξe−1, k, jφk(τ =1)=0 e=2, . . . , NE ∀j ∈ J

(9)

These equations extrapolate the polynomial at element
e-1, providing an accurate initial condition for the next
element e.
Moreover, initial conditions are enforced for the begin-

ning of the first element using the following equation:

ξ1, 0, j − z0, j = 0 ∀j ∈ J (10)

Recall that collocation points in which time has been
discretized will not necessarily match the times at which
experimental profiles were registered. Hence, variable ẑu,j
is added to determine the value of the model states pro-
files at times tu making it possible to fit the model to the
experimental points. This is accomplished by adding the
following equation:

−ẑu, j +
NK∑

k=0
ξeu, k, jφk(τu) = 0 ∀u ∈ U ; ∀j ∈ JM

(11)

Where τu is calculated as follows:

τu = tu − ηeu
�ηeu

(12)

Here, the subscript eu refers to the element where tu
falls, that is, eu ≡ {e : ηe ≤ tu < ηe+1}.
NPL formulation
The dynamic optimization problem is finally reformulated
into the following NLP:

min
θ , ξ , ẑu

∑

j∈JM

∑

u∈U
(ẑu, j − z̄u, j)2 (13)

s.t.
NK∑

k=0
ξe, k, jφ̇e, k, j(τk′) − �ηegj(ξe, k′, j, θ , te, k′)=0

∀e ∈ E k′ = 1, . . . , NK ; ∀j ∈ J (14)

ξe, 0, j −
NK∑

k=0
ξe−1, k, jφk(τ = 1) = 0

e = 2, . . . , NE ∀j ∈ J (15)

ξ1, 0, j − z0, j = 0 ∀j ∈ J (16)

− ẑu, j +
NK∑

k=0
ξeu, k, jφk(τu) = 0

∀u ∈ U ; ∀j ∈ JM (17)

Results and discussion
Optimization approach
The method devised for globally optimizing the NLP that
arises from the reformulation of the parameter estimation
problem (Eqs. 13–17) is based on an outer approxima-
tion algorithm [8] used by the authors in previous works
[13-17]. This approach relies on decomposing the original
NLP into two subproblems at different hierarchical lev-
els: a lower level MILP problem and an upper level slave
NLP problem. The master problem is a relaxation of the
original NLP (i.e., it overestimates its feasible region) and
hence provides a rigorous lower bound on its global opti-
mum. The slave NLP yields a valid upper bound when it
is solved locally. The algorithm iterates between these two
levels until the optimality gap (i.e., the relative difference
between the upper and lower bounds) is reduced below
a given tolerance (Figure 3). In the following subsections,
we provide a detailed description of the algorithm.

Figure 2 Orthogonal collocation discretization over finite elements. The time interval is divided into NE elements which in turn are divided
into NK + 1 collocation points evaluated at the shifted orthogonal Legendre polynomials.
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Figure 3 Optimization algorithm based on outer approximation. Our approach decomposes the problem into two subproblems: a master
MILP, constructed by relaxing the original model using piecewise McCormick envelopes and hyper-planes, that provides a lower bound, and a slave
NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied.

Lower level master problem
Designing efficient and smart strategies for attaining tight
bounds is a mayor challenge in deterministic global opti-
mization. Both the quality of the bounds and the time
required to generate them drastically influence the over-
all performance of a deterministic global optimization
algorithm.
Any feasible solution of the original NLP is a valid upper

bound and can be obtained by means of a local NLP
solver. To obtain lower bounds, we require a rigorous
convex (linear or nonlinear) relaxation. This relaxation
is obtained by replacing the nonconvex terms by convex
overestimators. Since the relaxed problem is convex, it
is possible to solve it to global optimality using standard
local optimizers. Furthermore, since its feasible region
contains that of the original problem and its objective
function rigorously underestimates the original one, it
is guaranteed to provide a lower bound on the global
optimum of the original nonconvex model [18].
Androulakis et al. [19] proposed a convex quadratic

