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Abstract

Background: During their lifetime, microbes are exposed to environmental variations, each with its distinct spatio-
temporal dynamics. Microbial communities display a remarkable degree of phenotypic plasticity, and highly-fit
individuals emerge quite rapidly during microbial adaptation to novel environments. However, there exists a high
variability when it comes to adaptation potential, and while adaptation occurs rapidly in certain environmental
transitions, in others organisms struggle to adapt. Here, we investigate the hypothesis that the rate of evolution
can both increase or decrease, depending on the similarity and complexity of the intermediate and final
environments. Elucidating such dependencies paves the way towards controlling the rate and direction of
evolution, which is of interest to industrial and medical applications.

Results: Our results show that the rate of evolution can be accelerated by evolving cell populations in sequential
combinations of environments that are increasingly more complex. To quantify environmental complexity, we
evaluate various information-theoretic metrics, and we provide evidence that multivariate mutual information
between environmental signals in a given environment correlates well with the rate of evolution in that
environment, as measured in our simulations. We find that strong positive and negative correlations between the
intermediate and final environments lead to the increase of evolutionary rates, when the environmental complexity
increases. Horizontal Gene Transfer is shown to further augment this acceleration, under certain conditions.
Interestingly, our simulations show that weak environmental correlations lead to deceleration of evolution,
regardless of environmental complexity. Further analysis of network evolution provides a mechanistic explanation
of this phenomenon, as exposing cells to intermediate environments can trap the population to local
neighborhoods of sub-optimal fitness.

Background
From microbes to vertebrates, organisms are constantly
subjected to evolutionary processes that lead to adapta-
tion and phenotypic variation. Whether evolutionary
forces lead to new and rapidly evolving species, as it is
in the case of adaptive radiation, or are responsible for
phenotypic divergence within a species, the main under-
lying mechanism by which complex behavior arises
remains the same: gradual accumulation of selected

genetic mutations and epigenetic changes gives rise to a
myriad of anatomical, physiological and behavioral
expressions. Although the notion that evolution, niche
adaptation, and phenotypic variation leads to “endless
forms most beautiful” can be traced back to Darwin [1],
it was only in the last decade that with the advent of
high-throughput sequencing and profiling techniques,
we were able to understand the mechanisms by which
mutations give rise to novel traits. Remarkably, it has
been shown that even single mutations, such as nucleo-
tide polymorphisms, can yield phenotypes that are sig-
nificantly dissimilar [2]. The same holds for the rewiring
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of the gene regulatory and biochemical networks, as
they were found to exhibit a highly degree of evolvability
[3,4], yet preserve phenotypic robustness when under
stabilizing selection and in the presence of disrupting
mutations [5,6].
A challenging task is to identify the environmental

and organism-specific characteristics that allow the
rapid adaptation from past to new environments.
Recently, the theory of “Facilitated Variation” provided a
unifying framework according to which, organisms are
under selection to develop conserved core components
that can be reused to quickly adapt to novel environ-
ments. Computer simulations with logic gates and RNA
secondary structures have demonstrated that facilitated
variation spontaneously emerges during evolution [7],
while theoretical models provide support that varying
environments can affect evolution [8] and can give rise
to modular structures [9].
Here, we posit that evolution can be both accelerated

and decelerated through step-wise adaptation to novel
environments. In complex environments, organisms
have to explore a large parameter space before settling
in stable fitness points (Figure 1A). Local minima and
discontinuities may lead to sub-optimal fitness peaks,
from where it may be difficult, or even infeasible, to
escape. In addition, it has been shown that phenotypes
that occupy flatter regions of the fitness surface are
more robust to mutations, a phenomenon that was
coined as “survival of the flattest” [10]. Intermediate
environments can lead to fitness neighborhoods from
where it is easier for an organism to adapt to novel
environments (Figure 1B). However, exposure to an
intermediate environment may also have the opposite
effect, as it can result to neighborhoods of poor fitness
potential upon transition from one environment to
another (Figure 1C). To further investigate this hypoth-
esis, we first define metrics to quantify environmental
complexity, and then proceed to measure the rate of
evolution in multi-scale simulations of evolving micro-
bial populations under five dynamic environments.

