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Abstract

searching.

essential information for cell factory improvement.

Background: Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels,
and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major
strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous
metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence,
metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway

Results: We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites
are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae
as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative
target metabolites contained within databases. We then assessed the feasibility of the target productions using flux
balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate.

Conclusions: This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides

Background

Recognizing the potential depletion of petroleum
resources, researchers have become increasingly inter-
ested in production of fuels and industrial chemicals by
microorganisms [1-3]. Such biosnythesized materials in-
clude fuels, plastics, polymers, food additives, feed addi-
tives, solvents and drugs [4-6]. For example, ethanol and
higher alcohols are used as fuels and solvents in a wide
variety of chemical processes [7]. 1,3-propanediol forms
the basis of polymers such as polytrimethylene tereph-
thalate (PTT) [8], while isoprene is an intermediate me-
tabolite in the production of cis-1,4-polyisoprene, a
synthetic of natural rubber [9]. To produce such indus-
trially useful materials, modifications of host metabolic
systems are generally required. Target metabolites are
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frequently produced by incorporating heterologous
metabolic pathways into well-characterized host micro-
organisms, such as Escherichia coli, Saccharomyces cere-
visiae, and Corynebacterium glutamicum [10-15].
However, the selection of suitable heterologous meta-
bolic pathways for host organisms is hindered by meta-
bolic network complexity. Although copious data on
metabolic reactions have been amassed in the literature
and in public databases, such as KEGG [16], BRENDA
[17], and ENZYME [18], constructing a target produc-
tion pathway from a host metabolic network while main-
taining the required metabolic balances in the host (e.g.,
nicotinamide adenine dinucleotide (NADH) production/
consumption) requires a researcher’s experience and in-
tuition. Thus, the development of an appropriate in
silico platform will enhance industry-focused metabolic
network design by providing possible heterologous path-
ways for target metabolite production.

In recent years, several in silico heterologous pathway
search methods have been proposed and used in target
metabolite production [19-30]. Some of these predict
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metabolic pathways based on chemical transformation
patterns between the substrate and the product
[19,20,24,25]. For example, PathMiner [19] heuristically
determines metabolic pathways from known enzyme-
catalyzed transformations, by minimizing pathway costs.
PathPred [29] extracts biochemical structural transform-
ation patterns from databases, from which plausible
pathways can be constructed even if no reactions that
directly generate the target metabolites are known. By
supplying information about reactions, PathPred enables
the user to create a metabolite that is structurally similar
to the target.

Several graph-based methods for heterologous path-
way search are also available [21-23,26,28,30]. OptStrain
[30] utilizes mixed integer linear programming to iden-
tify heterologous reactions, producing a target that satis-
fies the stoichiometric balance while minimizing the
number of heterologous reactions. Following stoichio-
metric addition of the heterologous reactions, the Opt-
Knock [31] algorithm maximizes the target productivity.
As another example, novel metabolic routes have been
efficiently screened by probabilistic selection of meta-
bolic pathways [27]. Although several methods exist for
screening heterologous pathways of target metabolite
production, there remains a lack of consensus on how to
choose heterologous pathways and host microorganisms
for target production. Heterologous reaction screening
generally requires extensive calculations; thus, it is diffi-
cult to compare the screening results. In this study, to
avoid such calculations, we developed a simple in silico
screening platform to identify feasible heterologous
pathways of nonnative target metabolite production.

We first developed a pathway search algorithm that
identifies the shortest pathway between a host metabolic
network and target metabolites as heterologous reactions
are added. Using this algorithm, we screened all produ-
cible target metabolites listed in databases by adding
heterologous reactions to host microorganisms. For all
producible target metabolites, we then estimated the
production yields using flux balance analysis (FBA), as-
suming steady-state conditions and maximum biomass
production rate. By analyzing the entire list of produ-
cible target metabolites in several different hosts, we
selected a set of rational heterologous pathways and host
microorganisms that will likely produce desired targets.