relaxation for nonconvex functions named αBB under-
estimator which can be applied to general twice
continuously differentiable functions. This technique,
which was used in parameter estimation by Espos-
ito and Floudas [2], might lead in some cases to
weak relaxations and therefore poor numerical perfor-
mance [9].
To construct a valid MILP relaxation, we apply the fol-

lowing approach. We first reformulate the NLP using the
symbolic reformulation method proposed by Smith and
Pantelides [20]. This technique reformulates any system
of nonlinear equations into an equivalent canonical form
with the only nonlinearities being bilinear products, linear
fractional, simple exponentiation and univariate function
terms with the following standard form:

min
w

wobj (18)

s.t. Aw = b (19)

wl ≤ w ≤ wu (20)

y ∈[ yl, . . . , yu] (21)

wk ≡ wiwj ∀(i, j, k) ∈ Tbt (22)

wk ≡ wi
wj

∀(i, j, k) ∈ Tlft (23)

wk ≡ wn
i ∀(i, k, n) ∈ Tet (24)

wk ≡ fn(wi) ∀(i, k) ∈ Tuft (25)

where vector w comprises continuous variables x as well
as integers y, while the sets Tbt, Tlft, Tet and Tuft are the
bilinear product, linear fractional, simple exponentiation
and univariate function terms, respectively.
A rigorous relaxation of the original model is con-

structed by replacing the nonconvex terms in the refor-
mulated model by convex estimators. The solution of the
convex relaxation provides a valid lower bound on the
global optimum. More precisely, the bilinear terms are
replaced by piecewise McCormick relaxations. The frac-
tional terms can be convexified in two different manners.
The first is to replace them by tailored convex envelopes
that exploit their structure [21]. The second is to express
them as bilinear terms by performing a simple algebraic
transformation, and then use the McCormick envelopes
to relax the associated bilinear term. Univariate func-
tions commonly used in process engineering models (e.g.,
logarithms, exponentials, and square roots) are purely
convex or purely concave, and can be replaced by the exact
function-secant pair estimators [22].
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The reader is referred to the work by Smith and
Pantelides [20] for further details on the symbolic
reformulation. We focus next on explaining how the
bilinear terms are approximated in the reformulated NLP.

Piecewise McCormick-based relaxation The bilinear
terms appearing in the reformulated model are approxi-
mated using McCormick’s envelopes [23-26]. For bilinear
terms, this relaxation is tighter than the αBB-based relax-
ations [18,27].
Each bilinear term xy can be replaced by an auxiliary

variable z as follows:

z = xy xL ≤ x ≤ xU yL ≤ y ≤ yU (26)

The best known relaxation for approximating a bilin-
ear term is given by the McCormick envelopes, obtained
by replacing Eq. 26 by the following linear under (Eqs. 27
and 28), and overestimators (Eqs. 29 and 30):

z ≥ xyL + xLy − xLyL (27)

z ≥ xyU + xUy − xUyU (28)

z ≤ xyL + xUy − xUyL (29)

z ≤ xyU + xLy − xLyU (30)

In this work we further tighten the McCormick
envelopes by adding binary variables [25,28]. Particularly,
two additional sets of variables are defined in the piece-
wise formulation:

• Binary switch: λ ∈ {0, 1}NP

• Continuous switch: �y ∈[ 0, yU − yL]NP

The binary switch λ is active (i.e., λ(nP) = 1) for the
segment where x is located (xL + a(nP − 1) ≤ x ≤ xL +
anP) and is otherwise inactive. Therefore, the partition-
ing scheme activates exactly only one nP ∈ {1, . . . , NP} so
that the feasible region corresponding to the relaxation of
xy is reduced from the parallelogram in Figure 4(a) to a
significantly smaller one depicted in Figure 4(b).
Eq. 31 enforces that only one binary variable is active:

NP∑

nP=1
λ(nP) = 1 (31)

The continuous switch �y takes on any positive value
between 0 and yU−yL when the binary switch correspond-
ing to the nPth piecewise λ(nP) is active (i.e., λ(nP) = 1)
and 0 otherwise. Therefore:

y = yL +
NP∑

nP=1
�y(nP) (32)

0 ≤ �y(nP)≤(yU − yL)λ(nP) nP =1, . . . , NP (33)

a

b

Figure 4McCormick convex relaxation over the entire feasible
region (subfigure (a)) compared to a piecewise McCormick
relaxation over a smaller active region (subfigure (b)) where the
tightness of the relaxation is improved.We built the master
problem by replacing the bilinear terms by piecewise McCormick
envelopes. The relaxation can be further improved by adding binary
variables.