Methods
We used a multi-scale microbial simulator to perform
simulations of microbial populations in five environ-
ments with distinct temporal dynamics. The multi-scale
simulator employs abstract, multi-scale models of basic
sub-cellular phenomena related to expression (transcrip-
tion, translation, protein modification, degradation, etc.),
evolution (mutation, gene duplication, gene deletion,
etc.), network regulation and other evolutionary pro-
cesses (natural selection). It has been used successfully
in the past to generate hypotheses related to regulatory
network evolution in nutrient-limited microbial commu-
nities [11], and we have recently extended to include
Horizontal Gene Transfer events [12].
In a simulation run, a population is composed of a

fixed number of organisms. Each cell comprises of a
number of “triplets” (three nodes): Gene/mRNA, Pro-
tein, and Modified Protein (Figure 2A). The Promoter/
Gene/RNA node captures gene regulation and transcrip-
tion, while the Protein and Modified Protein nodes cap-
ture translation and post-translational modification,
respectively. Each organism has its own distinct gene
regulatory and biochemical network (i.e. a collection of
various triplets and weighted regulatory edges) that can
be depicted as a directed weighted graph (see Figure
2B). The probability of molecule creation at each node
and at each time step is a function of the regulatory
effect of other nodes (activation or inhibitions) on that
specific node, and the availability of substrate molecules.
We model the molecule production probability as a
two-level sigmoid function that captures a threshold and
saturation effects for any given regulator and for the
expression of any given node [11]. In addition to its reg-
ulatory network, each organism has a unique metabolic
pathway which, when expressed, can metabolize avail-
able resources in the environment.
Mutational events (e.g. transcription rate changes,

node duplications, node deletions, etc.) occur stochasti-
cally at any time point and on any node, thus changing
its internal network and potentially its phenotype, which

Figure 1 Step-wise evolution. Adaptation to a complex environment (A) can be accelerated (B) or decelerated (C) if guided through
intermediate steps of a lesser complexity. Fitness profile for a population evolving in a target complex environment (solid black curve) is a
multidimensional surface with multiple local maxima. Adaptation to intermediate environments (dashed grey fitness profiles) can direct evolution
towards to (or away from) the global fitness maximum of the target environment.
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in this context is synonymous to the regulatory and
metabolic pathway expression. The production and
destruction of any molecule has an energy cost, as does
the maintenance of molecular species (nodes). Organ-
isms cannot directly sense the presence of resources;
however they can potentially infer their future presence,
if they are able to process information from various
environmental signals through biochemical and regula-
tory interactions. Once an organism reaches a certain
energy level, it undergoes division, increasing its geno-
type representation in the population, while its progeny
replaces an existing organism so that the fixed size of
the population is preserved (probability of an organism
being replaced is inversely proportional to its energy
level).
For our simulations here, we used environments where

two signals, s1 and s2, carry information regarding the pre-
sence of nutrients in the environment (Figure 3). The I/O
characteristic of environments A and B is given by the
logic Nutrients Presence [A] = Delayed (s1 AND NOT(s2))
and Nutrients Presence [B] = Delayed (NOT(s1) AND s2),
respectively. This logic produces a single peak when s1 and
s2 have the temporal characteristics of the waveform pre-
sented in Figure 3. Environments that encode an AND,
OR and XOR gate where also used. The latter is also the
environment with the most complex correlation structure,
due to the fact that the XOR gate is not linearly separable.
In addition, we introduced a delay in the signal/nutrient
correlation (through the Delayed() function, which
imposes a fixed delay of 500 time steps) to further increase
the evolutionary complexity of the environment, as organ-
isms now have to account for it through the topology and
dynamics of the respective underlying networks. Similar
observations were obtained with the absence of delay,

although evolution was faster and resulted in simpler regu-
latory networks.
To assess the fitness level of each organism, we report

the Pearson correlation between nutrient abundance
and response protein expression level over a predefined
interval of time, which we call an “epoch” (4,500 time
units in our simulations). We stress that this similarity
measure is used for visualization purposes as a proxy to
each organism’s fitness, and at no point participates or
interferes with the selection or evolutionary trajectory of
cells during the simulation. High correlation between
nutrients and response protein concentration implies an
efficient underlying mechanism to metabolize nutrients,
as activation of this costly pathway takes place only
when it confers an advantage to the organism.