Methods

Construction of an in-house database of metabolic
reactions

All known metabolic reactions were considered as can-
didate heterologous reactions that could be added to the
host metabolic network. We first constructed an in-
house database of metabolic reactions from data stored
in the KEGG ligand section [16] and BRENDA [17]
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databases. All metabolic reaction information regard-
ing genes, enzymes, pathways, and organisms in the
KEGG database was collected into the database,
which was developed using PostgreSQL 9.0 (The
PostgreSQL  Global Development Group). The
Michaelis-Menten constants (K,,) of the enzymatic
reaction data were retrieved from BRENDA [17]. We
also used Python scripts to access the in-house
database.

Genome-scale metabolic model of host microorganisms
In this study, we adopted 3 host microorganisms widely
used in industry; namely, E. coli, C. glutamicum, and S.
cerevisiae. E. coli has been exploited for such industrially
valuable compounds as L-phenylalanine, L-tyrosine, 1-
butanol and 1,2-propanediol [32-34]. C. glutamicum is
widely used in amino acid production [35]. S. cerevisiae
is an important producer of alcohols and organic acids
such as lactate [36]. These organisms are ideal hosts of
bioengineered products since they exhibit high growth
activity under various conditions and are easily genetic-
ally manipulated [37,38].

We used genome-scale metabolic models of S. cerevisiae
(iIMM904) [39], E. coli (iJR904) [40], and C. glutamicum
[41], based on earlier metabolic constructions with slight
modifications. Because our pathway search algorithm uses
the heterologous reactions listed in the KEGG database,
all metabolite IDs in the earlier genome-scale metabolic
models were converted to the KEGG compound ID for-
mat using metabolite name matching by manual checking.

Heterologous pathway identification for target
production

We developed an algorithm to identify heterologous re-
action(s) producing a target metabolite within a host
microorganism. The algorithm expands the host meta-
bolic network by sequentially adding heterologous meta-
bolic reactions from our in-house database. The
heterologous pathway identification procedure is as
follows:

1. A set of metabolites M, and a set of metabolic
reactions Ry are defined as those present in the
genome-scale metabolic network of the host
microorganism.

2. From the in-house database, heterologous reactions
that satisfy the following conditions are collected: (i)
the reaction does not exist in Ry, and (ii) it can
produce metabolites that do not exist in M, from a
metabolite in My. A set of these heterologous
reactions is defined as R;, and a set of metabolites
produced by reactions in R; is defined as M;.

3. In the same way, R; is the set of reactions not
present in {Ry, Ry, ..., R; _ 1} which can produce
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metabolites not existing in {Mq, My, ..., M; _ 1}
from metabolites included in those sets. This
expansion procedure is iterated until no further
reaction is connectable to the expanded metabolic
network.

If a target metabolite is included in a nonnative metab-
olite set M;, we can identify a set of heterologous reac-
tions that are necessary to produce the target
metabolite. For simplicity, all metabolic reactions in the
database were assumed to be reversible. Of course some
reactions are known to be irreversible, such as the carb-
oxylation and decarboxylation reactions classified by No-
menclature Committee of the international Union of
Biochemistry and Molecular Biology (NC-IUBMB) [42].
However, for the majority of reactions in the database,
directional information is limited and thus the reversibil-
ity of the reactions is difficult to judge. By assuming that
all reactions are reversible, we avoid the risk of missing
important heterologous pathways due to misjudgment of
their reaction reversibility. Our strategy here is to ini-
tially screen all possible heterologous pathways regard-
less of reaction irreversibility, then decide whether the
predicted pathway is plausible based on physiological
knowledge of the reaction irreversibility.

Flux balance analysis

FBA is based on a genome-scale metabolic model and
optimization of a specific objective flux by linear pro-
gramming [43,44]. We used FBA to estimate the meta-
bolic flux profile of metabolic networks expanded with
heterologous reactions. A pseudo-steady state is
assumed, that is, the net sum of all production and con-
sumption fluxes for each internal metabolite is zero. In
matrix notation, this condition is represented as S.v =0,
where S is the stoichiometric matrix representing the
stoichiometry of metabolic reactions in the network and
v is the vector of metabolic fluxes. In FBA, the flux pro-
file (constrained by steady state) is determined by opti-
mizing a specific objective function. The biomass
production flux is one of several widely used objective
functions that can be maximized. The flux profiles
obtained by maximizing biomass production fluxes are
known to be well correlated with those obtained experi-
mentally [39-41,45].