Finally, the under and overestimators for the active seg-
ment are defined in algebraic terms as follows:

z ≥ xyL +
NP∑

nP=1
[ xL + a(nP − 1)]�y(nP) (34)

z ≥ xyU +
NP∑

nP=1
[ xL + anP] [�y(nP) − (yU − yL)λ(nP)]

(35)
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z ≤ xyL +
NP∑

nP=1
[ xL + anP]�y(nP) (36)

z ≤ xyU+
NP∑

nP=1
[ xL + a(nP − 1)] [�y(nP)−(yU − yL)

× λ(nP)] (37)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (38)

Note that the discrete relaxation is tighter than the
continuous one over the entire feasible region. The intro-
duction of the binary variables required in the piecewise
McCormick reformulation gives rise to a mixed-integer
nonlinear programming (MINLP) problem, with the only
nonlinearities appearing in the objective function. While
this MINLP is convex and can be easily solved to global
optimality with standard MINLP solvers, it is more con-
venient to linearize it in order to obtain anMILP formula-
tion, for which more efficient software packages exist. The
section that follows explains how this is accomplished.

Hyper-planes underestimation The convexMINLP can
be further reformulated into an MILP by replacing the
objective function by a set of hyper-planes. For this, we
define two new variables as z′u, j = ẑu, j − z̄u, j and α ≥ z′ 2u, j.
The quadratic terms are then approximated by 1st degree
Taylor series. That is, the square terms are replaced by
l hyper-planes uniformly distributed between the maxi-
mum and minimum desired values of z′u, j (Figure 5) so
that the objective function is reduced to a summation of
quadratic terms as follows:

Figure 5 x squared function underestimated by a 1st degree
Taylor series. The objective function is linearized by a first degree
Taylor series with l hyper-planes.

min
θ , ξ , ẑu

∑

j∈JM

∑

u∈U
αu, j (39)

αu, j ≥ z′ 20 u, j, l + 2z′0u, j, l(z
′
u, j − z′0u, j, l)

∀u ∈ U ∀j ∈ JM ∀l ∈ L (40)

Upper level slave problem
A valid upper bound on the global optimum is obtained by
optimizing the original NLP locally. This NLP is initialized
using the solution provided by the MILP as starting point.
The solution of this NLP is used to tighten the MILP, so
the lower and upper bounds tend to converge as iterations
proceed.

Algorithm steps
The proposed algorithm comprises the following steps:

1. Set iteration count it = 0, UB = ∞, LB = −∞ and
tolerance error = tol.

2. Set it = it + 1. Solve the master problem MILP.
(a) If the MILP is infeasible, stop (since the NLP

is also infeasible).
(b) Otherwise, update the current LB making

LB = maxit(LBit), where LBit is the value of
the objective function of the MILP in the itth
iteration.

3. Solve the slave problem NLP.
(a) If the NLP is infeasible add one more

piecewise term and hyper-plane to the master
MILP and go to step 2 of the algorithm.

(b) Otherwise, update the current UB making
UB =minit (UBit), where UBit is the value of
the objective function of the NLP in the itth
iteration.

4. Calculate the optimality gap OG as OG = |UB−LB|
UB .

(a) If OG ≤ tol, then stop. The current UB is
regarded as the global optimum within the
desired tolerance.

(b) Otherwise, add one more piecewise section
and hyper-plane to the master MILP and go
to step 2 of the algorithm.

Remarks:
• There are different methods to update the piecewise

bilinear approximation. One possible strategy is to
update it by dividing the active piecewise (i.e., the
piecewise term in which the solution is located) into
two equal-length segments.