Results
Environmental complexity and the rate of evolution
It is expected that the time it takes until a fit phenotype
emerges is inversely proportional to the complexity of
the environment. For instance, the gene regulatory and
biochemical network of an organism which has to
evolve a simple inverse relationship between signals and
nutrients (i.e. the signal should be absent, for an action
to take place), will be much less complex than the net-
work of an organism which must capture an oscillatory
dependency between inputs and outputs. The same is
true for the evolution of networks in other contexts
(social, financial, etc.) where inference and decision-
making are an integral part of the network function. It
is an open question, however, how we can quantify
environmental complexity in a way that it captures the
expected rate of evolution, or the time it will take for a
fit phenotype to emerge.

Figure 2 Basic cellular model in our simulation framework. (A) A “triplet": capturing the processes of transcription, translation, and post-
translational modification. (B) Example of a gene regulatory and biochemical network in an organism where environmental signals (e.g. oxygen,
temperature) regulate the expression of certain genes/proteins. The value at each node of the graph corresponds to the number of molecules
of a given molecular species. Red/blue arrows denote positive/negative regulation and their corresponding weights.
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To address this question, we evolved initially random
populations in the five environments that we mentioned
before, and then measured the rate of evolution over 32
simulation runs. Then, we considered several informa-
tion-theoretic measures that capture the correlation
between the observable inputs and latent output,
and assessed their potential to predict the evolutionary
rate (Table 1). We found that multivariate mutual

information between environmental inputs (signals) and
outputs (nutrients) correlates well with the rate of evo-
lution for the environments that we studied (Figure 4A).
As expected, the rate of evolution (measured as the time
constant in an exponential fit) was slower for the case
of XOR than any other environment tested.
Next, we calculated the environmental similarity

between any two environments by measuring the

Figure 3 Environments. Environmental signals (green) and nutrient abundance for five environments (bottom to top: AND, OR, A, B, XOR)
shown as a function of time steps within one epoch. Nutrient presence is a delayed function of the two signals. One epoch is shown for each
environment, which consists of 4,500 time units.
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pair-wise Pearson correlation of nutrient presence.
Inclusion of the two signals would not alter the mea-
sured correlation, as the temporal dynamics of the two
signals are the same in all environments that we
consider. Figure 5 depicts the final “environmental

network” that reflects the two measured quantities, the
environmental quantity and similarity. We continued
by testing whether evolution can be accelerated or
decelerated by using different paths within the envir-
onmental network.

Table 1 Information metrics of environmental complexity.

Emergence of the organism with fitness w

w > 0.75 w >0.85

Average speed, epochs Success Rate Average speed, epochs Success Rate

Un-evolved ® AND 39 64/64 236 64/64

Un-evolved ® OR 1,179 57/64 > 4,000 25/64

Un-evolved ® A 1,667 60/64 2,425 59/64

Un-evolved ® XOR 5,241 26/64 9,583 21/64

AND ® XOR 4,891 7/16 > 6,000 7/16

XOR ® AND 250 14/16 1230 6/16

AND ® OR > 4,000 9/16 – 2/16

OR ® AND 17 16/16 199 14/16

A ® AND 125 15/16 696 10/16

AND ® A 1477 14/16 2362 14/16

A ® OR 220 11/16 2200 10/16

OR ® A 56 16/16 56 16/16

OR ® XOR 210 15/16 2093 10/16

XOR ® OR 42 16/16 119 16/16

A ® XOR 240 14/16 887 11/16

{A &B} ® XOR + HGT 138 16/16 423 12/16

XOR ® A 10 16/16 17 16/16

A populations is considered to be evolved once its fitness is above w = 0.75; additional phenotype refinement is required to pass the w = 0.85 threshold. Success
rate is the ratio of simulations with fitness above threshold after 4,000 epochs over the total number of simulations.