In this study, the coefficients of metabolites represent-
ing biomass production flux were extracted from earlier
studies [39-41]. We employed another objective func-
tion, the production flux of the target metabolite, to
judge whether the target metabolite was producible by
the metabolic network. In all of the FBA simulations in
this paper, glucose was chosen as the sole carbon source
and the following external metabolites were allowed to
freely transport through the cell membrane: CO,, H,O,
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SO, or SO3, and NHj. All calculations were performed
using MATLAB 2009b (MathWorks Inc., Natick, MA).
The linear programming problem was solved using
GLPK 4.34 (GNU Linear Programming Kit) [46] via the
MATLAB interface.

Results and discussion

Identification of heterologous pathway(s)

7,769 metabolic reactions and 6,635 metabolites (shown
in the Additional file 1) from 1,139 species were col-
lected from the KEGG database and deposited in our in-
house database. To screen for target metabolites that
could be produced by our host microorganisms S. cerevi-
siae, E. coli, and C. glutamicum, we iteratively expanded
the host metabolic network by adding heterologous
metabolic reactions as described in the Methods section.
Figure 1 displays the number of nonnative metabolites
connected to the host metabolic network as a function
of the number of heterologous reactions. Fewer than 33
heterologous reactions are required to connect 3,154,
3,244, and 3,112 nonnative metabolites to the host meta-
bolic networks of S. cerevisiae, E. coli, and C. glutami-
cum respectively.

The list of metabolites connected to the host meta-
bolic networks is presented in the Additional files 2, 3,
4. To this list, we added the K, values of heterologous
enzymes. Knowing the K, assists in deciding which
heterologous enzymes originating from various organ-
isms should be introduced to the host. The names of
organisms in the BRENDA database displaying mini-
mum K, of the corresponding heterologous enzymes
are also listed [17], since the enzyme from this organism
is expected to have highest affinity among the ortholo-
gous enzymes to the corresponding substrate. Import-
antly, these identified heterologous reactions of nonnative
metabolite production agreed well with those widely used
in metabolic engineering and which are important to the
industry (Table 1), such as isoprene, a-farnesene, poly-f3-
hydroxybutyrate (PHB), and cadaverine.

As an example, the production pathways of 1,3-propa-
nediol (C02457) by E. coli and S. cerevisiae, which were
adopted in earlier studies [52,53], are shown in Figure 2.
In the previous studies, C02457 production proceeded via
conversion of glycerol to 3-hydroxypropanal using gly-
cerol dehydratase (encoded by dhaBI-B3). 1,3-Propane-
diol was then produced, aided by 1,3-propanediol
oxidoreductase (encoded by dhaT). In this study, the
screened heterologous pathways for C02457 production
exactly matched those of the earlier studies. In E. coli, the
screened production pathways of isoprene, a-farnesene,
and PHB derived by our algorithm were also identical to
those of the earlier studies, while similar heterologous
genes introduced to the alternative hosts (C. glutamicum
and S. cerevisiae) additionally produced these targets
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Figure 1 Number of connected nonnative metabolites produced by heterologous reactions in 3 host microorganisms. The first vertical
axis (solid line) shows the number of connected metabolites in each iteration, while the second vertical axis (dotted line) shows the cumulative
number of the connected metabolites.

(see Table 1). Moreover, both reported and alternative
production pathways were screened by our algorithm.
For instance, we found that E. coli cells can produce
(R)-propane-1,2-diol when methylglyoxal reductase and
lactaldehyde reductase are added to the metabolic network,
which has not been reported to date. Similar alternative
pathways were found for the production of itaconate, cis,
cis-muconate, and 2,3-dihydroxybenzoate. These results
suggest that our algorithm successfully identified the
metabolic reactions necessary for the target productions
and could assist in screening for potential host cells.

Next, we used glucose as a carbon source to investi-
gate whether these nonnative metabolites are producible
by FBA simulations. In this simulation, the production
flux of each nonnative metabolite was treated as an ob-
jective function to be maximized under the steady-state
assumption. When the maximum production flux of a
nonnative metabolite is zero, this metabolite is non-
producible under the given condition.