• The new hyper-plane term z′0u, j, l is added at the
optimal solution of the MILP (solution point z′u, j) in
the previous iteration.

• The univariate convex and concave terms in the
reformulated problem can be either approximated by
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the secant or by a piecewise univariate function
similarly as done with the McCormick envelopes.

• Our algorithm needs to be tuned prior to its
application. This is a common practice in any
optimization algorithm. In a previous publication
[13], we studied the issue of defining the number of
piecewise intervals and supporting hyper-planes in an
optimal manner. In practice, however, the optimal
number of piecewise terms and hyper-planes is highly
dependent on the specific instance being solved, so it
is difficult to provide general guidelines on this.

• The approach presented might lead to large
computational burdens in large-scale models of
complex biological systems. Future work will focus
on expediting our algorithm through the addition of
cutting planes and the use of customized
decomposition strategies.

Case studies
We illustrate the performance of the proposed algorithm
through its application to two challenging benchmark
parameter estimation problems: the isomerisation of α-
Pinene (case study 1) and the inhibition of HIV pro-
teinase (case study 2). The objective in these problems
is to obtain the set of values of the model parameters
such that the model response is as close as possible to
the experimental data. For comparison purposes we used
the global optimization package BARON (version 8.1.5).
BARON is a commercial software for solving nonconvex
optimization problems to global optimality. BARON com-
bines constraint propagation, interval analysis, duality,
and enhanced “branch and bound” concepts for efficient
range reduction with rigorous relaxations constructed by
enlarging the feasible region and/or underestimating the
objective function. The interested readers have the pos-
sibility to evaluate this software on their own for free
in this link: http://www.neos-server.org/neos/solvers/go:
BARON/GAMS.html. Our algorithmwas implemented in
GAMS 23.5.2 using CPLEX 12.2.0.0 for the MILPs and
SNOPT 4 for the NLPs subproblems. All the calculations
were performed in a PC/AMDAthlon II at 2.99 Ghz using
a single core. Data about the size of the models can be
found in Table 1.

Case study 1: Isomerisation of α-Pinene
In this first case study, five kinetic parameters describ-
ing the thermal isomerisation of α-Pinene are estimated.
The proposed reaction scheme for this process is depicted
in Figure 6. In this homogeneous chemical reaction, α-
Pinene (γ1) is thermally isomerised to dipentene (γ2) and
allo-ocimene (γ3), which in turn yields α- and β-Pyronene
(γ4) and a dimer (γ5). This process was originally studied
by Fuguitt and Hawkins [29], which carried out a sin-
gle experiment reporting the experimental concentrations

Table 1 Model size in the last iteration

Isomerisation of Inhibition of

α-Pinene HIV proteinase

MILP equations 1,836 138,128

MILP continuous variables 1,096 53,321

MILP binary variables 380 3,625

NLP equations 186 16,306

NLP variables 196 16,361

(mass fraction) of the reactant and the four products
measured at eight time intervals.
Hunter and McGregor [30] postulated first-order

kinetics and proposed the following set of ODE’s
describing the dynamic process:

dγ1
dt

= −(p1 + p2)γ1 (41)

dγ2
dt

= p1γ1 (42)

dγ3
dt

= p2γ1 − (p3 + p4)γ3 + p5γ5 (43)

dγ4
dt

= p3γ3 (44)

dγ5
dt

= p4γ3 − p5γ5 (45)

γ0 = [ 100, 0, 0, 0, 0] t ∈[ 0, 36420] (46)

Figure 6 Proposedmechanism describing the thermal
isomerization of α-Pinene. In this reaction α-Pinene (γ1) is thermally
isomerized to dipentene (γ2) and allo-ocimene (γ3), which in turn
yields α- and β-Pyronene (γ4) and a dimer (γ5).