Figure 4 Measuring environmental complexity by using multivariate mutual information. (A) Multivariate mutual information between
environmental signals and nutrient presence was found to correlate with the evolutionary rate, in experiments with 1024 cells, 5 environments,
107 time units, and 64 experiments per environment (replicates). Insert shows the lack of correlation of the evolutionary rate with other
information measures (as reported in Table 1). (B) Fitness trajectories for AND, OR, A, and XOR environments averaged over 64 experiments;
evolutionary rate is defined as the time constant τ of the exponential fit (w=A0-a*exp(-t/τ)) on the averaged fitness trajectory of the evolved
populations (dashed curves and inset table).
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Step-wise evolution through adaptation to environments
of increased complexity
Interestingly, pre-evolving organisms to intermediate
environments that have both lower complexity and
strong, positive correlation to the final (target) environ-
ment, leads to a higher rate of evolution. We found that
this effect was even more profound when positive corre-
lation exists between the intermediate and final environ-
ments and in the presence of Horizontal Gene Transfer
(HGT) [13]. As shown in Figure 6A, evolution in an XOR
environment is usually slow and has low probability of
success: 5241 avg. epochs, 26/64 successful simulations.
Average adaptation speed or time to a solution is mea-
sured as an average number of epochs required for a
population to reach a 0.75 fitness threshold in a given
environment. However, when cells evolve in an OR envir-
onment first, and then transferred in an XOR environ-
ment, the average time to a solution decreases by a
remarkable 73.5% and the success rate increases consid-
erably (1389 avg. epochs, 67% success rate, Figure 6B).
Similarly, if cells evolve in either A or B environment and
then in an XOR environment the time is reduced by
63.5% to 1907 epochs (Figure 6C). This reduction is
larger when the initial cell population evolves on parallel
in A and B environments, and then a mixed population
evolves in an XOR environment in the presence of HGT
(1805 avg. epochs, Figure 6D). HGT allows the transfer
of genetic material between cells of different lineages,

rendering possible the transfer of gene clusters that con-
fer a positive advantage to the target cell. This is particu-
larly noticeable in mixtures of populations which have
evolved in environments that are complementary to each
other (such as A and B) and similar to the target environ-
ment (here XOR). Acceleration is also present in the case
of paths with more than one intermediate goal (Figure
6E), although we expect that the overhead of exploring
intermediate goals might eventually offset any accelera-
tion gain present. Figure 7 illustrates the evolutionary tra-
jectories in one-step and multi-step adaptation for the
combinations that we examined; detailed statistics is
shown in Table 2.
The choice of environments is of paramount impor-

tance when it comes to changes in the rate of evolution.
Contrary to what we expected, selecting an intermediate
environment that strongly anti-correlates to the final
environment, does not decelerate the evolutionary rate.
The reason is that cell populations are mal-adapted to
the second environment and the pre-evolved population
is washed out within a few epochs during the transition,
for the small population sizes of our simulations. We
expect that this will also hold for larger population
sizes, as the probability that a reversing mutation in the
network arises is higher. Deceleration, however, can be
achieved by first evolving the population at an environ-
ment of high complexity, which is not surprising. Inter-
estingly, we observed deceleration in the case of weak

Figure 5 Relative complexity and similarity of AND, OR, A, B, and XOR environments as a graph. Node values correspond to the
environmental complexity (squares, border thickness is proportional to the complexity). Pair-wise similarity is calculated as the Pearson
correlation of nutrient presence between environments and corresponds to the edge value (red and blue represent correlation and anti-
correlation, respectively). The environment of highest complexity, XOR, is part of a cluster of strongly correlated environments (A, B, OR, and
XOR). Environment AND is the simplest one, and it is isolated from other environments (low or negative correlation).
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positive or negative correlation between the intermedi-
ate and final environments. This is the case of evolution
to the OR environment through an initial population
that has pre-evolved in the AND environment. Although

there is a weak correlation between the two environ-
ments (0.09), OR phenotypes do not arise until much
later in the simulations (> 4000 epochs). Analysis of the
evolutionary trajectory and population variation showed