We calculated the maximum production fluxes of all
connectable nonnative metabolites. 28% of the connect-
able nonnative metabolites of E. coli could not be pro-
duced using glucose as a sole carbon source. Similarly,
33% of the connectable nonnative metabolites of S. cerevi-
siae and 16% of the connectable nonnative metabolites of
C. glutamicum were non-producible under this condition.
These non-producible metabolites were identified by their
tendency to disconnect when glycolysis formed the central
metabolic pathway. In E. coli, these metabolites included

trans-aconitate (C02341), butyrate (C00246), acetoacetate
(C00164), and L-lactaldehyde (C00424).

Evaluation of production feasibility

To evaluate the feasibility of nonnative target metabolite
production, we performed FBA simulations under
conditions of maximizing biomass production following
heterologous reaction expansion of the genome-scale
metabolic model. Metabolic flux profiles calculated at
maximum biomass production rates have been shown to
closely represent those in real microorganisms [45,59-62].
Such agreement may be explained by the growth
optimization of microorganisms through evolutionary
dynamics [63]. Furthermore, for the mutant strains con-
structed in the laboratory, the cells could achieve the
near-optimal metabolic state calculated by the FBA
simulation after long-term cultivation [64-67], via the
selection of faster growing cells. Thus, we can expect
that if a nonnative target metabolite is produced in the
FBA simulation under maximized biomass production,
that target may be feasibly manufactured.

In Figure 3, we plot the number of target metabolites
produced under maximized biomass production, versus
the number of heterologous reactions necessary for me-
tabolite production. We set a threshold yield (1%) to
identify the produced metabolites because the produc-
tion yields of some metabolites were positive but ex-
tremely small. Sometimes the FBA solution was
undetermined under biomass maximization conditions;



Table 1 Examples of nonnative metabolites for which our algorithm detected heterologous reactions matching those of previous studies

Compound KEGG Heterologous reaction(s) from ReferenceEvaluation of in silico design
(synonym separated by a ID the literature
semicolon)
Isoprene; C16521 Introduced ispS gene from [47] Identical reaction found in E. coli and in Saccharomyces cerevisiae and Cerevisiae glutamicum as the host
2-methyl-1,3-butadiene Populus nigra to Escherichia coli
a-Farnesene C09665 Introduced farnesene synthase [13] Identical reaction found in E. coli and in S. cerevisiae and C. glutamicum as the host
from plant to £. coli
Poly-B-hydroxybutyrate; PHB  C06143 Introduced phbC and phbB from [48] Identical reaction found in E. coli and in S. cerevisiae and C. glutamicum as the host
Streptomyces aureofaciens to E. coli
Cadaverine; C01672 Introduced IdcC from E. coli to [35,49] Identical reaction found in C. glutamicum and in S. cerevisiae as the host
1,5-pentanediamine; C glutamicum
1,5-diaminopentane
Amorpha-4,11-diene C16028 Introduced AMST from the plant [50,51] Identical reaction found in E. coli and S. cerevisiae and in C. glutamicum as the host
Artemisia annua L. to E. coli
Propane-1,3-diol; C02457 Introduced glycerol dehydratase [52,53] Identical reaction found in E. coli and in S. cerevisiae as the host
1,3propanediol;  trimethylene and 1,3-propanediol
glycol oxidoreductase from Klebsiella
pneumonia to E. coli.
Ethanol; C00469 Introduced pyruvate [54] Identical reaction found in C. glutamicum as the host
ethyl decarboxylase and alcohol
alcohol; methylcarbinol dehydrogenase genes from
Zymomonas mobilis to C. glutamicum
(R,R)-Butane-2,3-diol; C03044 Introduced acetolactate [55] Identical reaction found in E. coli as the host
(R,R)-2,3-Butanediol; decarboxylase and butanediol
(R,R)-2,3-Butylene glycol dehydrogenase genes to E. coli
(R)-Propane-1,2-diol; C02912 Introduced glycerol dehydrogenase [56] Alternative pathway found to produce target by adding methylglyoxal reductase and lactaldehyde
(R)-1,2-propanediol; gene from Klebsiella pneumonia and reductase to E. coli
(R)-propylene glycol used aldehyde dehydrogenase to
produce product in E. coli
Introduced glycerol [57] Alternative pathway found to produce target by adding methylglyoxal reductase and lactaldehyde