http://www.neos-server.org/neos/solvers/go:BARON/GAMS.html
http://www.neos-server.org/neos/solvers/go:BARON/GAMS.html
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Rodriguez-Fernandez et al. [4] addressed this problem
by applying a metaheuristic based on the scatter search
method. This strategy does not offer any theoretical guar-
antee of convergence to the global optimum in a finite
number of iterations.
Following our approach, the state variables were approx-

imated by Lagrange polynomials using three collocation
points evaluated at the shifted roots of orthogonal Leg-
endre polynomials and defining five finite elements of
equal length. The nonconvexities in the resulting resid-
ual equations are given by the bilinear terms θiξe, k, j which
were relaxed using piecewise McCormick approxima-
tions as described previously. The objective function was
underestimated using supporting hyper-planes.
It is well known that the quality of the lower bound pre-

dicted by a relaxation strongly depends on the bounds
imposed on its variables [31]. Hence bounds on colloca-
tion coefficients (ξLe, k, j and ξUe, k, j, originally set to 0 and
100, respectively) were tightened by performing a bound
contraction procedure [21,32]. Particularly, tight lower
and upper bounds were estimated for each collocation
coefficient by maximizing and minimizing its value while
satisfying the constraints contained in the master prob-
lem. This is a costly process (i.e., if bounds for n variables
are to be estimated, 2n optimization problems should be
solved). For this reason, it was only performed recur-
sively 3 times before the initialization of the algorithm.
The MILP was further tightened by adding the following
constraint:

∑

j∈JM

∑

u∈U
(ẑu, j − z̄u, j)2 ≤ 20 (47)

which forces the model to find a solution better than the
one obtained at the beginning of the search by locally min-
imizing the original NLP (i.e., 20 is a rigorous upper bound
for the objective function). Furthermore, the parameter θi
was allowed to take any value within the [ 0, 1] interval.
The problem was solved with 6 initial hyper-planes.

An extra hyper-plane was added in each iteration, but
the total number of piecewise terms was kept constant
(4 piecewise intervals were considered) in order to keep
the MILP in a manageable size. A tolerance of 5% was set
as termination criterion.
For comparison purposes, we solved the same problem

with the standard global optimization package BARON
using its default settings. BARON was able to find the
global optimum but failed at reducing the optimality gap
below the specified tolerance after 12h of CPU time. In
contrast, our algorithm closed the gap in less than 3h (see
Table 2). As shown in Table 2, the results obtained agree
with those reported in the literature.

Table 2 Global optimization results for the α-Pinene
isomerisation problem

Rodriguez-Fernandez et al. BARON Proposed

algorithm

Sum of squares 19.87 19.87 19.87

UB - 19.87 19.87

LB - 4.112 19.26

Gap (%) - 79.31 3.056

Iterations 9,518 60,614 2

Time (CPU s) 122 43,200 8,916

Case study 2: Inhibition of HIV proteinase
In this second case study, we considered a much more
complex biological dynamic system. Particularly, we stud-
ied the reaction mechanism of the irreversible inhibition
of HIV proteinase, as originally examined by Kuzmic [33]
(Figure 7). Note that this dynamic model has lack of prac-
tical identifiability, as reported in Rodriguez-Fernandez et
al [4]. Nevertheless, we think that this example is still use-
ful for the purpose of our analysis, since the emphasis
here is placed on globally optimizing dynamic models
of biological systems rather than analyzing identifiability
issues.
The model can be described mathematically through a

set of 9 nonlinear ODE’s with ten parameters:

d[M]
dt

= −2k11[M] [M]+2k12[ E] (48)

d[ P]
dt

= k3[ ES]−2k41[ P] [ E]+2k42[ EP] (49)

d[ S]
dt

= −k21[ S] [ E]+k22[ ES] (50)

d[ I]
dt

= −k51[ I] [ E]+k52[ EI] (51)

d[ ES]
dt

= k21[ S] [ E]−k22[ ES]−k3[ ES] (52)

d[ EP]
dt

= k41[ P] [ E]−k42[ EP] (53)

d[ E]
dt

= k11[M] [M]−k12[ E]−k21[ S] [ E]+k22[ ES]

+ k3[ ES]−k41[ P] [ E]+k42[ EP]−k51[ I] [ E]
+ k52[ EI] (54)

d[ EI]
dt

= k51[ I] [ E]−k52[ EI]−k6[ EI] (55)

d[ EJ]
dt

= k6[ EI] (56)

where the following initial conditions and parameters
are known:
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Figure 7 Proposedmechanism describing the irreversible
inhibition of HIV proteinase. The enzyme HIV proteinase (E), which
is only active in a dimer form, was added to a solution of an
irreversible inhibitor (I) and a fluorogenic substrate (S). The product (P)
is a competitive inhibitor for the substrate.