Figure 6 Single-step and multi-step evolution towards an XOR phenotype. The highlighted edges of each network correspond to the
environmental transitions made during evolution (evolutionary path). The value of each edge corresponds to the average time to evolve a fit
phenotype, in number of epochs. <T> and P are the average total time (traversing through the highlighted path) and the success probability
(ratio of successful experiments over total experiments). (A) Direct evolution in an XOR environment is very slow and has a low probability of
success (B-C) evolution to environments of lower complexity and subsequent evolution to the final environment accelerate evolution and
boosts the number of successful experiments, (D) The presence of HGT in a population that pre-evolved in two simple environments further
increase the evolution rate, (E) step-wise acceleration can occur in more than two steps, although at a lesser degree.

Figure 7 Evolutionary trajectories for single-step and multi-step adaptation. Vertical arrows show points where the average fitness in the
population reaches the 0.75 threshold in a XOR environment. The 0.75 threshold guaranties that close to 99% of the population exhibits the I/O
characteristics of the corresponding logical gate. (A) The evolutionary trajectory during single-step evolution in an XOR environment (averaged
over 64 simulations), where it takes more than 5000 epochs to achieve the desired fitness; (B-D) If cells are first evolved in an OR and then in an
XOR environment (guided, step-wise evolution), a fit phenotype emerges much faster (1,389 vs. 5,241 in the single-step evolution). Fitness
discontinuity during transitions is due to the different correlations between the nutrients and the signals in the various environments. Similarity
between environments (e.g. OR and XOR) result in cells that are exposed in the latter environments to already have certain non-zero fitness.
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that this is a result of cells populating a local optimum
in the fitness landscape, in full agreement with our
initial hypothesis and Figure 1C. More specifically,
within a few epochs after the transition to the OR

environment (Figure 8A), the dominant phenotype in
the population expressed the metabolic protein neces-
sary to metabolize nutrients only during the second and
third peak of nutrient occurrence (Figure 8B). However,

Table 2 Information metrics of environmental complexity.

Metric Adjusted R2

MI (S1; S2; Nshifted) 0.984

MI (S1; S2|Nshifted) 0.981

H (S1; S2; Nshifted) 0.028

MI (S1; S2; N) -0.249

[Corr. (S1, Nshifted) + Corr. (S1, Nshifted)]/2 -0.332

[K-L Div. (S1||Nshifted) + K-L Div. (S1||Nshifted)]/2 -0.106

We evaluated the following measures on their correlation with the rate of evolution measured through experimental runs. From top to bottom: Multivariate
mutual information (slope -0.169 ± 0.011, intercept 0.302 ± 0.031), multivariate conditional mutual information (slope 0.181 ± 0.012, intercept -0.12 ± 0.037),
entropy, mutual information of time-shifted environments, average pair-wise Pearson correlation, average Kullback-Leibler divergence. Information theoretic
metrics were calculated for probability distributions (using 64 bins) of possible values of two signals S1 and S2 and a nutrients’ signal. Nutrient’s signals were
taken either as a time delayed function of input signals N (see Figure 3), or as a shifted by -500 time steps nutrients’ signal Nshifted (i.e. with eliminated time delay
relative to the input signals). Information theoretic metrics were calculated as: MI(S1; S2; N) = H(S1) + H(S2) + H(N) - H(S1;S2) - H(S1;N) - H(S2;N) + H(S1;S2;N) and MI
(S1; S2|N) = MI(S1;S2) - MI(S1; S2; N); joint entropy is defined as H(X1, ...,Xn) =

∑
x1∈X1...

∑
sn∈Xn

p(x1, ..., xn) log(p(x1, ..., xn)) and mutual information is defined as

MI(S1; S2) =
∑

s1∈S1
∑

s2∈S2 p(s1, s2) log
(

p(s1, s2)
p1(s1)p2(s2)

)
, where (p(x1,...,xn) and pi (x) are joint and marginal probability distribution functions,

respectively. Kullback-Leibler divergence is calculated as: K-L Div. (S||N) =
∑

i p(Si) log
(
p(Si)
p(Ni)

)
for probability distributions S and N.