Itaconate; C00490
itaconic acid;

methylenesuccinic acid

cis,cis-Muconate; C02480
cis,cis-hexadienedioate;
cis,cis-2,4-hexadienedioic

acid

Adipate; C06104
adipic acid; hexanedioate;

hexan-1,6-dicarboxylate

dehydrogenase and methylglyoxal

synthase genes from E. coli to S. cerevisiae

No information

NA

Introduced aroZ, aroY, and catA to E. coli [58]

Introduced aroZ, aroY, and catA
to E. coli for producing cis,cis-
muconate and then convert to
adipic acid by chemical synthesis

(58]

reductase to S. cerevisiae

EC 4.2.1 4-citrate dehydratase and EC 4.1.1.6-aconitate decarboxylase were found to be added to E. coli
as the host.

Alternative pathways from antharilate or 2,3-dihydroxybenzoate to produce catechol, which is a
substrate for cis,cis-muconate production

Alternative pathway found to produce the target by adding 5 heterologous reactions to E. coli or C.
glutamicum as the hosts (see Additional files 5 and 6 for enzyme information)
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Figure 2 Heterologous pathways for 1,3-propanediol production: (a) the production pathway described in earlier studies, in
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that is, the solution was not unique. In such cases, fol-
lowing maximization of biomass production, the pro-
duction flux of the target metabolites was further
maximized with fixing the maximized biomass produc-
tion, to obtain a unique flux profile that would generate
the target. In the simulations, we adopted a micro-
aerobic condition to screen the target metabolites pro-
duced under the biomass maximization condition, in
which significantly more metabolites were obtained than

25

—E. coli

—5. cerevisiae
20 - —C. glutamicum

No. of producible metabolites

1 2 3 4 5 6 7 8 9
No. of heterologous reactions

Figure 3 The number of metabolites producible under biomass
maximization conditions with the addition of <10
heterologous reactions.

under anaerobic conditions, and in which all anaerobic-
ally produced metabolites were included.

Table 2 lists the representative target metabolites pro-
duced under biomass maximization, together with their
corresponding heterologous reactions. The mechanisms
involved in these reactions can be classified into two cat-
egories. One is based on the production of oxygen as a
by-product of the targets. Since the simulations were
performed under micro-aerobic conditions, oxygen sup-
ply increased the biomass production by activating the
electron transfer system and facilitating adenosine tri-
phosphate production. Therefore, if the heterologous
reactions used to produce the target are accompanied by
oxygen production, the target can be produced under
minimum biomass production flux. For example,
pentane-2,4-dione was produced by introducing a single
heterologous reaction into E. coli and S. cerevisiae,
whereas two heterologous reactions were necessary to
produce this metabolite in C. glutamicum. Vanillin can
be produced under the same mechanism by introducing
4 heterologous reactions into the E. coli and C. glutami-
cum metabolic networks.

Another mechanism is associated with NADH oxi-
dization. Under micro-aerobic conditions, the cellular
growth of microorganisms can be limited by NAD re-
generation, which is necessary for glycolysis activity,
and which occurs through NADH oxidization. Thus,
when the heterologous reactions producing the targets
are associated with NADH oxidization, these heterol-
ogous reactions are activated when the biomass



Table 2 Examples of producible nonnative metabolites under conditions of maximized biomass production