[M]0 = 0 [ P]0 = 0 [ ES]0 = 0
[ EP]0 = 0 [ EI]0 = 0 [ EJ]0 = 0

[ I]0 (exp1) = 0 [ I]0 (exp2) = 0.0015
[ I]0 (exp3) = 0.003 [ I]0 (exp4) = 0.004
[ I]0 (exp5) = 0.004 (57)

k11 = 0.1 k12 = 0.001 k41 = 100

k21 = 100 k51 = 100 (58)

t ∈ [ 0, 3600] (59)

A series of five experiments where the enzyme HIV pro-
teinase (E) (assay concentration 0.004 μM) was added to
a solution of an irreversible inhibitor (I) and a fluorogenic
substrate (S) (25 μM) were considered. The five experi-
ments were carried out at four different concentrations of
the inhibitor (0, 0.0015, 0.003, and 0.004 μM in replicate).
The fluorescence changes were monitored during one

hour. The measured signal is a linear function of the
product (P) concentration, as expressed in the following
equation:

signal = ε[ P]+ offset (60)

In this fit, the offset (baseline) of the fluorimeter was
considered as a degree of freedom. A certain degree of
uncertainty (±50%) was assumed for the value of the
initial concentrations of substrate and enzyme (titration
errors).
The calibration of a total of 20 adjustable parameters

was addressed: five rate constants, five initial concen-
trations of enzyme and substrate and five offset values.
Mendes and Kell [34] solved this problem using simulated
annealing and reported its first known solution. Later,

Table 3 Optimal parameters for the HIV proteinase
inhibition problem

Parameter Rodriguez-Fernandez et al. Proposed algorithm

Sum of squares 0.01997 0.01961

k3 (s−1) 6.235 5.764

k42 (s−1) 8,772 968.7

k22 (s−1) 473 129.9

k52 (s−1) 0.09726 0.01612

k6 (s−1) 0.01417 0.01337

S0 exp. 1 (μM) 24.63 24.61

S0 exp. 2 (μM) 23.32 23.4

S0 exp. 3 (μM) 26.93 27.05

S0 exp. 4 (μM) 13.34 13.97

S0 exp. 5 (μM) 12.5 12.5

E0 exp. 1 (μM) 0.005516 0.005286

E0 exp. 2 (μM) 0.005321 0.005168

E0 exp. 3 (μM) 0.006 0.006

E0 exp. 4 (μM) 0.004391 0.004428

E0 exp. 5 (μM) 0.003981 0.004105

offset exp. 1 -0.004339 -0.004234

offset exp. 2 -0.001577 -0.003478

offset exp. 3 -0.01117 -0.0142

offset exp. 4 -0.001661 -0.005177

offset exp. 5 0.007133 0.00486

Rodriguez-Fernandez et al. [4] improved that solution by
means of a scatter search metaheuristic, which required
a fraction of the time employed by Mendes’ simulated
annealing. Recall that, despite producing near optimal
solutions in short CPU times, stochastic algorithms pro-
vide no information on the quality of the solutions found
and are unable to guarantee convergence to the global
optimum in a finite number of iterations. On the contrary,
the proposed methodology ensures the global optimality
of the solution computed within a desired tolerance.