Figure 8 Evolution during an AND-to-OR environmental transition. Snapshots of the minimal network evolution for a single cell during an
AND-to-OR transition are shown. T0 is the metabolic triplet, and RP0 is the response protein, whose expression is necessary for nutrient uptake
(its expression profile is the third row in the heatmap). (A) Initially the cell is exposed to the AND environment, and exhibits a highly fit profile
(Pearson correlation between RP0 and nutrients is 0.89). The minimal network illustrates the logic that has evolved: signal S1 activates the
expression of gene and protein product of T1, which in turn catalyzes the translation of T0, while signal S1 should be presence for T0 gene
expression, thus operating in an AND-like logic. (B) Upon exposure to the OR environment, the cellular network evolves to exhibit suboptimal
phenotype, where only the second and third nutrient peaks are detected. (C) Final OR-like network evolves after several epochs from the
intermediate network (shown in B). The cell expresses its metabolic protein during all nutrient occurrences.
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due to the sub-optimal, but stable, hard-wiring of its
regulatory network, the optimal OR phenotype only
emerges 1000 epochs later.

Conclusions
In this paper, we investigate the “guided evolution hypoth-
esis”, and provide evidence through in silico simulations
that the rate of evolution can be both accelerated and
decelerated by exposing a cell population to a series of
environments. Towards identifying the rules that govern
this phenomenon, we explored functions that can serve as
a proxy for environmental complexity and similarity
between environments. To understand how exposure to
intermediate environments impacts evolutionary rates, we
analyzed the fossil record of evolution on the networks
and the population. Gathering and storing this amount of
data would not been possible, without the development of
a state-of-the-art, multi-scale, scalable microbial simulator
that can run in HPC environments. Our results are insen-
sitive to the particular evolutionary parameters, although
simulations should be extended to more distinct environ-
ments in the future.
The implications of this work span many areas of bio-

logical research. First, we extend our current understand-
ing of evolution by deriving a set of rules that explain the
directional change of evolutionary rates when popula-
tions are exposed to a series of environments. By quanti-
fying the environmental complexity, we made possible a
more rigorous assessment of the evolutionary potential of
microbial communities in complex environments. In the
context of synthetic biology and bioengineering, our
work may prove useful if the task is to control evolution-
ary rates without changing main environmental para-
meters (medium, mutagenic agents, and other abiotic
parameters). The ability to guide evolution can be a
powerful tool when it comes to fine-tuning of genetic
constructs, designing principles for resilient biological
circuits, and controllable biotechnological processes [14].
Our work can be extended to environments of higher

dimensionality and complexity, since the scope of this
study was limited to temporal signals that encode logical
functions. As such, the metrics that we used to assess
environmental complexity may not be applicable to
environments that are spatially heterogeneous or are
characterized by a multitude of parameters that affect
bacterial physiology. In such cases, novel metric func-
tions, which measure the difficulty of organisms to
change and adapt when exposed to the new environ-
ment, should be constructed. In addition, our analysis,
despite its novelty on merging models of gene regulatory
and biochemical networks with population dynamics,
did not exploit the possible link between the biological
network organization and modular structure in a given
environment, and the ability to generalize to new

environments that may, or may not, be similar. Integra-
tion of emergent network characteristics and other
environmental information has the potential to yield a
more accurate depiction of the interplay between evolu-
tionary rates and environmental organization.
Finally, it would be interesting to validate the guided

evolution hypothesis in a laboratory setting. An obvious
challenge is to characterize environmental similarity and
complexity in static environments, as laboratory evolu-
tion experiments with shake flasks would be very diffi-
cult, if they were to reproduce a temporal correlation
between the nutrients and environmental signals. How-
ever, chemostats have the capacity to couple nutrient
availability to abiotic signals (temperature, pressure),
and as such, they can provide a suitable platform to
experimentally test this hypothesis.
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