Nonnative metabolites Host network By-product No. of reaction(s) Heterologous reaction(s) EC number
Pentane-2,4-dione E. coli, S. cerevisiae Oxygen 1 Pentane-2,4-dione + oxygen « acetate + methylglyoxal 1.13.11.50
C. glutamicum Oxygen 2 Glycerone phosphate «» methylglyoxal + orthophosphate 4233
Pentane-2,4-dione + oxygen <« acetate + methylglyoxal 1.13.11.50
Vanillin (4-hydroxy-3-methoxy E. coli, Oxygen, NADH 4 Formaldehyde + NAD+ + H,0 «> formate + NADH +H* 1.2.1.46
-benzaldehyde) C. glutamicum 3-Dehydroshikimate « 3,4-dihydroxybenzoate +H20 421118
Vanillate + oxygen + NADH + H* «» 3,4-dihydroxybenzoate + NAD 1.14.13.82
+ + H,0 +formaldehyde
Vanillate + NAD+ + H20 < 4-hydroxy-3-methoxy-benzaldehyde 1239
+ oxygen+NADH +H*
(R)-Propane-1,2-diol E. coli NAD* 2 (R)-Lactaldehyde + NAD" + H,O « (R)-lactate + NADH +H* 12123
(R)-Propane-1,2-diol + NAD" < (R)-lactaldehyde + NADH + H* 11177
2-Propyn-1-al S. cerevisiae NAD* 3 3-Oxopropanoate «» acetaldehyde + CO, 4.1.1-
3-Oxopropanoate «> propynoate + H,O 42127
2-Propyn-1-al + NAD" + H,O « propynoate + NADH + H* 1213
Adipate semialdehyde E. coli NADP+ 6 Succinyl-CoA + acetyl-CoA «» CoA + 3-oxoadipyl-CoA 23.1.174
(3 9)-3-Hydroxyadipyl-CoA + NAD" < 3-Oxoadipyl-CoA + NADH +H* 1.1.1.35
5-Carboxy-2-pentenoyl-CoA + H20 « (3 S)-3-hydroxyadipyl-CoA 42117
Adipyl-CoA +FAD « 5-carboxy-2-pentenoyl-CoA + FADH, 1.3.99-
Adipate + CoA + ATP «» Adipyl-CoA + AMP + diphosphate 6.2.1-
Adipate semialdehyde + NADP+ + H,O «> adipate + NADPH +H* 1214
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production is maximized This phenomenon occurs, for
example, in the production of (R)-propane-1,2-diol and
2-propyn-1-al.

We also found that some metabolites are produced
only by E. coli under conditions of maximum biomass
production, such as (R)-propane-1,2-diol and adipate
semialdehyde. Unlike S. cerevisiae and C. glutamicum, E.
coli possesses NAD transhydrogenase, which can convert
NADP and NADH to NADPH and NAD respectively
(and vice versa). In E. coli cells, the excess NADH is
converted to NADPH which can then enter the target
production pathway.

Differences in target production capacity among host
microorganisms

While screening for heterologous pathways to produce the
target metabolites discussed earlier, differences in produc-
tion capacity between the three host microorganisms
emerged; for example, a group of metabolites was inducible
by the addition of heterologous reactions to one of the
hosts, but was not produced by the other hosts. To
characterize the differences in target production capacity,
we categorized the producible metabolites (shown in the
Additional files 5, 6, 7) using the KEGG Orthology database
[16]. We then performed a chi-square statistical analysis to
identify the categories in which the frequency of producible
metabolites is significantly higher than expected. Figure 4
shows the 10 categories that demonstrated significant dif-
ferences (P < 0.001). As shown in the figure, metabolites
belonging to 5 categories, namely, “tyrosine metabolism,”
“dioxin degradation,” “benzoate degradation,” “chlorocyclo-
hexane and chlorobenzene degradation,” and “xylene deg-
radation,” tended to be producible by S. cerevisiae and
C. glutamicum but were scarce in E. coli cells.

” o«
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Similarly, the metabolites in “flavonoid biosynthesis,”
“phenylpropanoid biosynthesis,” and “nicotinate and
nicotinamide metabolism” were preferentially generated
by E. coli and C. glutamicum. Metabolites assigned to
“porphyrin and chlorophyll metabolism” also tended to
be produced in C. glutamicum cells. Likewise, the meta-
bolites assigned to “biosynthesis of 12-, 14-, and 16-
membered macrolides” were produced preferentially in
E. coli cells. Such differences in production capabilities
result from the different metabolic pathways by which
the hosts produce necessary substrates, and from cellular
compartmentalization in the yeast strain (which is ab-
sent in the bacterial strains).

In yeast cells, the compartments present barriers to me-
tabolite transport. For instance, mitochondrial/cytoplas-
mic interfaces prohibit the production of certain target
metabolites when sugar is used as a carbon source. Simi-
larly, the production of metabolites in the “flavonoid bio-
synthesis” category was inhibited in yeast cells because the
transportation of 4-coumarate between the mitochondria
and the cytosol is not permitted; therefore, the yeast strain
could not produce p-coumaroyl-CoA (required for mak-
ing chalconoid, an important ingredient in flavonoid bio-
synthesis). Our genome-scale metabolic model does not
account for transportation capabilities between compart-
ments, which are currently unclear for many metabolites,
and which might influence the production capacities of
target metabolites in real cell systems.