Table 4 Global optimization results for the HIV proteinase
inhibition problem

Rodriguez-Fernandez et al. BARON Proposed

algorithm

Sum of squares 0.01997 failed 0.01961

UB - - 0.01961

LB - - 0.01595

Gap (%) - - 18.64

Iterations 29,345 263 3

Time (CPU s) 1,294 43,200 4,351
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In our study, the state variables were approximated
using five orthogonal collocation points and five equal-
length finite elements. In this case, the nonconvexities
arise from the bilinear terms ξe, k, jξe, k, j and θiξe, k, j.
The parameter bounds θi were set to θi ∈[ 0, 106]. The

lower and upper limits for the collocation coefficients
ξe, k, j, n were fixed to ξe, k, j, n ∈[ 0, 37.5] except for ξe, k, E, n ∈
[ 0.002, 0.006] and ξe, k, S, n ∈[ 12.5, 37.5]. The bounds for
all the offsets were set to offsetn ∈[−0.5, 0.5].
The master problem was further tightened by adding

a special type of strengthening cuts. These cuts are
generated by temporally decomposing the original full
space MILP into a series of MILPs in each of which
we fit only a subset of the original dataset, and remove
the continuity equations corresponding to the extreme
elements included in the sub-problem. The cuts are
expressed as inequalities added to the master problem
that impose lower bounds on the error of a subset of ele-
ments for which the sub-MILPs are solved. These bounds
are hence obtained from the solution of a set of MILP
sub-problems that optimize the error of only a subset
of elements.
This case study was solved with 3 initial piecewise inter-

vals and 6 initial hyper-planes. Two strengthening cuts
involving elements 1, 2, 3 and 4, and 2, 3, 4 and 5,
respectively, were added as constrains. A tolerance of 20%
was used in the calculations. Hyper-planes and piecewise
terms were updated at each iteration of the algorithm. In
this case, BARON failed to identify any feasible solution
after 12h of CPU time.
In contrast, our algorithm was able to obtain the global

optimum (Table 3) with a gap of 18.64% in approximately
4,000 CPU s (Table 4). Remarkably, the solution found by
our algorithm improves the best known solution reported
by Rodriguez-Fernandez et al. [4]. Hence, our algo-
rithm clearly outperformed other parameter estimation
methods, improving the best known solution [4,34], and
providing a rigorous lower bound on the minimum error
that can be attained.

Conclusions
In this work, we have proposed a novel strategy for
globally optimizing parameter estimation problems with
embedded nonlinear dynamic systems. The method pre-
sented was tested through two challenging benchmark
problems: the isomerisation of α-Pinene (case study 1)
and the inhibition of HIV proteinase (case study 2).
The proposed algorithm identified the best known

solution, which was originally reported by Rodriguez-
Fernandez et al. [4], in the case of the α-Pinene, and
improved the best known one in the HIV proteinase case
study. In both cases, rigorous lower bounds were provided
on the global optimum, making it possible to determine
the optimality gap of the solutions found.

The method proposed produced promising results, sur-
passing the capabilities of BARON. Our method requires
some knowledge on optimization theory as well as skills
using modelling systems. Our final goal is to develop a
software to automate the calculations, so our approach
can be easily used by a wider community. This is a
challenging task, since nonlinear models are hard to
handle and typically require customized solution pro-
cedures. Particularly, nonlinear models must be initial-
ized carefully to ensure convergence even to a local
solution. In this regard, the use of an outer approxi-
mation scheme that relies on a master MILP formu-
lation is quite appealing, since the outcome of this
MILP can be used to initialize the NLP in a robust
manner.
Another key point here is how to construct tight relax-

ations of the nonconvex terms. An efficient algorithm
must exploit the problem structure to obtain high qual-
ity relaxations and therefore good bounds close to the
global optimum. These relaxations can be further tight-
ened through the addition of cutting planes or the use
of customized decomposition methods. As observed,
there is still much work to be done in this area, but
we strongly believe that such an effort is worthy. Fur-
thermore, recent advances in global optimization the-
ory and software applications are paving the way to
develop systematic deterministic tools for the global opti-
mization of parameter estimation problems of increas-
ing size. Our future work will focus on making the
approach more efficient through the use of tailored
cutting planes and decomposition strategies and also
through the hybridization of deterministic methods with
stochastic approaches.
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