Conclusions

In conclusion, we developed a computational platform to
investigate the extent to which industrial hosts can
synthesize nonnative metabolites. Biosynthetic capabilities
are evaluated by pathway design and flux calculations. We
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tested our platform using the industrial hosts S. cerevisiae,
E. coli, and C. glutamicum as templates. Our results are
consistent with those of earlier reports and provide add-
itional alternative heterologous pathways. Producible non-
native metabolites predicted by our platform include
industrial chemical compounds such as isoprene, o-
farnesene, PHB, cadaverine, 1,3-propanediol, 1,2-propane-
diol, and vanillin. We propose that our platform is
applicable to any genome-scale models that simulate cell
factories. The platform greatly reduces the time and cost
of heterologous pathway searching for target metabolites.
Furthermore, appropriate expansions of the proposed sys-
tem (for example, incorporating reaction irreversibility
and source availability of heterologous enzymes), could
significantly improve the scope of our system. We believe
that this platform will accelerate the rational design of
metabolic systems and thereby enhance microbial produc-
tion of essential metabolites.

Availability and requirements
The program for our pathway search algorithm is avail-
able at
http://www-shimizu.ist.osaka-u.ac.jp/pathway_search.
zip. The program is written in Python. After extracting
“pathway_search.zip”, the tool can be started by double
clicking “runningScript.py” or by opening “running-
Script.py” in Python IDLE, followed by pressing F5. All
connectable nonnative metabolites including heterol-
ogous reaction are contained in the iteration folder. The
folder input contains the necessary input files for identi-
fying heterologous reactions of nonnative metabolites
induced in a specified host.

Additional files

Additional file 1: List of reactions used in this study. The sheet
"kegg_reaction_information” contains the metabolic reactions from the
KEGG ligand database.

Additional file 2: List of connectable nonnative metabolites when
Corynebacterium glutamicum was used as the host. The sheet "C.
glutamicum_connectable” contains all of the connected metabolites,
including heterologous reaction(s), information about gene(s) from the
KEGG database and the minimum K, value from the BRENDA database.

Additional file 3: List of connectable nonnative metabolites when
Escherichia coli was used as the host. The sheet “E.coli_connectable”
contains all of the connected metabolites, including heterologous
reaction(s), information about gene(s) from the KEGG database and the
minimum K, value from the BRENDA database.

Additional file 4: List of connectable nonnative metabolites when
Saccharomyces cerevisiae was used as the host. The sheet “S.
cerevisiae_connectable” contains all of the connected metabolites,
including heterologous reaction(s), information about gene(s) from the
KEGG database and the minimum K, value from the BRENDA database.

Additional file 5: List of producible nonnative metabolites when
Corynebacterium glutamicum was used as the host. The sheet “C.
glutamicum_maxTarget” contains all of the producible metabolites under
the target maximization condition, including heterologous reaction(s),
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information about gene(s) from the KEGG database and the minimum
K value from the BRENDA database. The sheet “C.
glutamicum_maxBiomass” contains the producible metabolites under the
biomass maximization condition, including heterologous reaction(s),
information about gene(s) from the KEGG database and the minimum K,
value from the BRENDA database.

Additional file 6: List of producible nonnative metabolites when
Escherichia coli was used as the host. The sheet “E.coli_maxTarget”
contains all of the producible metabolites under the target maximization
condition, including heterologous reaction(s), information about gene(s)
from the KEGG database and the minimum K, value from the BRENDA
database (nonstandard format). The sheet “E.coli_maxBiomass” contains
the producible metabolites under the biomass maximization condition,
including heterologous reaction(s), information about gene(s) from the
KEGG database and the minimum K, value from the BRENDA database.

Additional file 7: List of producible nonnative metabolite when
Saccharomyces cerevisiae was used as the host. The sheet “S.
cerevisiae_maxTarget” contains all of the producible metabolites under
the target maximization condition, including heterologous reaction(s),
information about gene(s) from the KEGG database and the minimum K,
value from the BRENDA database. The sheet “S.cerevisiae_maxBiomass”
contains the producible metabolites under the biomass maximization
condition, including heterologous reaction(s), information about gene(s)
from the KEGG database and the minimum K, value from the BRENDA
database.
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